organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Aza­niumyleth­yl)piperazine-1,4-diium trinitrate

aDepartment of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
*Correspondence e-mail: melanie.rademeyer@up.ac.za

(Received 7 November 2011; accepted 9 November 2011; online 12 November 2011)

In the title salt, C6H18N33+·3NO3, the piperazine ring adopts a chair conformation and the ethyl­ammonium group is equatorial relative to the piperazine ring, and in an all-trans conformation. In the crystal, strong charge-assisted N—H⋯O hydrogen bonds link the piperazinediium trications and the nitrate anions into a three-dimensional network

Related literature

The structure of a related salt, bis­(1-(2-ammonium­eth­yl)piperazinium) cyclo­hexa­phosphate hexa­hydrate, has been reported (Charfi & Jouini, 1996[Charfi, M. & Jouini, A. (1996). J. Solid State. Chem. 127, 9-18.]).

[Scheme 1]

Experimental

Crystal data
  • C6H18N33+·3NO3

  • Mr = 318.26

  • Monoclinic, P 21 /c

  • a = 7.7946 (6) Å

  • b = 8.9320 (6) Å

  • c = 19.6910 (13) Å

  • β = 96.635 (6)°

  • V = 1361.73 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Oxford Xcalibur2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.966, Tmax = 1.043

  • 13603 measured reflections

  • 4319 independent reflections

  • 2517 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.129

  • S = 1.01

  • 4319 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O1i 0.91 2.00 2.8074 (16) 146
N5—H5⋯O2i 0.91 2.34 3.1755 (17) 152
N4—H4A⋯O9 0.90 2.05 2.9008 (15) 158
N4—H4A⋯O7 0.90 2.29 2.9947 (15) 135
N4—H4B⋯O5ii 0.90 1.93 2.8065 (16) 165
N4—H4B⋯O6ii 0.90 2.43 3.0387 (15) 125
N6—H7A⋯O1iii 0.89 2.16 2.9224 (15) 144
N6—H7A⋯O3iii 0.89 2.47 3.322 (2) 161
N6—H7B⋯O9iv 0.89 2.15 3.0360 (15) 173
N6—H7B⋯O8iv 0.89 2.45 3.1171 (16) 132
N6—H7C⋯O4v 0.89 1.99 2.8033 (14) 152
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x+1, y+1, z; (v) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the field of crystal engineering, an understanding of the role of the anion geometry on the molecular packing and non-covalent interactions in salt crystal structures is central to the area of molecular recognition. The current structure was determined as part of a wider study that considers this role of anion geometry on a crystal structure.

The molecular geometry and labelling scheme of 1-(2-ammoniumethyl)piperazinium) trinitrate, I, is illustrated in Fig. 1. In this structure, the asymmetric unit consists of one 1-(2-ammoniumethyl)piperazinium cation and three isolated, trigonal planar nitrate anions, with four asymmetric units in the unit cell. In the cation the piperazine ring adopts the chair conformation, and the ethylammonium group is equatorial relative to the piperazine ring, and in the all-trans conformation.

Fig. 2 shows the molecular packing of I, viewed down the a-axis, with double rows of cations alternating in orientation along the c-axis. Each cation is hydrogen bonded to six different surrounding nitrate anions, and strong N—H+···-O—N hydrogen bonds link the cations and the anions. The ammonium group on the cation froms one conventional and two bifurcated hydrogen bonds to three different nitrate anions, while the –NH2+ group is involved in two bifurcated hydrogen bonds to two nitrate anions, and the –NH+ group forms one bifurcated hydrogen bond to one nitrate anion. Hydrogen bonding interactions are listed in Table 1, and the resulting, complex, three-dimensional hydrogen bonding network is shown in Fig. 3.

Related literature top

The structure of a related salt, bis(1-(2-ammoniumethyl)piperazinium) cyclohexaphosphate hexahydrate, has been reported (Charfi & Jouini, 1996).

Experimental top

1-(2-Ammoniumethyl)piperazinium trinitrate was prepared by the dropwise addition of excess concentrated nitric acid (3.0 ml, 0.047 mol, 70%, Saarchem) to a solution of 1-(2-aminoethyl)piperazine (1.5 ml, 0.011 mol 99%, Aldrich) in 40 ml chloroform (99%, Saarchem). The resulting precipitate was filtered, dried in air and re-crystallized from distilled water. Colourless crystals formed on evaporation, open to the air, at room temperature.

Refinement top

All H atoms were refined using a riding model, with C—H distances of 0.97 Å and N—H distances of 0.89 Å, and Uiso(H) = 1.5Ueq(C) or 1.2Ueq(C) or 1.2Ueq(N). The highest residual peak (0.24eÅ-3) is 0.83 Å from atom O1.

Structure description top

In the field of crystal engineering, an understanding of the role of the anion geometry on the molecular packing and non-covalent interactions in salt crystal structures is central to the area of molecular recognition. The current structure was determined as part of a wider study that considers this role of anion geometry on a crystal structure.

The molecular geometry and labelling scheme of 1-(2-ammoniumethyl)piperazinium) trinitrate, I, is illustrated in Fig. 1. In this structure, the asymmetric unit consists of one 1-(2-ammoniumethyl)piperazinium cation and three isolated, trigonal planar nitrate anions, with four asymmetric units in the unit cell. In the cation the piperazine ring adopts the chair conformation, and the ethylammonium group is equatorial relative to the piperazine ring, and in the all-trans conformation.

Fig. 2 shows the molecular packing of I, viewed down the a-axis, with double rows of cations alternating in orientation along the c-axis. Each cation is hydrogen bonded to six different surrounding nitrate anions, and strong N—H+···-O—N hydrogen bonds link the cations and the anions. The ammonium group on the cation froms one conventional and two bifurcated hydrogen bonds to three different nitrate anions, while the –NH2+ group is involved in two bifurcated hydrogen bonds to two nitrate anions, and the –NH+ group forms one bifurcated hydrogen bond to one nitrate anion. Hydrogen bonding interactions are listed in Table 1, and the resulting, complex, three-dimensional hydrogen bonding network is shown in Fig. 3.

The structure of a related salt, bis(1-(2-ammoniumethyl)piperazinium) cyclohexaphosphate hexahydrate, has been reported (Charfi & Jouini, 1996).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of I, showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of I viewed down the a-axis.
[Figure 3] Fig. 3. Hydrogen bonding network in I.
1-(2-Azaniumylethyl)piperazine-1,4-diium trinitrate top
Crystal data top
C6H18N33+·3NO3F(000) = 672
Mr = 318.26Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5277 reflections
a = 7.7946 (6) Åθ = 3.7–32.0°
b = 8.9320 (6) ŵ = 0.14 mm1
c = 19.6910 (13) ÅT = 293 K
β = 96.635 (6)°Block, colourless
V = 1361.73 (17) Å30.35 × 0.30 × 0.20 mm
Z = 4
Data collection top
Oxford Xcalibur2
diffractometer
4319 independent reflections
Radiation source: fine-focus sealed tube2517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω–2θ scansθmax = 32.0°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 116
Tmin = 0.966, Tmax = 1.043k = 1212
13603 measured reflectionsl = 2829
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.074P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4319 reflectionsΔρmax = 0.24 e Å3
192 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (3)
Crystal data top
C6H18N33+·3NO3V = 1361.73 (17) Å3
Mr = 318.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7946 (6) ŵ = 0.14 mm1
b = 8.9320 (6) ÅT = 293 K
c = 19.6910 (13) Å0.35 × 0.30 × 0.20 mm
β = 96.635 (6)°
Data collection top
Oxford Xcalibur2
diffractometer
4319 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2517 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 1.043Rint = 0.022
13603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
4319 reflectionsΔρmin = 0.21 e Å3
192 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2006) Version 1.171.29.9 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O80.12932 (14)0.16141 (11)0.10385 (6)0.0633 (3)
O90.14426 (14)0.36595 (11)0.16044 (5)0.0567 (3)
N50.25593 (12)0.88408 (10)0.10913 (5)0.0323 (2)
H50.34650.82650.09970.039*
N40.02701 (14)0.65031 (12)0.14525 (6)0.0448 (3)
H4A0.00340.55300.15150.054*
H4B0.06510.70430.15440.054*
N60.49105 (14)1.25521 (12)0.11758 (5)0.0432 (3)
H7A0.45631.27890.07430.065*
H7B0.60121.28140.12780.065*
H7C0.42651.30350.14490.065*
C40.22499 (17)0.85655 (14)0.18187 (6)0.0387 (3)
H4C0.13120.91980.19320.046*
H4D0.32780.88300.21200.046*
C10.09846 (17)0.83708 (15)0.06264 (6)0.0428 (3)
H1A0.00080.89810.07180.051*
H1B0.11820.85310.01540.051*
C50.29617 (16)1.04353 (13)0.09492 (6)0.0398 (3)
H5A0.20981.10710.11200.048*
H5B0.28901.05800.04580.048*
C30.18042 (18)0.69465 (15)0.19308 (7)0.0445 (3)
H3A0.27790.63170.18560.053*
H3B0.15610.68060.23990.053*
C20.05773 (17)0.67486 (15)0.07315 (6)0.0445 (3)
H2A0.04420.64650.04290.053*
H2B0.15330.61310.06240.053*
C60.47308 (16)1.09143 (14)0.12711 (7)0.0442 (3)
H6A0.48681.06740.17550.053*
H6B0.56161.03880.10580.053*
O70.05818 (13)0.33529 (11)0.09607 (6)0.0573 (3)
N30.07066 (14)0.28710 (12)0.12031 (5)0.0409 (3)
N20.26751 (13)0.30391 (12)0.26544 (5)0.0410 (3)
O40.37816 (13)0.37345 (12)0.23659 (5)0.0573 (3)
O50.21779 (16)0.35660 (13)0.31806 (7)0.0743 (4)
O60.20595 (15)0.18569 (12)0.24225 (5)0.0625 (3)
N10.43842 (14)0.14691 (14)0.44408 (6)0.0486 (3)
O10.49718 (18)0.26837 (13)0.46985 (6)0.0719 (3)
O20.49348 (16)0.10390 (15)0.39153 (6)0.0766 (4)
O30.33557 (14)0.07557 (17)0.47326 (8)0.0917 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.0685 (7)0.0463 (6)0.0767 (7)0.0175 (5)0.0153 (6)0.0120 (5)
O90.0719 (7)0.0479 (6)0.0544 (6)0.0080 (5)0.0245 (5)0.0032 (4)
N50.0334 (5)0.0314 (5)0.0327 (5)0.0000 (4)0.0066 (4)0.0000 (4)
N40.0540 (6)0.0339 (5)0.0495 (6)0.0102 (5)0.0187 (5)0.0043 (4)
N60.0467 (6)0.0392 (6)0.0450 (6)0.0089 (4)0.0112 (5)0.0005 (4)
C40.0464 (7)0.0388 (6)0.0310 (6)0.0053 (5)0.0050 (5)0.0014 (4)
C10.0463 (7)0.0442 (7)0.0363 (6)0.0068 (5)0.0017 (5)0.0017 (5)
C50.0439 (6)0.0331 (6)0.0420 (7)0.0028 (5)0.0035 (5)0.0057 (5)
C30.0580 (8)0.0391 (7)0.0377 (7)0.0003 (6)0.0109 (6)0.0048 (5)
C20.0487 (7)0.0451 (7)0.0401 (7)0.0117 (6)0.0066 (6)0.0092 (5)
C60.0389 (6)0.0374 (7)0.0565 (8)0.0016 (5)0.0059 (6)0.0043 (6)
O70.0538 (6)0.0439 (5)0.0785 (7)0.0018 (4)0.0255 (5)0.0070 (5)
N30.0442 (6)0.0383 (6)0.0402 (6)0.0027 (5)0.0050 (4)0.0053 (4)
N20.0399 (5)0.0419 (6)0.0414 (6)0.0011 (4)0.0059 (5)0.0061 (4)
O40.0572 (6)0.0620 (7)0.0559 (6)0.0157 (5)0.0205 (5)0.0081 (5)
O50.0777 (7)0.0731 (8)0.0802 (8)0.0278 (6)0.0434 (6)0.0406 (6)
O60.0849 (8)0.0474 (6)0.0571 (6)0.0186 (5)0.0162 (6)0.0165 (5)
N10.0379 (5)0.0574 (7)0.0515 (7)0.0028 (5)0.0087 (5)0.0133 (5)
O10.1058 (9)0.0543 (7)0.0572 (7)0.0008 (6)0.0166 (6)0.0007 (5)
O20.0825 (8)0.0947 (10)0.0554 (7)0.0013 (7)0.0206 (6)0.0126 (6)
O30.0447 (6)0.1131 (11)0.1208 (11)0.0054 (6)0.0251 (7)0.0587 (9)
Geometric parameters (Å, º) top
O8—N31.2411 (14)C1—H1A0.9700
O9—N31.2468 (14)C1—H1B0.9700
N5—C51.4918 (15)C5—C61.5114 (18)
N5—C41.5000 (15)C5—H5A0.9700
N5—C11.5037 (15)C5—H5B0.9700
N5—H50.9100C3—H3A0.9700
N4—C21.4831 (16)C3—H3B0.9700
N4—C31.4878 (17)C2—H2A0.9700
N4—H4A0.9000C2—H2B0.9700
N4—H4B0.9000C6—H6A0.9700
N6—C61.4836 (16)C6—H6B0.9700
N6—H7A0.8900O7—N31.2379 (14)
N6—H7B0.8900N2—O61.2261 (14)
N6—H7C0.8900N2—O51.2402 (14)
C4—C31.5094 (17)N2—O41.2512 (14)
C4—H4C0.9700N1—O31.2187 (15)
C4—H4D0.9700N1—O21.2269 (16)
C1—C21.5028 (19)N1—O11.2611 (16)
C5—N5—C4113.34 (9)C6—C5—H5A109.0
C5—N5—C1109.08 (9)N5—C5—H5B109.0
C4—N5—C1109.00 (9)C6—C5—H5B109.0
C5—N5—H5108.4H5A—C5—H5B107.8
C4—N5—H5108.4N4—C3—C4110.13 (10)
C1—N5—H5108.4N4—C3—H3A109.6
C2—N4—C3111.09 (9)C4—C3—H3A109.6
C2—N4—H4A109.4N4—C3—H3B109.6
C3—N4—H4A109.4C4—C3—H3B109.6
C2—N4—H4B109.4H3A—C3—H3B108.1
C3—N4—H4B109.4N4—C2—C1109.54 (10)
H4A—N4—H4B108.0N4—C2—H2A109.8
C6—N6—H7A109.5C1—C2—H2A109.8
C6—N6—H7B109.5N4—C2—H2B109.8
H7A—N6—H7B109.5C1—C2—H2B109.8
C6—N6—H7C109.5H2A—C2—H2B108.2
H7A—N6—H7C109.5N6—C6—C5108.72 (10)
H7B—N6—H7C109.5N6—C6—H6A109.9
N5—C4—C3111.21 (10)C5—C6—H6A109.9
N5—C4—H4C109.4N6—C6—H6B109.9
C3—C4—H4C109.4C5—C6—H6B109.9
N5—C4—H4D109.4H6A—C6—H6B108.3
C3—C4—H4D109.4O7—N3—O8120.31 (11)
H4C—C4—H4D108.0O7—N3—O9120.08 (11)
C2—C1—N5110.85 (10)O8—N3—O9119.59 (11)
C2—C1—H1A109.5O6—N2—O5119.43 (11)
N5—C1—H1A109.5O6—N2—O4121.27 (11)
C2—C1—H1B109.5O5—N2—O4119.29 (11)
N5—C1—H1B109.5O3—N1—O2123.17 (15)
H1A—C1—H1B108.1O3—N1—O1119.22 (14)
N5—C5—C6113.14 (10)O2—N1—O1117.55 (12)
N5—C5—H5A109.0
C5—N5—C4—C3178.55 (10)C2—N4—C3—C457.49 (14)
C1—N5—C4—C356.88 (13)N5—C4—C3—N456.80 (14)
C5—N5—C1—C2177.55 (10)C3—N4—C2—C158.69 (14)
C4—N5—C1—C258.23 (13)N5—C1—C2—N459.29 (14)
C4—N5—C5—C671.34 (13)N5—C5—C6—N6172.78 (10)
C1—N5—C5—C6167.04 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O1i0.912.002.8074 (16)146
N5—H5···O2i0.912.343.1755 (17)152
N4—H4A···O90.902.052.9008 (15)158
N4—H4A···O70.902.292.9947 (15)135
N4—H4B···O5ii0.901.932.8065 (16)165
N4—H4B···O6ii0.902.433.0387 (15)125
N6—H7A···O1iii0.892.162.9224 (15)144
N6—H7A···O3iii0.892.473.322 (2)161
N6—H7B···O9iv0.892.153.0360 (15)173
N6—H7B···O8iv0.892.453.1171 (16)132
N6—H7C···O4v0.891.992.8033 (14)152
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H18N33+·3NO3
Mr318.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.7946 (6), 8.9320 (6), 19.6910 (13)
β (°) 96.635 (6)
V3)1361.73 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerOxford Xcalibur2
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.966, 1.043
No. of measured, independent and
observed [I > 2σ(I)] reflections
13603, 4319, 2517
Rint0.022
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.129, 1.01
No. of reflections4319
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O1i0.912.002.8074 (16)146.4
N5—H5···O2i0.912.343.1755 (17)152.1
N4—H4A···O90.902.052.9008 (15)157.8
N4—H4A···O70.902.292.9947 (15)134.5
N4—H4B···O5ii0.901.932.8065 (16)165.4
N4—H4B···O6ii0.902.433.0387 (15)125.4
N6—H7A···O1iii0.892.162.9224 (15)143.5
N6—H7A···O3iii0.892.473.322 (2)160.5
N6—H7B···O9iv0.892.153.0360 (15)172.9
N6—H7B···O8iv0.892.453.1171 (16)131.8
N6—H7C···O4v0.891.992.8033 (14)151.9
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z; (v) x, y+1, z.
 

Acknowledgements

Funding received for this work from the University of Pretoria, the University of KwaZulu-Natal and the National Research Foundation (GUN: 2054350) is acknowledged.

References

First citationCharfi, M. & Jouini, A. (1996). J. Solid State. Chem. 127, 9–18.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds