metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Di­hydro-3a,5a-diazo­niapyrene tri­iodidocuprate(I)

aDepartment of Chemistry, Zhengzhou University, Zhengzhou, People's Republic of China, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 November 2011; accepted 22 November 2011; online 25 November 2011)

In the dianion of the title salt, (C14H12N2)[CuI3], the CuI atom is coordinated by three I ions that define a nearly trigonal-planar geometry; the CuI atom lies 0.1407 (6) Å out of the plane. With the exception of the methyl­ene C atoms, the dication is essentially planar (r.m.s deviation = 0.067 Å). The most significant inter­action between the ions is a C—H⋯I contact.

Related literature

For studies of the triiodidocuprate(I) di-anion, see: Mishra et al. (2008[Mishra, S., Jeanneau, E., Daniele, S. & Hubert-Pfalzgraf, L. (2008). CrystEngComm, 10, 814-816.]); Su et al. (2003[Su, C.-Y., Cai, Y.-P., Chen, C.-L., Smith, M. D., Kaim, W. & zur Loye, H.-C. (2003). J. Am. Chem. Soc. 125, 8595-8613.]). For background to the phenanthrolinium di-cation as a template for the construction of thio­cyanato­cuprate(I) polymers, see: Yue et al. (2010[Yue, J.-M., Xu, N., Zhang, Z.-H., Dong, W.-L., Niu, Y.-Y. & Hou, H.-W. (2010). Inorg. Chem. Commun. 13, 1534-1537.]). For information on the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H12N2)[CuI3]

  • Mr = 652.50

  • Monoclinic, P 21 /n

  • a = 7.6018 (6) Å

  • b = 15.0917 (12) Å

  • c = 14.2776 (12) Å

  • β = 98.903 (1)°

  • V = 1618.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.06 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.332, Tmax = 0.872

  • 14984 measured reflections

  • 3701 independent reflections

  • 3065 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.065

  • S = 1.05

  • 3701 reflections

  • 181 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Selected bond lengths (Å)

Cu—I1 2.5336 (7)
Cu—I2 2.5254 (7)
Cu—I3 2.5025 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13b⋯I2 0.99 3.06 3.969 (4) 154

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Organic-inorganic hybrid compounds containing the triiodidocuprate(I) anion have been the subject of recent investigations (Mishra et al., 2008; Su et al., 2003). While the phenanthrolinium di-cation has proved to be a suitable template for the construction of a thiocyanatocuprate(I) polymer (Yue et al., 2010), crystal structures containing the phenanthrolinium template are relatively scarce (Allen, 2002). In this communication the crystal structure of a new triiodidocuprate(I) complex containing the 5,6-dihydrodipyrazino(1,2,3,4-lmn)-1,10-phenanthrolinium dication, i.e. (I), is described.

The crystallographic asymmetric unit of (I), comprises a di-cation and a di-anion, Fig. 1. The 14 non-hydrogen atom comprising the aromatic part of the di-cation are effectively planar with a r.m.s. deviation = 0.067 Å; the maximum deviations of 0.090 (5) and -0.117 (4) Å are found for the C10 and N1 atoms, respectively. The C13 and C14 atoms lie 0.267 (5) and -0.480 (5) Å out of this plane, respectively. In the di-anion, the Cu—I distances lie in a relatively narrow range (Table 1) and the Cu atom lies 0.1407 (6) Å above the trigonal plane defined by the iodido atoms.

In the crystal structure, the ions are almost parallel (dihedral angle between the 1,10-phenanthrolinium and CuI3 planes = 1.45 (4) °) with the closest interaction between them being a C—H···I contact, Table 2. The I3 atom lies over the (C4–C7,C11,C12) ring, with the I3···ring centroid distance = 3.5842 (19) Å and the Cu—I3···ring centroid angle = 101.22 (3)°.

Related literature top

For studies of the triiodidocuprate(I) di-anion, see: Mishra et al. (2008); Su et al. (2003). For background to the phenanthrolinium di-cation as a template for the construction of thiocyanatocuprate(I) polymers, see: Yue et al. (2010). For information on the Cambridge Structural Database, see: Allen (2002).

Experimental top

5,6-Dihydrodipyrazino(1,2,3,4-lmn)-1,10-phenanthrolinium dibromide was synthesized by reacting 1,2-dibromoethane with 1,10-phenanthroline monohydrate. A methanol solution (10 ml) of the salt (0.37 g, 1 mmol) was mixed with a water/DMF (1:4) solution (10 ml) of cuprous iodide (0.19 g, 1 mmol). An excess of potassium iodide (0.83 g, 5 mmol) was added. The solution was filtered and the solvent allow to evaporate slowly to furnish dark-brown crystals of the cuprate salt.

Refinement top

H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The anisotropic displacement ellipsoid of one of the phenanthroline C-atoms (C12) was tightly restrained to be nearly isotropic.

Structure description top

Organic-inorganic hybrid compounds containing the triiodidocuprate(I) anion have been the subject of recent investigations (Mishra et al., 2008; Su et al., 2003). While the phenanthrolinium di-cation has proved to be a suitable template for the construction of a thiocyanatocuprate(I) polymer (Yue et al., 2010), crystal structures containing the phenanthrolinium template are relatively scarce (Allen, 2002). In this communication the crystal structure of a new triiodidocuprate(I) complex containing the 5,6-dihydrodipyrazino(1,2,3,4-lmn)-1,10-phenanthrolinium dication, i.e. (I), is described.

The crystallographic asymmetric unit of (I), comprises a di-cation and a di-anion, Fig. 1. The 14 non-hydrogen atom comprising the aromatic part of the di-cation are effectively planar with a r.m.s. deviation = 0.067 Å; the maximum deviations of 0.090 (5) and -0.117 (4) Å are found for the C10 and N1 atoms, respectively. The C13 and C14 atoms lie 0.267 (5) and -0.480 (5) Å out of this plane, respectively. In the di-anion, the Cu—I distances lie in a relatively narrow range (Table 1) and the Cu atom lies 0.1407 (6) Å above the trigonal plane defined by the iodido atoms.

In the crystal structure, the ions are almost parallel (dihedral angle between the 1,10-phenanthrolinium and CuI3 planes = 1.45 (4) °) with the closest interaction between them being a C—H···I contact, Table 2. The I3 atom lies over the (C4–C7,C11,C12) ring, with the I3···ring centroid distance = 3.5842 (19) Å and the Cu—I3···ring centroid angle = 101.22 (3)°.

For studies of the triiodidocuprate(I) di-anion, see: Mishra et al. (2008); Su et al. (2003). For background to the phenanthrolinium di-cation as a template for the construction of thiocyanatocuprate(I) polymers, see: Yue et al. (2010). For information on the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of (I) drawn at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4,5-Dihydro-3a,5a-diazoniapyrene triiodidocuprate(I) top
Crystal data top
(C14H12N2)[CuI3]F(000) = 1192
Mr = 652.50Dx = 2.678 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4486 reflections
a = 7.6018 (6) Åθ = 2.9–28.1°
b = 15.0917 (12) ŵ = 7.06 mm1
c = 14.2776 (12) ÅT = 100 K
β = 98.903 (1)°Plate, brown
V = 1618.2 (2) Å30.20 × 0.20 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3701 independent reflections
Radiation source: fine-focus sealed tube3065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.332, Tmax = 0.872k = 1919
14984 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.015P)2 + 1.1596P]
where P = (Fo2 + 2Fc2)/3
3701 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.73 e Å3
6 restraintsΔρmin = 0.82 e Å3
Crystal data top
(C14H12N2)[CuI3]V = 1618.2 (2) Å3
Mr = 652.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6018 (6) ŵ = 7.06 mm1
b = 15.0917 (12) ÅT = 100 K
c = 14.2776 (12) Å0.20 × 0.20 × 0.02 mm
β = 98.903 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3701 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3065 reflections with I > 2σ(I)
Tmin = 0.332, Tmax = 0.872Rint = 0.055
14984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0286 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.05Δρmax = 0.73 e Å3
3701 reflectionsΔρmin = 0.82 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.66182 (4)0.44391 (2)0.12230 (2)0.01428 (8)
I20.67359 (4)0.43433 (2)0.42229 (2)0.01632 (9)
I30.49833 (4)0.19901 (2)0.24528 (2)0.01604 (9)
Cu0.62612 (8)0.35182 (4)0.26653 (4)0.01510 (14)
N10.1049 (5)0.3718 (3)0.3535 (3)0.0130 (8)
N20.1521 (5)0.4112 (3)0.1658 (3)0.0119 (8)
C10.0995 (6)0.3503 (3)0.4439 (3)0.0160 (10)
H10.12180.39500.49110.019*
C20.0627 (6)0.2657 (3)0.4704 (3)0.0169 (10)
H20.06680.25100.53540.020*
C30.0196 (6)0.2024 (3)0.4013 (3)0.0165 (10)
H30.01200.14430.41820.020*
C40.0223 (6)0.2236 (3)0.3056 (3)0.0126 (9)
C50.0244 (6)0.1603 (3)0.2316 (3)0.0133 (10)
H50.06150.10250.24640.016*
C60.0163 (6)0.1820 (3)0.1401 (3)0.0140 (10)
H60.04940.13940.09160.017*
C70.0411 (6)0.2679 (3)0.1155 (3)0.0110 (9)
C80.0559 (6)0.2916 (3)0.0224 (3)0.0154 (10)
H80.02280.25050.02770.019*
C90.1181 (6)0.3739 (3)0.0029 (3)0.0145 (10)
H90.12550.39060.06050.017*
C100.1702 (6)0.4327 (3)0.0771 (3)0.0148 (10)
H100.21900.48860.06450.018*
C110.0871 (6)0.3306 (3)0.1873 (3)0.0109 (9)
C120.0725 (6)0.3089 (3)0.2834 (3)0.0096 (9)
C130.2245 (6)0.4716 (3)0.2442 (3)0.0126 (10)
H13A0.22140.53330.22060.015*
H13B0.35000.45590.26780.015*
C140.1165 (6)0.4646 (3)0.3240 (3)0.0140 (10)
H14A0.17290.50060.37850.017*
H14B0.00470.48820.30290.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01585 (16)0.01624 (17)0.01116 (15)0.00100 (12)0.00336 (12)0.00077 (12)
I20.01971 (17)0.01736 (17)0.01211 (15)0.00023 (13)0.00313 (12)0.00156 (12)
I30.01528 (16)0.01722 (17)0.01553 (16)0.00182 (12)0.00215 (12)0.00031 (12)
Cu0.0145 (3)0.0173 (3)0.0134 (3)0.0010 (2)0.0021 (2)0.0004 (2)
N10.0086 (19)0.019 (2)0.0107 (19)0.0034 (16)0.0015 (15)0.0011 (16)
N20.011 (2)0.014 (2)0.0104 (19)0.0011 (15)0.0006 (16)0.0021 (15)
C10.016 (3)0.019 (3)0.013 (2)0.004 (2)0.0004 (19)0.0003 (19)
C20.019 (3)0.022 (3)0.009 (2)0.005 (2)0.002 (2)0.004 (2)
C30.015 (2)0.017 (3)0.018 (2)0.002 (2)0.004 (2)0.002 (2)
C40.010 (2)0.015 (2)0.013 (2)0.0014 (18)0.0027 (18)0.0013 (18)
C50.007 (2)0.015 (2)0.018 (2)0.0005 (18)0.0022 (18)0.0038 (19)
C60.011 (2)0.014 (2)0.016 (2)0.0016 (18)0.0020 (19)0.0015 (19)
C70.009 (2)0.013 (2)0.011 (2)0.0007 (18)0.0011 (17)0.0016 (18)
C80.014 (2)0.017 (3)0.015 (2)0.0033 (19)0.0025 (19)0.0017 (19)
C90.018 (3)0.018 (3)0.009 (2)0.000 (2)0.0046 (19)0.0003 (19)
C100.012 (2)0.020 (3)0.012 (2)0.0003 (19)0.0013 (19)0.004 (2)
C110.008 (2)0.013 (2)0.012 (2)0.0025 (17)0.0009 (17)0.0034 (18)
C120.0033 (19)0.013 (2)0.012 (2)0.0025 (16)0.0008 (16)0.0009 (17)
C130.014 (2)0.011 (2)0.012 (2)0.0016 (18)0.0024 (18)0.0007 (18)
C140.017 (3)0.010 (2)0.016 (2)0.0032 (19)0.006 (2)0.0020 (18)
Geometric parameters (Å, º) top
Cu—I12.5336 (7)C5—C61.357 (6)
Cu—I22.5254 (7)C5—H50.9500
Cu—I32.5025 (7)C6—C71.429 (6)
N1—C11.337 (6)C6—H60.9500
N1—C121.375 (6)C7—C81.398 (6)
N1—C141.470 (6)C7—C111.399 (6)
N2—C101.336 (6)C8—C91.373 (7)
N2—C111.366 (6)C8—H80.9500
N2—C131.481 (6)C9—C101.391 (6)
C1—C21.374 (7)C9—H90.9500
C1—H10.9500C10—H100.9500
C2—C31.376 (7)C11—C121.431 (6)
C2—H20.9500C13—C141.507 (6)
C3—C41.406 (6)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C121.394 (6)C14—H14A0.9900
C4—C51.428 (7)C14—H14B0.9900
I3—Cu—I2124.13 (3)C11—C7—C6118.9 (4)
I3—Cu—I1119.69 (2)C9—C8—C7120.3 (4)
I2—Cu—I1115.25 (3)C9—C8—H8119.9
C1—N1—C12120.5 (4)C7—C8—H8119.9
C1—N1—C14121.3 (4)C8—C9—C10119.3 (4)
C12—N1—C14117.5 (4)C8—C9—H9120.4
C10—N2—C11121.5 (4)C10—C9—H9120.4
C10—N2—C13119.1 (4)N2—C10—C9120.6 (4)
C11—N2—C13118.9 (4)N2—C10—H10119.7
N1—C1—C2121.9 (5)C9—C10—H10119.7
N1—C1—H1119.0N2—C11—C7119.7 (4)
C2—C1—H1119.0N2—C11—C12120.2 (4)
C1—C2—C3119.0 (4)C7—C11—C12120.0 (4)
C1—C2—H2120.5N1—C12—C4119.8 (4)
C3—C2—H2120.5N1—C12—C11120.6 (4)
C2—C3—C4120.0 (5)C4—C12—C11119.7 (4)
C2—C3—H3120.0N2—C13—C14110.3 (4)
C4—C3—H3120.0N2—C13—H13A109.6
C12—C4—C3118.5 (4)C14—C13—H13A109.6
C12—C4—C5119.6 (4)N2—C13—H13B109.6
C3—C4—C5121.8 (4)C14—C13—H13B109.6
C6—C5—C4120.5 (4)H13A—C13—H13B108.1
C6—C5—H5119.8N1—C14—C13110.3 (4)
C4—C5—H5119.8N1—C14—H14A109.6
C5—C6—C7121.2 (4)C13—C14—H14A109.6
C5—C6—H6119.4N1—C14—H14B109.6
C7—C6—H6119.4C13—C14—H14B109.6
C8—C7—C11118.5 (4)H14A—C14—H14B108.1
C8—C7—C6122.6 (4)
C12—N1—C1—C20.3 (7)C8—C7—C11—N22.8 (7)
C14—N1—C1—C2170.3 (4)C6—C7—C11—N2176.2 (4)
N1—C1—C2—C34.0 (7)C8—C7—C11—C12179.6 (4)
C1—C2—C3—C43.1 (7)C6—C7—C11—C121.4 (7)
C2—C3—C4—C121.2 (7)C1—N1—C12—C44.2 (6)
C2—C3—C4—C5178.9 (4)C14—N1—C12—C4166.2 (4)
C12—C4—C5—C61.5 (7)C1—N1—C12—C11176.8 (4)
C3—C4—C5—C6178.4 (4)C14—N1—C12—C1112.8 (6)
C4—C5—C6—C70.8 (7)C3—C4—C12—N14.8 (6)
C5—C6—C7—C8178.1 (4)C5—C4—C12—N1175.2 (4)
C5—C6—C7—C110.9 (7)C3—C4—C12—C11176.1 (4)
C11—C7—C8—C91.5 (7)C5—C4—C12—C113.8 (6)
C6—C7—C8—C9177.6 (4)N2—C11—C12—N17.2 (6)
C7—C8—C9—C101.5 (7)C7—C11—C12—N1175.3 (4)
C11—N2—C10—C91.8 (7)N2—C11—C12—C4173.9 (4)
C13—N2—C10—C9174.2 (4)C7—C11—C12—C43.7 (6)
C8—C9—C10—N23.2 (7)C10—N2—C13—C14150.5 (4)
C10—N2—C11—C71.2 (7)C11—N2—C13—C1436.9 (6)
C13—N2—C11—C7171.2 (4)C1—N1—C14—C13146.4 (4)
C10—N2—C11—C12178.8 (4)C12—N1—C14—C1343.3 (5)
C13—N2—C11—C126.4 (6)N2—C13—C14—N153.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13b···I20.993.063.969 (4)154

Experimental details

Crystal data
Chemical formula(C14H12N2)[CuI3]
Mr652.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.6018 (6), 15.0917 (12), 14.2776 (12)
β (°) 98.903 (1)
V3)1618.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)7.06
Crystal size (mm)0.20 × 0.20 × 0.02
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.332, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
14984, 3701, 3065
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.05
No. of reflections3701
No. of parameters181
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.82

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu—I12.5336 (7)Cu—I32.5025 (7)
Cu—I22.5254 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13b···I20.993.063.969 (4)154
 

Acknowledgements

The authors thank the National Natural Science Foundation (grant No. 21171148) and the University of Malaya for supporting this study.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMishra, S., Jeanneau, E., Daniele, S. & Hubert-Pfalzgraf, L. (2008). CrystEngComm, 10, 814–816.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C.-Y., Cai, Y.-P., Chen, C.-L., Smith, M. D., Kaim, W. & zur Loye, H.-C. (2003). J. Am. Chem. Soc. 125, 8595–8613.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYue, J.-M., Xu, N., Zhang, Z.-H., Dong, W.-L., Niu, Y.-Y. & Hou, H.-W. (2010). Inorg. Chem. Commun. 13, 1534–1537.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds