metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[copper(II)-bis­­[μ-bis­­(pyridin-3-yl)methanone-κ2N:N′]] bis­­(tetra­fluorido­borate)]

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: binliu92@yahoo.cn

(Received 19 November 2011; accepted 25 November 2011; online 30 November 2011)

In the title complex, {[Cu(C11H8N2O)2](BF4)2}n, the CuII ion is situated on an inversion centre and adopts an N4F2 octa­hedral coordination geometry with four N atoms from four different bis­(pyridin-3-yl)methanone ligands at the equatorial sites and two independent tetra­fluoridoborate anions weakly bonded at the axial sites via two F atoms [Cu⋯F = 2.613 (3) Å]. Chains with the bridging ligands are formed along the a axis. C—H⋯F inter­actions stabilize the structure. C—O⋯π inter­actions also occur.

Related literature

For background to coordination chemistry based on pyridyl­methanone derivatives, see: Dendrinou-Samara et al. (2003[Dendrinou-Samara, C., Alexiou, M., Zaleski, C. M., Kampf, J. W., Kirk, M. L., Kessissoglou, D. P. & Pecoraro, V. L. (2003). Angew. Chem. Int. Ed. 42, 3763-3766.]); Boudalis et al. (2003[Boudalis, A. K., Dahan, F., Bousseksou, A., Tuchagues, J. P. & Perlepes, J. P. (2003). Dalton Trans. pp. 3411-3418.]). For transition metal complexes of di-3-pyridinyl­methanone, see: Chen et al. (2005[Chen, X. D., Guo, J. H., Du, M. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 766-768.]); Chen & Mak (2005[Chen, X. D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1-6.]); Chen et al. (2009[Chen, X. D., Wan, C. Q., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518-6528.]). For a comparable structure, see: Wan et al. (2008[Wan, C. Q., Chen, X. D. & Mak, T. C. W. (2008). CrstEngComm, 10, 475-478.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H8N2O)2](BF4)2

  • Mr = 605.55

  • Triclinic, [P \overline 1]

  • a = 7.5542 (13) Å

  • b = 8.7861 (15) Å

  • c = 10.3389 (17) Å

  • α = 101.280 (2)°

  • β = 109.236 (2)°

  • γ = 108.869 (2)°

  • V = 576.96 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 296 K

  • 0.31 × 0.20 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.756, Tmax = 1.000

  • 4090 measured reflections

  • 2857 independent reflections

  • 2638 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.05

  • 2857 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.017 (2)
Cu1—N2i 2.039 (2)
Symmetry codes: (i) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F2ii 0.93 2.32 3.182 (3) 154
C10—H10A⋯F4iii 0.93 2.41 3.228 (2) 147
Symmetry codes: (ii) x-1, y-1, z-1; (iii) -x+3, -y+2, -z+2.

Table 3
C=O⋯π-electron ring inter­actions (Å, °)

Cg1 and Cg2, are the centroids of the N1/C1–C5 and N2/C7–C11 rings, respectively.

C=O⋯Cg O⋯Cg C⋯Cg C=O⋯Cg
C6=O1⋯Cg1iv 3.123 (4) 4.019 (3) 130.79 (2)
C6=O1⋯Cg2v 3.237 (3) 4.123 (2) 130.20 (1)
Symmetry codes: (iv) 1-x, 1-y, 1-z; (v) 2-x, 1-y, 1-z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The transition metal complexes of di-2-pyridinylmethanone (di-2-pyridyl ketone) have been widely studied in the passed decade (Dendrinou-Samara et al., 2003; Boudalis et al., 2003). The positional isomer di-3-pyridinylmethanone (di-3-pyridyl ketone) was mostly used as a flexible linker in construction various coordination frameworks. The angular C(sp2)-CO-C(sp2) moiety and the rotatable C-C σ bond exhibit subtile tuning on the ligand conformation and subsequent on the formation of various coordination frameworks, such as one-dimensional helical and zigzag chains (Chen & Mak, 2005), two-dimensional nets (Chen et al., 2005) as well as honeycomb-like three-dimensional frameworks (Chen et al., 2009) were constructed. Here we report a new structure derived from di-3-pyridinylmethanone, namely poly{[µ2-(bis(3-pyridyl)methanone-κ2N:N')] copper(II)}ditetrafluoridoborate.

In the title complex, C22H16B2CuF8N4O2, the CuII ion adopts an N4F2-octahedral coordination geometry with four separate di-3-pyridinylmethanone ligands providing four N atoms at the equatorial sites, while two independent tetrafluoridoborate weakly bonding at the axial sites via two F atoms (Fig. 1). The Cu1···F1 distance is 2.613 (2) Å, comparable to that 2.677 (3) Å in [(CuL2)(BF4)2] (L = di-3-pyridinylmethanone, Chen et al. 2005), wherein the CuII adopts a similar N4F2-octahedral geometry. Along the a axis, one double bridged chain with the bidentate bridging ligands is formed in the title complex, which is remarkable different from the (4,4) net in [(CuL2)(BF4)2] (L = di-3-pyridinylmethanone, Chen et al. 2005). The chains are arranged in a shoulder-to-shoulder mode and interconnected through CO···π(pyridyl) interaction, forming a layer in the ac plane (Fig. 2). For the CO···π(pyridyl) interaction, each C6O1 points to the opposite chain and is embraced by two pyridyl rings. The O1···Cg(pyridyl) distances lie within the 3.123 (4)-3.237 (3) Å range (Table 1), well comparable to that 2.916-3.125 Å in Cu(L)2(BF4)2 (L = 2,6-pyridinediylbis(3-pyridinyl)methanone) reported by Wan et al. (Wan et al. 2008). The formed layers are almost parallel and stacked along the b direction to furnish a three-dimensional framework, with the tetrafluoridoborate anions embedded among the interstices (Fig. 3). C—H(pyridyl)···F interactions is also found to stabilize the full framework (Table 1).

Related literature top

For the background on the coordination chemistry based on pyridylmethanone derivatives,see: Dendrinou-Samara et al. (2003); Boudalis et al. (2003). For the transition metal complexes of di-3-pyridinylmethanone, see: Chen et al.(2005); Chen & Mak (2005); Chen et al.(2009). For a comparable structure, see: Wan et al. (2008).

Experimental top

Di-3-pyridinylmethanone was prepared according to the previously reported procedure (Chen & Mak 2005). Cu(BF4)2.xH2O (40 mg) and di-3-pyridylmethanone (19mg, 0.1 mmol) were mixed and dissolved in 4 ml acetonitrile with stirring at room temperature. To the solution 1 ml methanol was subsequently dropped, obtaining a clear solution. Filtration was conducted the filtrate was left to evaporate in air. The needle-like crystals were deposited after one week (15.4 mg, 51% yield based on ligand).

Refinement top

All H atoms were located in the difference electron density maps but were placed in idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

The transition metal complexes of di-2-pyridinylmethanone (di-2-pyridyl ketone) have been widely studied in the passed decade (Dendrinou-Samara et al., 2003; Boudalis et al., 2003). The positional isomer di-3-pyridinylmethanone (di-3-pyridyl ketone) was mostly used as a flexible linker in construction various coordination frameworks. The angular C(sp2)-CO-C(sp2) moiety and the rotatable C-C σ bond exhibit subtile tuning on the ligand conformation and subsequent on the formation of various coordination frameworks, such as one-dimensional helical and zigzag chains (Chen & Mak, 2005), two-dimensional nets (Chen et al., 2005) as well as honeycomb-like three-dimensional frameworks (Chen et al., 2009) were constructed. Here we report a new structure derived from di-3-pyridinylmethanone, namely poly{[µ2-(bis(3-pyridyl)methanone-κ2N:N')] copper(II)}ditetrafluoridoborate.

In the title complex, C22H16B2CuF8N4O2, the CuII ion adopts an N4F2-octahedral coordination geometry with four separate di-3-pyridinylmethanone ligands providing four N atoms at the equatorial sites, while two independent tetrafluoridoborate weakly bonding at the axial sites via two F atoms (Fig. 1). The Cu1···F1 distance is 2.613 (2) Å, comparable to that 2.677 (3) Å in [(CuL2)(BF4)2] (L = di-3-pyridinylmethanone, Chen et al. 2005), wherein the CuII adopts a similar N4F2-octahedral geometry. Along the a axis, one double bridged chain with the bidentate bridging ligands is formed in the title complex, which is remarkable different from the (4,4) net in [(CuL2)(BF4)2] (L = di-3-pyridinylmethanone, Chen et al. 2005). The chains are arranged in a shoulder-to-shoulder mode and interconnected through CO···π(pyridyl) interaction, forming a layer in the ac plane (Fig. 2). For the CO···π(pyridyl) interaction, each C6O1 points to the opposite chain and is embraced by two pyridyl rings. The O1···Cg(pyridyl) distances lie within the 3.123 (4)-3.237 (3) Å range (Table 1), well comparable to that 2.916-3.125 Å in Cu(L)2(BF4)2 (L = 2,6-pyridinediylbis(3-pyridinyl)methanone) reported by Wan et al. (Wan et al. 2008). The formed layers are almost parallel and stacked along the b direction to furnish a three-dimensional framework, with the tetrafluoridoborate anions embedded among the interstices (Fig. 3). C—H(pyridyl)···F interactions is also found to stabilize the full framework (Table 1).

For the background on the coordination chemistry based on pyridylmethanone derivatives,see: Dendrinou-Samara et al. (2003); Boudalis et al. (2003). For the transition metal complexes of di-3-pyridinylmethanone, see: Chen et al.(2005); Chen & Mak (2005); Chen et al.(2009). For a comparable structure, see: Wan et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title complex showing the atom-numbering scheme, with displacement ellipsoids shown at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Symmetry codes: (i) x–1, y, z;(ii)–x+1, –y+1, –z+2; (iii)–x+2, –y+1, –z+2.
[Figure 2] Fig. 2. The CO···π interaction between the infinite cationic chain structure along the a axial direction. The BF4- anions are omitted for clarity.
[Figure 3] Fig. 3. The packing structure of the title complex viewed the a direction.
catena-Poly[[copper(II)-bis[µ-bis(pyridin-3-yl)methanone- κ2N:N']] bis(tetrafluoridoborate)] top
Crystal data top
[Cu(C11H8N2O)2](BF4)2Z = 1
Mr = 605.55F(000) = 303
Triclinic, P1Dx = 1.743 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5542 (13) ÅCell parameters from 202 reflections
b = 8.7861 (15) Åθ = 2.2–28.6°
c = 10.3389 (17) ŵ = 1.04 mm1
α = 101.280 (2)°T = 296 K
β = 109.236 (2)°Needle, blue
γ = 108.869 (2)°0.31 × 0.20 × 0.12 mm
V = 576.96 (17) Å3
Data collection top
'Bruker ApEXII CCD area-detector'
diffractometer
2857 independent reflections
Radiation source: fine-focus sealed tube2638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 28.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.756, Tmax = 1.000k = 116
4090 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.076P)2 + 0.4634P] P = (Fo2 + 2Fc2)/3
2857 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cu(C11H8N2O)2](BF4)2γ = 108.869 (2)°
Mr = 605.55V = 576.96 (17) Å3
Triclinic, P1Z = 1
a = 7.5542 (13) ÅMo Kα radiation
b = 8.7861 (15) ŵ = 1.04 mm1
c = 10.3389 (17) ÅT = 296 K
α = 101.280 (2)°0.31 × 0.20 × 0.12 mm
β = 109.236 (2)°
Data collection top
'Bruker ApEXII CCD area-detector'
diffractometer
2857 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2638 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 1.000Rint = 0.023
4090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.85 e Å3
2857 reflectionsΔρmin = 0.67 e Å3
178 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50001.00000.02531 (15)
O10.7976 (3)0.5511 (3)0.4912 (2)0.0449 (5)
N10.5354 (3)0.4065 (3)0.8203 (2)0.0275 (4)
N21.3670 (3)0.6359 (3)0.8959 (2)0.0282 (4)
C10.3910 (4)0.2547 (3)0.7229 (3)0.0339 (5)
H1A0.28920.19110.74670.041*
C20.3863 (5)0.1881 (4)0.5887 (3)0.0403 (6)
H2A0.28440.08160.52420.048*
C30.5354 (4)0.2825 (4)0.5519 (3)0.0375 (6)
H3A0.53260.24300.46070.045*
C40.6901 (4)0.4379 (3)0.6541 (3)0.0284 (5)
C50.6860 (4)0.4953 (3)0.7873 (3)0.0288 (5)
H5A0.79050.59850.85590.035*
C60.8475 (4)0.5442 (4)0.6130 (3)0.0316 (5)
C71.0686 (4)0.6398 (3)0.7218 (3)0.0293 (5)
C81.1621 (4)0.5673 (3)0.8150 (3)0.0287 (5)
H8A1.07980.46720.82200.034*
C91.4820 (4)0.7852 (4)0.8909 (3)0.0358 (6)
H9A1.62370.83480.94760.043*
C101.3982 (5)0.8686 (4)0.8047 (4)0.0431 (7)
H10A1.48180.97390.80630.052*
C111.1897 (5)0.7938 (4)0.7166 (3)0.0389 (6)
H11A1.13100.84530.65480.047*
F10.8566 (3)0.7588 (3)1.0928 (2)0.0494 (5)
F21.1230 (5)0.8509 (4)1.3095 (3)0.1019 (11)
F31.1012 (6)1.0340 (3)1.1893 (4)0.0985 (10)
F41.1711 (4)0.8119 (4)1.1061 (5)0.1179 (14)
B11.0679 (5)0.8698 (5)1.1734 (5)0.0480 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0249 (2)0.0327 (2)0.0226 (2)0.01406 (17)0.01259 (16)0.01010 (16)
O10.0428 (11)0.0707 (15)0.0306 (10)0.0272 (11)0.0183 (9)0.0254 (10)
N10.0273 (10)0.0341 (10)0.0255 (9)0.0152 (8)0.0134 (8)0.0110 (8)
N20.0275 (10)0.0348 (10)0.0260 (9)0.0152 (8)0.0132 (8)0.0106 (8)
C10.0329 (13)0.0357 (13)0.0342 (13)0.0135 (10)0.0171 (10)0.0105 (10)
C20.0357 (14)0.0396 (14)0.0314 (13)0.0089 (11)0.0113 (11)0.0003 (11)
C30.0373 (14)0.0460 (15)0.0252 (12)0.0169 (12)0.0136 (10)0.0045 (10)
C40.0247 (11)0.0402 (13)0.0252 (11)0.0177 (10)0.0118 (9)0.0116 (10)
C50.0262 (11)0.0363 (12)0.0237 (11)0.0133 (10)0.0112 (9)0.0083 (9)
C60.0306 (12)0.0444 (14)0.0299 (12)0.0214 (11)0.0170 (10)0.0156 (10)
C70.0286 (11)0.0379 (13)0.0281 (11)0.0164 (10)0.0159 (9)0.0133 (10)
C80.0271 (11)0.0343 (12)0.0287 (11)0.0131 (9)0.0152 (9)0.0128 (9)
C90.0275 (12)0.0361 (13)0.0412 (14)0.0109 (10)0.0139 (11)0.0133 (11)
C100.0384 (15)0.0359 (14)0.0604 (19)0.0145 (12)0.0226 (14)0.0259 (13)
C110.0398 (14)0.0434 (15)0.0468 (15)0.0227 (12)0.0223 (12)0.0262 (13)
F10.0304 (8)0.0654 (12)0.0413 (10)0.0127 (8)0.0117 (7)0.0142 (9)
F20.101 (2)0.0750 (17)0.0580 (15)0.0260 (16)0.0246 (15)0.0022 (13)
F30.116 (3)0.0466 (13)0.127 (3)0.0285 (15)0.053 (2)0.0236 (15)
F40.0569 (16)0.099 (2)0.167 (3)0.0172 (15)0.064 (2)0.018 (2)
B10.0310 (15)0.0391 (17)0.057 (2)0.0095 (13)0.0122 (14)0.0016 (15)
Geometric parameters (Å, º) top
Cu1—N1i2.017 (2)C4—C51.385 (3)
Cu1—N12.017 (2)C4—C61.496 (3)
Cu1—N2ii2.039 (2)C5—H5A0.9300
Cu1—N2iii2.039 (2)C6—C71.498 (4)
O1—C61.210 (3)C7—C81.384 (4)
N1—C11.339 (3)C7—C111.390 (4)
N1—C51.344 (3)C8—H8A0.9300
N2—C91.341 (3)C9—C101.384 (4)
N2—C81.344 (3)C9—H9A0.9300
N2—Cu1iv2.039 (2)C10—C111.376 (4)
C1—C21.380 (4)C10—H10A0.9300
C1—H1A0.9300C11—H11A0.9300
C2—C31.379 (4)F1—B11.411 (4)
C2—H2A0.9300F2—B11.390 (5)
C3—C41.391 (4)F3—B11.348 (5)
C3—H3A0.9300F4—B11.352 (5)
N1i—Cu1—N1180.000 (1)C4—C5—H5A119.0
N1i—Cu1—N2ii91.68 (8)O1—C6—C4120.2 (2)
N1—Cu1—N2ii88.32 (8)O1—C6—C7119.8 (2)
N1i—Cu1—N2iii88.32 (8)C4—C6—C7120.0 (2)
N1—Cu1—N2iii91.68 (8)C8—C7—C11118.9 (2)
N2ii—Cu1—N2iii180.000 (1)C8—C7—C6121.1 (2)
C1—N1—C5118.2 (2)C11—C7—C6119.5 (2)
C1—N1—Cu1118.20 (17)N2—C8—C7122.6 (2)
C5—N1—Cu1123.27 (17)N2—C8—H8A118.7
C9—N2—C8117.9 (2)C7—C8—H8A118.7
C9—N2—Cu1iv121.30 (18)N2—C9—C10122.7 (3)
C8—N2—Cu1iv120.26 (17)N2—C9—H9A118.7
N1—C1—C2123.0 (2)C10—C9—H9A118.7
N1—C1—H1A118.5C11—C10—C9119.2 (3)
C2—C1—H1A118.5C11—C10—H10A120.4
C3—C2—C1118.8 (3)C9—C10—H10A120.4
C3—C2—H2A120.6C10—C11—C7118.6 (3)
C1—C2—H2A120.6C10—C11—H11A120.7
C2—C3—C4118.7 (2)C7—C11—H11A120.7
C2—C3—H3A120.7F3—B1—F4114.2 (4)
C4—C3—H3A120.7F3—B1—F2109.2 (3)
C5—C4—C3119.1 (2)F4—B1—F2108.9 (4)
C5—C4—C6121.7 (2)F3—B1—F1111.6 (3)
C3—C4—C6119.0 (2)F4—B1—F1106.8 (3)
N1—C5—C4122.0 (2)F2—B1—F1105.8 (3)
N1—C5—H5A119.0
N1i—Cu1—N1—C185 (100)C3—C4—C6—O137.1 (4)
N2ii—Cu1—N1—C195.5 (2)C5—C4—C6—C742.9 (4)
N2iii—Cu1—N1—C184.5 (2)C3—C4—C6—C7141.6 (3)
N1i—Cu1—N1—C589 (100)O1—C6—C7—C8138.8 (3)
N2ii—Cu1—N1—C578.4 (2)C4—C6—C7—C839.9 (3)
N2iii—Cu1—N1—C5101.6 (2)O1—C6—C7—C1132.6 (4)
C5—N1—C1—C22.1 (4)C4—C6—C7—C11148.6 (3)
Cu1—N1—C1—C2172.0 (2)C9—N2—C8—C73.7 (4)
N1—C1—C2—C30.7 (5)Cu1iv—N2—C8—C7168.10 (19)
C1—C2—C3—C42.8 (5)C11—C7—C8—N23.2 (4)
C2—C3—C4—C52.0 (4)C6—C7—C8—N2168.3 (2)
C2—C3—C4—C6177.6 (3)C8—N2—C9—C101.0 (4)
C1—N1—C5—C42.9 (4)Cu1iv—N2—C9—C10170.7 (2)
Cu1—N1—C5—C4170.93 (18)N2—C9—C10—C112.2 (5)
C3—C4—C5—N10.9 (4)C9—C10—C11—C72.7 (5)
C6—C4—C5—N1174.6 (2)C8—C7—C11—C100.1 (4)
C5—C4—C6—O1138.3 (3)C6—C7—C11—C10171.7 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x+2, y+1, z+2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F2v0.932.323.182 (3)154
C10—H10A···F4vi0.932.413.228 (2)147
Symmetry codes: (v) x1, y1, z1; (vi) x+3, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C11H8N2O)2](BF4)2
Mr605.55
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5542 (13), 8.7861 (15), 10.3389 (17)
α, β, γ (°)101.280 (2), 109.236 (2), 108.869 (2)
V3)576.96 (17)
Z1
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.31 × 0.20 × 0.12
Data collection
Diffractometer'Bruker ApEXII CCD area-detector'
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.756, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4090, 2857, 2638
Rint0.023
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.05
No. of reflections2857
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.67

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—N1i2.017 (2)Cu1—N2ii2.039 (2)
Cu1—N12.017 (2)Cu1—N2iii2.039 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F2iv0.932.323.182 (3)154
C10—H10A···F4v0.932.413.228 (2)147
Symmetry codes: (iv) x1, y1, z1; (v) x+3, y+2, z+2.
CO···π-electron ring interactions (Å, °) top
Cg1 and Cg2, are the centroids of the N1/C1–C5 and N2/C7–C11 rings, respectively.
CO···CgO···CgC···CgCO···Cg
C6O1···Cg1iv3.123 (4)4.019 (3)130.79 (2)
C6O1···Cg2v3.237 (3)4.123 (2)130.20 (1)
Symmetry codes: (iv) -x+1, -y+1, -z+1; (v) -x+2, -y+1, -z+1.
 

Acknowledgements

The authors are grateful for financial support from Beijing Municipal Education Commission.

References

First citationBoudalis, A. K., Dahan, F., Bousseksou, A., Tuchagues, J. P. & Perlepes, J. P. (2003). Dalton Trans. pp. 3411-3418.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. D., Guo, J. H., Du, M. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 766–768.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X. D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X. D., Wan, C. Q., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518–6528.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDendrinou-Samara, C., Alexiou, M., Zaleski, C. M., Kampf, J. W., Kirk, M. L., Kessissoglou, D. P. & Pecoraro, V. L. (2003). Angew. Chem. Int. Ed. 42, 3763-3766.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, C. Q., Chen, X. D. & Mak, T. C. W. (2008). CrstEngComm, 10, 475-478.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds