organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (Z)-2-{[N-(2-formyl­phen­yl)-4-methyl­benzene­sulfonamido]­meth­yl}-3-phenyl­prop-2-enoate

aDepartment of Physics, Ranipettai Engineering College, Thenkadapathangal, Walaja 632 513, India, bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 21 November 2011; accepted 25 November 2011; online 30 November 2011)

In the title compound, C25H23NO5S, the sulfonyl-bound benzene ring forms dihedral angles of 37.2 (1) and 67.0 (1)°, respectively, with the formyl­phenyl and phenyl rings. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯π inter­action. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a two-dimensional network in the (110) plane in which R44(38) ring motifs are generated.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]). For related structures, see: Ranjith et al. (2009[Ranjith, S., Sugumar, P., Sureshbabu, R., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o483.]); Aziz-ur-Rehman et al. (2010[Aziz-ur-Rehman, Tanveer, W., Akkurt, M., Sattar, A., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o2980.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the Thrope–Ingold effect, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23NO5S

  • Mr = 449.50

  • Monoclinic, P 21 /n

  • a = 9.7475 (5) Å

  • b = 21.7053 (12) Å

  • c = 11.2643 (6) Å

  • β = 109.987 (2)°

  • V = 2239.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.971

  • 28975 measured reflections

  • 6991 independent reflections

  • 4593 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.153

  • S = 0.99

  • 6991 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg 0.93 2.64 3.470 (2) 149
C25—H25B⋯O2i 0.96 2.56 3.342 (3) 139
C10—H10⋯O1ii 0.93 2.51 3.309 (3) 145
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988, Mandell & Sande, 1992). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The S1 atom shows a distorted tetrahedral geometry, with O2—S1—O3 [119.6 (1)°] and N1—S1—C8 [107.5 (1)°] angles deviating from ideal tetrahedral values, are attributed to the Thrope-Ingold effect (Bassindale, 1984). The sum of bond angles around N1 (351.5°) indicates that N1 is in sp2 hybridization. The sulfonyl bound phenyl (C8–C13) ring forms dihedral angles of 37.2 (1)° and 67.0 (1)°, respectively, with the formyl phenyl (C1–C6) and phenyl (C18—C23) rings. The dihedral angle between formyl phenyl and phenyl rings is 45.9 (1)°. The geometric parameters of the title molecule agrees well with those reported for similar structures (Ranjith et al., 2009; Aziz-ur-Rehman et al., 2010).

The molecular structure is stabilized by intramolecular C-H···π interaction between a sulfonyl bound phenyl H9 atom and a phenyl (C18–C23) ring with a C9—H9···Cg seperation of 2.64 Å.(Fig. 1 and Table 1; Cg is the centroid of the C18–C23 phenyl ring). In the crystal four molecules are linked by intermolecular C—H···O hydrogen bonds (Fig. 2, Table 1; Symmetry codes as given in Fig. 2), generating R44(38) ring motifs (Bernstein et al., 1995) to form a two dimensional network along [110]] directions.

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Ranjith et al. (2009); Aziz-ur-Rehman et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the Thrope–Ingold effect, see: Bassindale (1984).

Experimental top

A solution of N-(formylphenyl)(4-methylbenzene)sulfonamide (1 mmol, 0.28 g) and potassium carbonate (1.5 mmol, 0.21 g) in acetonitrile solvent was stirred for 15 minutes at room temperature. To this solution, (z)-methyl-2-(bromomethyl)-3-phenylprop-2-enoate (1.2 mmol, 0.30 g) was added dropwise till the addition is complete. After the completion of the reaction, as indicated by TLC, acetonitile was evaporated. ETOAc (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100-200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (0.40 g, 88 % yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

All the H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988, Mandell & Sande, 1992). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The S1 atom shows a distorted tetrahedral geometry, with O2—S1—O3 [119.6 (1)°] and N1—S1—C8 [107.5 (1)°] angles deviating from ideal tetrahedral values, are attributed to the Thrope-Ingold effect (Bassindale, 1984). The sum of bond angles around N1 (351.5°) indicates that N1 is in sp2 hybridization. The sulfonyl bound phenyl (C8–C13) ring forms dihedral angles of 37.2 (1)° and 67.0 (1)°, respectively, with the formyl phenyl (C1–C6) and phenyl (C18—C23) rings. The dihedral angle between formyl phenyl and phenyl rings is 45.9 (1)°. The geometric parameters of the title molecule agrees well with those reported for similar structures (Ranjith et al., 2009; Aziz-ur-Rehman et al., 2010).

The molecular structure is stabilized by intramolecular C-H···π interaction between a sulfonyl bound phenyl H9 atom and a phenyl (C18–C23) ring with a C9—H9···Cg seperation of 2.64 Å.(Fig. 1 and Table 1; Cg is the centroid of the C18–C23 phenyl ring). In the crystal four molecules are linked by intermolecular C—H···O hydrogen bonds (Fig. 2, Table 1; Symmetry codes as given in Fig. 2), generating R44(38) ring motifs (Bernstein et al., 1995) to form a two dimensional network along [110]] directions.

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Ranjith et al. (2009); Aziz-ur-Rehman et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the Thrope–Ingold effect, see: Bassindale (1984).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with intramolecular C—H···π interactions shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability levels. H atoms are presented as a small spheres of arbitrary radius. Cg is the centroid of the C18–C23 ring.
[Figure 2] Fig. 2. Part of the crystal structure showing C—H···O hydrogen bonds (dotted lines) , with R44(38) ring motifs. [Symmetry code: (i) -1+x, y, z; (ii) 3/2-x, 1/2+y, 1/2-z; (iii) 1/2-x, 1/2+y, 1/2-z].
Methyl (Z)-2-{[N-(2-formylphenyl)-4- methylbenzenesulfonamido]methyl}-3-phenylprop-2-enoate top
Crystal data top
C25H23NO5SF(000) = 944
Mr = 449.50Dx = 1.333 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7038 reflections
a = 9.7475 (5) Åθ = 2.1–30.8°
b = 21.7053 (12) ŵ = 0.18 mm1
c = 11.2643 (6) ÅT = 293 K
β = 109.987 (2)°Block, colourless
V = 2239.7 (2) Å30.23 × 0.21 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6991 independent reflections
Radiation source: fine-focus sealed tube4593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 30.8°, θmin = 2.1°
ω scansh = 1314
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 3131
Tmin = 0.959, Tmax = 0.971l = 1615
28975 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.5464P]
where P = (Fo2 + 2Fc2)/3
6991 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C25H23NO5SV = 2239.7 (2) Å3
Mr = 449.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7475 (5) ŵ = 0.18 mm1
b = 21.7053 (12) ÅT = 293 K
c = 11.2643 (6) Å0.23 × 0.21 × 0.16 mm
β = 109.987 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6991 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4593 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.971Rint = 0.028
28975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 0.99Δρmax = 0.45 e Å3
6991 reflectionsΔρmin = 0.31 e Å3
291 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59422 (16)0.13486 (7)0.03835 (16)0.0388 (3)
C20.58668 (19)0.14617 (9)0.08453 (18)0.0511 (4)
H20.55900.18480.12060.061*
C30.6208 (2)0.09931 (12)0.1534 (2)0.0703 (6)
H30.61530.10670.23620.084*
C40.6628 (2)0.04221 (12)0.1010 (3)0.0785 (8)
H40.68650.01130.14780.094*
C50.6695 (2)0.03105 (9)0.0194 (3)0.0689 (6)
H50.69800.00770.05450.083*
C60.63450 (18)0.07667 (8)0.09133 (19)0.0485 (4)
C70.6342 (2)0.06179 (9)0.2188 (2)0.0643 (5)
H70.58620.08860.25580.077*
C80.76439 (16)0.27383 (7)0.14360 (16)0.0407 (3)
C90.7236 (2)0.33478 (8)0.1488 (2)0.0536 (4)
H90.66080.34520.19190.064*
C100.7762 (2)0.37946 (9)0.0900 (2)0.0621 (5)
H100.74910.42030.09420.075*
C110.8691 (2)0.36516 (9)0.0245 (2)0.0581 (5)
C120.9085 (2)0.30403 (10)0.0192 (2)0.0580 (5)
H120.97040.29370.02480.070*
C130.85695 (19)0.25836 (8)0.07857 (18)0.0502 (4)
H130.88430.21760.07480.060*
C140.9305 (3)0.41529 (12)0.0355 (3)0.0846 (8)
H14A0.88500.45380.02940.127*
H14B0.91170.40550.12270.127*
H14C1.03390.41840.00760.127*
C150.42926 (16)0.22099 (7)0.05346 (15)0.0384 (3)
H15A0.37770.20570.03100.046*
H15B0.45980.26290.04590.046*
C160.32755 (16)0.22105 (7)0.12797 (16)0.0403 (3)
C170.29963 (18)0.27004 (8)0.18717 (17)0.0463 (4)
H170.23760.26390.23310.056*
C180.35677 (19)0.33301 (8)0.18761 (18)0.0467 (4)
C190.4342 (2)0.36162 (9)0.3013 (2)0.0568 (5)
H190.44880.34110.37710.068*
C200.4895 (2)0.42009 (11)0.3023 (3)0.0698 (6)
H200.54350.43840.37860.084*
C210.4654 (3)0.45140 (10)0.1912 (3)0.0723 (6)
H210.50300.49090.19230.087*
C220.3860 (3)0.42452 (10)0.0785 (3)0.0717 (6)
H220.36790.44610.00340.086*
C230.3326 (2)0.36523 (9)0.0762 (2)0.0581 (5)
H230.28010.34700.00060.070*
C240.25669 (18)0.16079 (8)0.13063 (19)0.0492 (4)
C250.0837 (3)0.10598 (10)0.1935 (3)0.0819 (8)
H25A0.01730.09640.11060.123*
H25B0.03020.11060.25040.123*
H25C0.15340.07320.22250.123*
N10.56062 (13)0.18221 (6)0.11335 (12)0.0362 (3)
O10.6918 (3)0.01735 (8)0.2780 (2)0.1093 (7)
O20.81113 (13)0.17074 (6)0.26567 (12)0.0525 (3)
O30.64184 (13)0.24539 (6)0.30692 (11)0.0509 (3)
O40.28273 (17)0.11474 (6)0.08321 (18)0.0714 (4)
O50.15907 (17)0.16258 (6)0.18906 (17)0.0694 (4)
S10.69945 (4)0.216238 (18)0.22055 (4)0.04001 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0321 (7)0.0374 (7)0.0488 (9)0.0001 (5)0.0164 (6)0.0058 (6)
C20.0459 (9)0.0582 (10)0.0512 (10)0.0033 (8)0.0193 (8)0.0072 (8)
C30.0544 (11)0.0992 (18)0.0651 (13)0.0141 (11)0.0303 (10)0.0337 (12)
C40.0581 (12)0.0746 (15)0.110 (2)0.0031 (11)0.0379 (13)0.0465 (15)
C50.0499 (11)0.0440 (10)0.111 (2)0.0040 (8)0.0246 (11)0.0185 (11)
C60.0378 (8)0.0379 (8)0.0690 (12)0.0009 (6)0.0171 (8)0.0013 (8)
C70.0626 (12)0.0452 (10)0.0788 (14)0.0004 (9)0.0162 (10)0.0150 (9)
C80.0335 (7)0.0407 (8)0.0468 (9)0.0019 (6)0.0123 (6)0.0067 (7)
C90.0521 (10)0.0427 (9)0.0728 (13)0.0015 (7)0.0303 (9)0.0119 (8)
C100.0616 (12)0.0396 (9)0.0895 (16)0.0035 (8)0.0315 (11)0.0069 (9)
C110.0521 (10)0.0551 (11)0.0669 (12)0.0117 (8)0.0202 (9)0.0023 (9)
C120.0527 (10)0.0645 (12)0.0647 (12)0.0048 (9)0.0303 (9)0.0067 (10)
C130.0466 (9)0.0455 (9)0.0621 (11)0.0028 (7)0.0232 (8)0.0065 (8)
C140.0802 (16)0.0734 (15)0.108 (2)0.0179 (13)0.0418 (15)0.0120 (14)
C150.0348 (7)0.0372 (7)0.0409 (8)0.0073 (6)0.0099 (6)0.0012 (6)
C160.0320 (7)0.0384 (8)0.0479 (9)0.0037 (6)0.0106 (6)0.0003 (6)
C170.0413 (8)0.0454 (9)0.0563 (10)0.0028 (7)0.0220 (7)0.0032 (7)
C180.0441 (9)0.0404 (8)0.0592 (11)0.0060 (6)0.0224 (8)0.0079 (7)
C190.0601 (11)0.0573 (11)0.0589 (11)0.0005 (9)0.0280 (9)0.0122 (9)
C200.0659 (13)0.0616 (13)0.0867 (17)0.0097 (10)0.0322 (12)0.0305 (12)
C210.0747 (14)0.0401 (10)0.112 (2)0.0009 (9)0.0454 (14)0.0107 (12)
C220.0849 (16)0.0465 (11)0.0871 (16)0.0119 (10)0.0338 (13)0.0097 (11)
C230.0604 (11)0.0470 (10)0.0646 (12)0.0090 (8)0.0186 (9)0.0022 (9)
C240.0366 (8)0.0423 (9)0.0684 (12)0.0030 (6)0.0176 (8)0.0034 (8)
C250.0644 (14)0.0548 (12)0.143 (2)0.0024 (10)0.0567 (15)0.0158 (14)
N10.0321 (6)0.0343 (6)0.0406 (7)0.0043 (5)0.0102 (5)0.0014 (5)
O10.1367 (18)0.0598 (10)0.1075 (15)0.0136 (11)0.0111 (13)0.0356 (10)
O20.0400 (6)0.0564 (7)0.0532 (7)0.0107 (5)0.0056 (5)0.0064 (6)
O30.0482 (7)0.0638 (8)0.0410 (6)0.0001 (6)0.0154 (5)0.0111 (6)
O40.0677 (9)0.0446 (7)0.1143 (13)0.0088 (6)0.0471 (9)0.0177 (8)
O50.0643 (9)0.0469 (7)0.1163 (13)0.0025 (6)0.0558 (9)0.0068 (8)
S10.03449 (19)0.0436 (2)0.0391 (2)0.00304 (14)0.00894 (15)0.00255 (15)
Geometric parameters (Å, º) top
C1—C21.383 (3)C15—N11.4875 (18)
C1—C61.395 (2)C15—C161.502 (2)
C1—N11.4375 (19)C15—H15A0.9700
C2—C31.387 (3)C15—H15B0.9700
C2—H20.9300C16—C171.332 (2)
C3—C41.374 (4)C16—C241.484 (2)
C3—H30.9300C17—C181.475 (2)
C4—C51.357 (4)C17—H170.9300
C4—H40.9300C18—C231.385 (3)
C5—C61.394 (3)C18—C191.391 (3)
C5—H50.9300C19—C201.377 (3)
C6—C71.473 (3)C19—H190.9300
C7—O11.197 (2)C20—C211.372 (4)
C7—H70.9300C20—H200.9300
C8—C131.384 (2)C21—C221.371 (4)
C8—C91.388 (2)C21—H210.9300
C8—S11.7577 (17)C22—C231.385 (3)
C9—C101.369 (3)C22—H220.9300
C9—H90.9300C23—H230.9300
C10—C111.385 (3)C24—O41.201 (2)
C10—H100.9300C24—O51.330 (2)
C11—C121.388 (3)C25—O51.441 (2)
C11—C141.508 (3)C25—H25A0.9600
C12—C131.383 (3)C25—H25B0.9600
C12—H120.9300C25—H25C0.9600
C13—H130.9300N1—S11.6485 (13)
C14—H14A0.9600O2—S11.4284 (12)
C14—H14B0.9600O3—S11.4268 (12)
C14—H14C0.9600
C2—C1—C6119.99 (16)C16—C15—H15A109.2
C2—C1—N1121.11 (15)N1—C15—H15B109.2
C6—C1—N1118.90 (15)C16—C15—H15B109.2
C1—C2—C3119.3 (2)H15A—C15—H15B107.9
C1—C2—H2120.4C17—C16—C24121.16 (16)
C3—C2—H2120.4C17—C16—C15124.56 (15)
C4—C3—C2121.0 (2)C24—C16—C15114.28 (14)
C4—C3—H3119.5C16—C17—C18126.87 (16)
C2—C3—H3119.5C16—C17—H17116.6
C5—C4—C3119.7 (2)C18—C17—H17116.6
C5—C4—H4120.1C23—C18—C19118.66 (18)
C3—C4—H4120.1C23—C18—C17121.18 (17)
C4—C5—C6121.1 (2)C19—C18—C17120.15 (18)
C4—C5—H5119.5C20—C19—C18120.5 (2)
C6—C5—H5119.5C20—C19—H19119.8
C5—C6—C1118.9 (2)C18—C19—H19119.8
C5—C6—C7119.56 (19)C21—C20—C19120.3 (2)
C1—C6—C7121.45 (17)C21—C20—H20119.9
O1—C7—C6124.2 (2)C19—C20—H20119.9
O1—C7—H7117.9C22—C21—C20120.0 (2)
C6—C7—H7117.9C22—C21—H21120.0
C13—C8—C9120.10 (17)C20—C21—H21120.0
C13—C8—S1119.88 (13)C21—C22—C23120.2 (2)
C9—C8—S1120.02 (13)C21—C22—H22119.9
C10—C9—C8119.64 (17)C23—C22—H22119.9
C10—C9—H9120.2C18—C23—C22120.4 (2)
C8—C9—H9120.2C18—C23—H23119.8
C9—C10—C11121.36 (18)C22—C23—H23119.8
C9—C10—H10119.3O4—C24—O5122.70 (17)
C11—C10—H10119.3O4—C24—C16123.65 (17)
C10—C11—C12118.55 (19)O5—C24—C16113.64 (15)
C10—C11—C14120.6 (2)O5—C25—H25A109.5
C12—C11—C14120.8 (2)O5—C25—H25B109.5
C13—C12—C11120.84 (18)H25A—C25—H25B109.5
C13—C12—H12119.6O5—C25—H25C109.5
C11—C12—H12119.6H25A—C25—H25C109.5
C12—C13—C8119.51 (17)H25B—C25—H25C109.5
C12—C13—H13120.2C1—N1—C15118.14 (12)
C8—C13—H13120.2C1—N1—S1117.12 (10)
C11—C14—H14A109.5C15—N1—S1116.27 (10)
C11—C14—H14B109.5C24—O5—C25116.87 (16)
H14A—C14—H14B109.5O3—S1—O2119.58 (8)
C11—C14—H14C109.5O3—S1—N1106.39 (7)
H14A—C14—H14C109.5O2—S1—N1106.61 (7)
H14B—C14—H14C109.5O3—S1—C8108.23 (8)
N1—C15—C16112.16 (12)O2—S1—C8107.94 (8)
N1—C15—H15A109.2N1—S1—C8107.53 (7)
C6—C1—C2—C30.6 (2)C18—C19—C20—C211.7 (3)
N1—C1—C2—C3179.61 (15)C19—C20—C21—C220.0 (3)
C1—C2—C3—C40.4 (3)C20—C21—C22—C231.4 (4)
C2—C3—C4—C50.7 (3)C19—C18—C23—C220.6 (3)
C3—C4—C5—C60.0 (3)C17—C18—C23—C22179.45 (18)
C4—C5—C6—C11.0 (3)C21—C22—C23—C181.1 (3)
C4—C5—C6—C7176.2 (2)C17—C16—C24—O4176.84 (19)
C2—C1—C6—C51.3 (2)C15—C16—C24—O43.6 (3)
N1—C1—C6—C5178.91 (15)C17—C16—C24—O54.2 (3)
C2—C1—C6—C7175.87 (17)C15—C16—C24—O5175.38 (15)
N1—C1—C6—C73.9 (2)C2—C1—N1—C1544.2 (2)
C5—C6—C7—O117.0 (3)C6—C1—N1—C15135.57 (15)
C1—C6—C7—O1165.9 (2)C2—C1—N1—S1102.71 (15)
C13—C8—C9—C100.5 (3)C6—C1—N1—S177.50 (16)
S1—C8—C9—C10179.12 (16)C16—C15—N1—C1125.78 (14)
C8—C9—C10—C110.4 (3)C16—C15—N1—S187.01 (14)
C9—C10—C11—C120.0 (3)O4—C24—O5—C250.1 (3)
C9—C10—C11—C14177.7 (2)C16—C24—O5—C25178.93 (19)
C10—C11—C12—C130.3 (3)C1—N1—S1—O3161.76 (11)
C14—C11—C12—C13177.3 (2)C15—N1—S1—O350.69 (13)
C11—C12—C13—C80.3 (3)C1—N1—S1—O233.10 (13)
C9—C8—C13—C120.1 (3)C15—N1—S1—O2179.35 (11)
S1—C8—C13—C12179.45 (14)C1—N1—S1—C882.46 (12)
N1—C15—C16—C17113.35 (17)C15—N1—S1—C865.09 (12)
N1—C15—C16—C2467.10 (17)C13—C8—S1—O3164.21 (13)
C24—C16—C17—C18177.05 (17)C9—C8—S1—O315.39 (17)
C15—C16—C17—C182.5 (3)C13—C8—S1—O233.45 (16)
C16—C17—C18—C2358.2 (3)C9—C8—S1—O2146.15 (15)
C16—C17—C18—C19123.0 (2)C13—C8—S1—N181.23 (15)
C23—C18—C19—C202.0 (3)C9—C8—S1—N199.17 (15)
C17—C18—C19—C20179.14 (17)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg0.932.643.470 (2)149
C25—H25B···O2i0.962.563.342 (3)139
C10—H10···O1ii0.932.513.309 (3)145
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H23NO5S
Mr449.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.7475 (5), 21.7053 (12), 11.2643 (6)
β (°) 109.987 (2)
V3)2239.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.23 × 0.21 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
28975, 6991, 4593
Rint0.028
(sin θ/λ)max1)0.721
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.153, 0.99
No. of reflections6991
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.31

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg0.932.643.470 (2)149.0
C25—H25B···O2i0.962.563.342 (3)139.0
C10—H10···O1ii0.932.513.309 (3)144.7
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationAziz-ur-Rehman, Tanveer, W., Akkurt, M., Sattar, A., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o2980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw-Hill.  Google Scholar
First citationRanjith, S., Sugumar, P., Sureshbabu, R., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o483.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds