organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′,6-Di­methyl-4′-phenyl­di­spiro­[1-benzo­pyran-3(4H),3′-pyrrolidine-2′,3′′-indoline]-2,2′′-dione

aDepartment of Physics, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore 632 509, India, bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 21 November 2011; accepted 25 November 2011; online 30 November 2011)

In the title compound, C27H24N2O3, the five-membered pyrroldine ring adopts an envelope conformation (with the N atom in the flap position) and the six-membered pyran­one ring of the coumarine ring system adopts a slightly distorted boat conformation. The oxindole unit makes dihedral angles of 89.7 (1) and 25.6 (1)°, respectively, with the pyrrolidine ring and the coumarin ring system. The mol­ecular structure is stabilized by two intra­molecular C—H⋯O contacts and two intra­molecular ππ inter­actions [centroid–centroid seperations of 3.514 (1) and 3.623 (1) Å]. The crystal packing features N—H⋯O hydrogen bonds, which link the mol­ecules into cyclic centrosymmetric R22(8) dimers, and C—H⋯π inter­actions.

Related literature

For background to the applications of pyrrolidine derivatives, see: Huryn et al. (1991[Huryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64-74.]) ; Suzuki et al. (1994[Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.]); Waldmann (1995[Waldmann, H. (1995). Synlett, pp. 133-141.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) . For closely related pyrrolidine structures, see: Selvanayagam et al. (2011[Selvanayagam, S., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o751.]); Ali et al. (2010[Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2533-o2534.]).

[Scheme 1]

Experimental

Crystal data
  • C27H24N2O3

  • Mr = 424.48

  • Monoclinic, P 21 /c

  • a = 11.1019 (5) Å

  • b = 11.1740 (4) Å

  • c = 17.8156 (7) Å

  • β = 100.986 (2)°

  • V = 2169.57 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.986

  • 20613 measured reflections

  • 4481 independent reflections

  • 3019 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.02

  • 4481 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C7–C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1 0.97 2.44 3.114 (2) 126
C26—H26⋯O1 0.93 2.48 3.265 (2) 142
N2—H2⋯O1i 0.86 2.06 2.852 (2) 153
C18—H18⋯Cg2ii 0.93 2.88 3.758 (2) 157
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of this importance, the crystal structure of the title compound has been carried out and the results are presented here.

The title compound consists of a pyrrolidine ring connected to a oxindole ring system at C1, a coumarine moiety at C2 and a benzene ring at C3. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig.1.

The pyrrolidine (N1/C1–C4) ring adopts an envelope conformation with the N1 (displacement = 0.7 (2) Å) atom as the flap atom and with puckering parameters (Cremer & Pople, 1975),q2 = 0.3935 (17) Å and φ2 = 181.8 (2)°. The six membered pyranone ring (O2/C2/C13/C14/C19/C20) of the coumarine moiety adopts screw-boat conformation as indicated from the puckering parameters: Q = 0.5042 (16) Å, θ = 69.5 (2)° and φ = 208.3 (2)°. The oxindole unit (N2/C1/C6–C12) is essentially planar [maximum deviation = 0.049 (2) Å for the C1 atom] and is oriented at a dihedral angles of 89.7 (1)° and 25.6 (1)°, respectively, with the pyrrolidine and coumarine rings. The sum of angles at N1 of the pyrrolidine ring (336°) is in accordance with sp3 hybridization, and the sum of angles at N2 of the indole moiety (360°) is in accordance with sp2 hybridization. The geometric parameters of the title molecule agrees well with those reported for similar structures (Selvanayagam et al., 2011, Ali et al., 2010).

Ihe molecular structure is stabilized by four intramolecular C—H···O contacts (Table 1). The molecular structure is further stabilized by intramolecular ππ interactions with Cg1—Cg3 and Cg2—Cg3 seperations of 3.513 (1) Å and 3.623 (1) Å, respectively (Fig. 2; Cg1, Cg2 and Cg3 are the centroids of the (N2/C1/C6/C7/C12) indole ring, (C7–C12) benzene ring and (C14–C19) benzene ring, respectively). The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds. The molecules at x, y, z and 1-x, -y, -z are linked by N2—H2···O1 hydrogen bonds into cyclic centrosymmetric R22(8) dimers (Fig. 3). The crystal packing (Fig. 4) is further stabilized by C—H···π interactions between a H18 atom and a neighbouring benzene ring (C7–C12), with a C18—H8···Cg2ii seperation of 2.88 Å ( Fig. 4 and Table 1; Cg2 is the centroid of the C7–C12 benzene ring, Symmetry code as in Fig. 4).

Related literature top

For background to the applications of pyrrolidine derivatives, see: Huryn et al. (1991 ); Suzuki et al. (1994); Waldmann (1995). For ring puckering analysis, see: Cremer & Pople (1975 ). For closely related pyrrolidine structures, see: Selvanayagam et al. (2011); Ali et al. (2010).

Experimental top

A mixture of E-3-benzylidene-6-methylchroman-2-one (0.125 g, 0.5 mmol), isatin (0.08 g, 0.55 mmol) and N- methylglycine (0.025 g, 0.55 mmol) in toluene (5 ml) as solvent was allowed to reflux for 6 hours. After work up, the crude mass was purified by column chromatography to yield the pure product (0.199 g, 94 % yield). The compound was recrystallized from ethyl acetate solvent. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a ethylacetate solution at room temperature.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å and and C—H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of this importance, the crystal structure of the title compound has been carried out and the results are presented here.

The title compound consists of a pyrrolidine ring connected to a oxindole ring system at C1, a coumarine moiety at C2 and a benzene ring at C3. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig.1.

The pyrrolidine (N1/C1–C4) ring adopts an envelope conformation with the N1 (displacement = 0.7 (2) Å) atom as the flap atom and with puckering parameters (Cremer & Pople, 1975),q2 = 0.3935 (17) Å and φ2 = 181.8 (2)°. The six membered pyranone ring (O2/C2/C13/C14/C19/C20) of the coumarine moiety adopts screw-boat conformation as indicated from the puckering parameters: Q = 0.5042 (16) Å, θ = 69.5 (2)° and φ = 208.3 (2)°. The oxindole unit (N2/C1/C6–C12) is essentially planar [maximum deviation = 0.049 (2) Å for the C1 atom] and is oriented at a dihedral angles of 89.7 (1)° and 25.6 (1)°, respectively, with the pyrrolidine and coumarine rings. The sum of angles at N1 of the pyrrolidine ring (336°) is in accordance with sp3 hybridization, and the sum of angles at N2 of the indole moiety (360°) is in accordance with sp2 hybridization. The geometric parameters of the title molecule agrees well with those reported for similar structures (Selvanayagam et al., 2011, Ali et al., 2010).

Ihe molecular structure is stabilized by four intramolecular C—H···O contacts (Table 1). The molecular structure is further stabilized by intramolecular ππ interactions with Cg1—Cg3 and Cg2—Cg3 seperations of 3.513 (1) Å and 3.623 (1) Å, respectively (Fig. 2; Cg1, Cg2 and Cg3 are the centroids of the (N2/C1/C6/C7/C12) indole ring, (C7–C12) benzene ring and (C14–C19) benzene ring, respectively). The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds. The molecules at x, y, z and 1-x, -y, -z are linked by N2—H2···O1 hydrogen bonds into cyclic centrosymmetric R22(8) dimers (Fig. 3). The crystal packing (Fig. 4) is further stabilized by C—H···π interactions between a H18 atom and a neighbouring benzene ring (C7–C12), with a C18—H8···Cg2ii seperation of 2.88 Å ( Fig. 4 and Table 1; Cg2 is the centroid of the C7–C12 benzene ring, Symmetry code as in Fig. 4).

For background to the applications of pyrrolidine derivatives, see: Huryn et al. (1991 ); Suzuki et al. (1994); Waldmann (1995). For ring puckering analysis, see: Cremer & Pople (1975 ). For closely related pyrrolidine structures, see: Selvanayagam et al. (2011); Ali et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the ππ interactions (dotted lines) in the molecular structure of the title compound. Cg1, Cg2 and Cg3 are the centroids of the (N2/C1/C6/C7/C12) indole ring, (C7–C12) benzene ring and (C14–C19) benzene ring, respectively
[Figure 3] Fig. 3. Part of the crystal structure of the title compound showing N—H···O intermolecular hydrogen bonds (dotted lines) generating R22(8) centrosymmetric dimer. [Symmetry code: (i) 1-x, -y, -z].
[Figure 4] Fig. 4. Part of the crystal structure showing C—H···π interactions in the title compound. Cg2 denotes the centroid of the C7–C12 benzene ring. [Symmetry code: (ii) 1-x, 1/2+y, 1/2-z].
1',6-Dimethyl-4'-phenyldispiro[1-benzopyran-3(4H),3'- pyrrolidine-2',3''-indoline]-2,2''-dione top
Crystal data top
C27H24N2O3F(000) = 896
Mr = 424.48Dx = 1.300 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4502 reflections
a = 11.1019 (5) Åθ = 2.2–26.5°
b = 11.1740 (4) ŵ = 0.09 mm1
c = 17.8156 (7) ÅT = 293 K
β = 100.986 (2)°Block, colourless
V = 2169.57 (15) Å30.25 × 0.22 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4481 independent reflections
Radiation source: fine-focus sealed tube3019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.0 pixels mm-1θmax = 26.5°, θmin = 2.2°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 914
Tmin = 0.979, Tmax = 0.986l = 2222
20613 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.3552P]
where P = (Fo2 + 2Fc2)/3
4481 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C27H24N2O3V = 2169.57 (15) Å3
Mr = 424.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1019 (5) ŵ = 0.09 mm1
b = 11.1740 (4) ÅT = 293 K
c = 17.8156 (7) Å0.25 × 0.22 × 0.17 mm
β = 100.986 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4481 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3019 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.986Rint = 0.033
20613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
4481 reflectionsΔρmin = 0.18 e Å3
291 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.35755 (11)0.44958 (10)0.11728 (6)0.0466 (3)
O10.34196 (11)0.02802 (11)0.00536 (7)0.0528 (3)
N20.49556 (12)0.06511 (12)0.09708 (8)0.0435 (3)
H20.55210.02300.08300.052*
O30.16634 (11)0.41384 (12)0.12218 (7)0.0585 (4)
C120.40194 (14)0.18543 (14)0.17156 (8)0.0363 (4)
N10.19474 (12)0.10995 (13)0.11455 (8)0.0442 (4)
C20.25947 (13)0.27281 (13)0.04687 (8)0.0341 (4)
C140.46468 (15)0.34523 (14)0.03236 (9)0.0379 (4)
C60.38139 (15)0.07699 (14)0.05603 (9)0.0392 (4)
C190.46720 (15)0.41461 (14)0.09636 (9)0.0400 (4)
C130.34156 (14)0.30656 (15)0.00996 (8)0.0380 (4)
H13A0.35060.23820.04200.046*
H13B0.30390.37100.04270.046*
C150.57578 (16)0.31341 (16)0.01419 (10)0.0473 (4)
H150.57650.26650.02890.057*
C200.25466 (15)0.38168 (15)0.09804 (9)0.0400 (4)
C70.51132 (15)0.12974 (14)0.16579 (9)0.0394 (4)
C10.30808 (14)0.16185 (14)0.09964 (8)0.0351 (4)
C30.12491 (14)0.23631 (15)0.00972 (9)0.0406 (4)
H30.07070.29150.03030.049*
C80.61422 (17)0.13835 (16)0.22169 (11)0.0522 (5)
H80.68680.10020.21690.063*
C180.57418 (17)0.45345 (15)0.14141 (10)0.0490 (5)
H180.57300.50130.18400.059*
C260.12318 (17)0.16023 (18)0.12513 (10)0.0553 (5)
H260.16620.09240.10500.066*
C40.10654 (15)0.11394 (16)0.04305 (10)0.0483 (4)
H4A0.02350.10540.05200.058*
H4B0.12240.05080.00890.058*
C210.09077 (15)0.24589 (16)0.07623 (10)0.0441 (4)
C170.68353 (17)0.41960 (17)0.12189 (11)0.0546 (5)
H170.75700.44450.15210.065*
C110.39406 (17)0.24889 (15)0.23647 (9)0.0467 (4)
H110.32030.28360.24240.056*
C160.68632 (16)0.34950 (18)0.05845 (11)0.0533 (5)
C100.4981 (2)0.26011 (17)0.29294 (10)0.0555 (5)
H100.49490.30490.33650.067*
C50.20686 (19)0.00762 (19)0.15049 (12)0.0687 (6)
H5A0.12920.03170.16170.103*
H5B0.26670.00410.19710.103*
H5C0.23260.06460.11640.103*
C90.60616 (19)0.20576 (18)0.28527 (11)0.0579 (5)
H90.67510.21470.32370.069*
C220.02522 (19)0.3442 (2)0.10834 (11)0.0631 (6)
H220.00170.40230.07670.076*
C250.0922 (2)0.1748 (2)0.20316 (12)0.0705 (6)
H250.11490.11690.23530.085*
C240.0285 (3)0.2734 (3)0.23376 (13)0.0901 (8)
H240.00870.28330.28650.108*
C270.8063 (2)0.3121 (3)0.03765 (14)0.0913 (8)
H27A0.87280.35120.07090.137*
H27B0.80680.33420.01440.137*
H27C0.81560.22690.04310.137*
C230.0059 (3)0.3576 (3)0.18622 (14)0.0911 (8)
H230.05050.42420.20680.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0484 (7)0.0371 (7)0.0556 (7)0.0021 (5)0.0129 (6)0.0114 (5)
O10.0457 (7)0.0542 (8)0.0574 (8)0.0055 (6)0.0067 (6)0.0225 (6)
N20.0361 (8)0.0411 (8)0.0535 (9)0.0086 (6)0.0088 (7)0.0062 (6)
O30.0518 (8)0.0640 (9)0.0642 (8)0.0145 (6)0.0222 (7)0.0155 (6)
C120.0379 (9)0.0360 (9)0.0360 (8)0.0006 (7)0.0094 (7)0.0040 (7)
N10.0375 (8)0.0495 (9)0.0470 (8)0.0073 (6)0.0118 (7)0.0046 (6)
C20.0307 (8)0.0364 (9)0.0371 (8)0.0033 (6)0.0108 (7)0.0018 (6)
C140.0389 (9)0.0398 (10)0.0365 (9)0.0039 (7)0.0107 (7)0.0047 (7)
C60.0380 (10)0.0332 (9)0.0471 (10)0.0004 (7)0.0094 (8)0.0031 (7)
C190.0432 (10)0.0341 (9)0.0438 (9)0.0028 (7)0.0114 (8)0.0024 (7)
C130.0389 (9)0.0403 (10)0.0365 (9)0.0013 (7)0.0118 (7)0.0004 (7)
C150.0434 (11)0.0599 (12)0.0419 (10)0.0063 (8)0.0168 (8)0.0018 (8)
C200.0411 (10)0.0397 (10)0.0403 (9)0.0087 (7)0.0101 (8)0.0011 (7)
C70.0395 (10)0.0364 (10)0.0420 (9)0.0004 (7)0.0072 (8)0.0040 (7)
C10.0320 (9)0.0364 (9)0.0388 (9)0.0004 (6)0.0117 (7)0.0023 (6)
C30.0291 (8)0.0520 (11)0.0418 (9)0.0052 (7)0.0097 (7)0.0034 (7)
C80.0437 (11)0.0516 (12)0.0572 (11)0.0063 (8)0.0008 (9)0.0053 (9)
C180.0540 (12)0.0439 (11)0.0476 (10)0.0103 (8)0.0060 (9)0.0043 (8)
C260.0453 (11)0.0694 (14)0.0519 (11)0.0038 (9)0.0112 (9)0.0117 (9)
C40.0328 (9)0.0585 (12)0.0554 (11)0.0083 (8)0.0131 (8)0.0018 (9)
C210.0294 (9)0.0575 (11)0.0452 (10)0.0029 (7)0.0064 (7)0.0039 (8)
C170.0460 (11)0.0616 (13)0.0535 (11)0.0148 (9)0.0027 (9)0.0042 (9)
C110.0548 (11)0.0484 (11)0.0388 (9)0.0031 (8)0.0141 (8)0.0022 (8)
C160.0381 (11)0.0692 (13)0.0539 (11)0.0077 (9)0.0121 (9)0.0057 (9)
C100.0736 (14)0.0548 (12)0.0356 (9)0.0020 (10)0.0043 (9)0.0012 (8)
C50.0677 (14)0.0634 (14)0.0742 (14)0.0184 (11)0.0119 (11)0.0209 (11)
C90.0619 (13)0.0571 (13)0.0472 (11)0.0044 (10)0.0088 (9)0.0042 (9)
C220.0575 (13)0.0755 (15)0.0546 (12)0.0130 (10)0.0065 (10)0.0044 (10)
C250.0631 (14)0.0997 (19)0.0506 (12)0.0200 (13)0.0159 (11)0.0186 (12)
C240.0876 (19)0.135 (3)0.0435 (13)0.0132 (17)0.0025 (12)0.0093 (15)
C270.0437 (13)0.141 (2)0.0926 (18)0.0061 (14)0.0221 (12)0.0130 (17)
C230.098 (2)0.108 (2)0.0617 (15)0.0225 (16)0.0007 (14)0.0198 (14)
Geometric parameters (Å, º) top
O2—C201.360 (2)C8—H80.9300
O2—C191.395 (2)C18—C171.378 (3)
O1—C61.2265 (19)C18—H180.9300
N2—C61.344 (2)C26—C251.377 (3)
N2—C71.403 (2)C26—C211.387 (2)
N2—H20.8600C26—H260.9300
O3—C201.1984 (18)C4—H4A0.9700
C12—C111.373 (2)C4—H4B0.9700
C12—C71.386 (2)C21—C221.380 (3)
C12—C11.513 (2)C17—C161.380 (3)
N1—C41.452 (2)C17—H170.9300
N1—C11.4551 (19)C11—C101.386 (3)
N1—C51.456 (2)C11—H110.9300
C2—C201.527 (2)C16—C271.508 (3)
C2—C131.533 (2)C10—C91.374 (3)
C2—C31.568 (2)C10—H100.9300
C2—C11.587 (2)C5—H5A0.9600
C14—C191.375 (2)C5—H5B0.9600
C14—C151.380 (2)C5—H5C0.9600
C14—C131.494 (2)C9—H90.9300
C6—C11.551 (2)C22—C231.373 (3)
C19—C181.371 (2)C22—H220.9300
C13—H13A0.9700C25—C241.366 (4)
C13—H13B0.9700C25—H250.9300
C15—C161.386 (2)C24—C231.368 (4)
C15—H150.9300C24—H240.9300
C7—C81.368 (2)C27—H27A0.9600
C3—C211.510 (2)C27—H27B0.9600
C3—C41.520 (2)C27—H27C0.9600
C3—H30.9800C23—H230.9300
C8—C91.377 (3)
C20—O2—C19120.69 (12)C19—C18—C17118.16 (16)
C6—N2—C7111.83 (13)C19—C18—H18120.9
C6—N2—H2124.1C17—C18—H18120.9
C7—N2—H2124.1C25—C26—C21120.5 (2)
C11—C12—C7119.45 (15)C25—C26—H26119.7
C11—C12—C1131.22 (15)C21—C26—H26119.7
C7—C12—C1109.32 (13)N1—C4—C3104.60 (13)
C4—N1—C1106.84 (12)N1—C4—H4A110.8
C4—N1—C5113.81 (14)C3—C4—H4A110.8
C1—N1—C5115.41 (14)N1—C4—H4B110.8
C20—C2—C13106.93 (13)C3—C4—H4B110.8
C20—C2—C3108.67 (12)H4A—C4—H4B108.9
C13—C2—C3115.07 (12)C22—C21—C26117.93 (17)
C20—C2—C1108.38 (12)C22—C21—C3119.18 (16)
C13—C2—C1113.93 (12)C26—C21—C3122.89 (16)
C3—C2—C1103.64 (12)C18—C17—C16121.39 (17)
C19—C14—C15117.51 (15)C18—C17—H17119.3
C19—C14—C13116.99 (14)C16—C17—H17119.3
C15—C14—C13125.45 (15)C12—C11—C10118.68 (17)
O1—C6—N2125.50 (15)C12—C11—H11120.7
O1—C6—C1125.95 (14)C10—C11—H11120.7
N2—C6—C1108.56 (13)C17—C16—C15118.37 (17)
C18—C19—C14122.86 (16)C17—C16—C27121.15 (18)
C18—C19—O2117.23 (15)C15—C16—C27120.48 (18)
C14—C19—O2119.91 (15)C9—C10—C11120.71 (17)
C14—C13—C2109.87 (12)C9—C10—H10119.6
C14—C13—H13A109.7C11—C10—H10119.6
C2—C13—H13A109.7N1—C5—H5A109.5
C14—C13—H13B109.7N1—C5—H5B109.5
C2—C13—H13B109.7H5A—C5—H5B109.5
H13A—C13—H13B108.2N1—C5—H5C109.5
C14—C15—C16121.71 (17)H5A—C5—H5C109.5
C14—C15—H15119.1H5B—C5—H5C109.5
C16—C15—H15119.1C10—C9—C8121.21 (18)
O3—C20—O2116.60 (15)C10—C9—H9119.4
O3—C20—C2125.26 (16)C8—C9—H9119.4
O2—C20—C2118.14 (13)C23—C22—C21121.1 (2)
C8—C7—C12122.43 (16)C23—C22—H22119.4
C8—C7—N2128.25 (16)C21—C22—H22119.4
C12—C7—N2109.30 (14)C24—C25—C26120.6 (2)
N1—C1—C12113.26 (12)C24—C25—H25119.7
N1—C1—C6113.72 (13)C26—C25—H25119.7
C12—C1—C6100.85 (12)C25—C24—C23119.5 (2)
N1—C1—C2102.19 (12)C25—C24—H24120.3
C12—C1—C2117.85 (12)C23—C24—H24120.3
C6—C1—C2109.42 (12)C16—C27—H27A109.5
C21—C3—C4115.70 (14)C16—C27—H27B109.5
C21—C3—C2116.39 (13)H27A—C27—H27B109.5
C4—C3—C2104.89 (12)C16—C27—H27C109.5
C21—C3—H3106.4H27A—C27—H27C109.5
C4—C3—H3106.4H27B—C27—H27C109.5
C2—C3—H3106.4C24—C23—C22120.3 (2)
C7—C8—C9117.45 (17)C24—C23—H23119.8
C7—C8—H8121.3C22—C23—H23119.8
C9—C8—H8121.3
C7—N2—C6—O1178.23 (16)N2—C6—C1—C2121.92 (14)
C7—N2—C6—C11.28 (18)C20—C2—C1—N190.74 (14)
C15—C14—C19—C180.6 (2)C13—C2—C1—N1150.36 (12)
C13—C14—C19—C18178.27 (15)C3—C2—C1—N124.59 (14)
C15—C14—C19—O2179.87 (14)C20—C2—C1—C1234.08 (17)
C13—C14—C19—O22.5 (2)C13—C2—C1—C1284.81 (16)
C20—O2—C19—C18153.29 (15)C3—C2—C1—C12149.41 (13)
C20—O2—C19—C1427.4 (2)C20—C2—C1—C6148.42 (13)
C19—C14—C13—C239.92 (19)C13—C2—C1—C629.53 (17)
C15—C14—C13—C2137.50 (16)C3—C2—C1—C696.25 (14)
C20—C2—C13—C1456.40 (16)C20—C2—C3—C21116.31 (15)
C3—C2—C13—C14177.18 (13)C13—C2—C3—C213.5 (2)
C1—C2—C13—C1463.32 (17)C1—C2—C3—C21128.57 (14)
C19—C14—C15—C160.0 (3)C20—C2—C3—C4114.43 (14)
C13—C14—C15—C16177.36 (16)C13—C2—C3—C4125.75 (14)
C19—O2—C20—O3175.48 (14)C1—C2—C3—C40.70 (15)
C19—O2—C20—C25.5 (2)C12—C7—C8—C90.2 (3)
C13—C2—C20—O3143.17 (17)N2—C7—C8—C9178.56 (17)
C3—C2—C20—O318.4 (2)C14—C19—C18—C171.0 (3)
C1—C2—C20—O393.61 (19)O2—C19—C18—C17179.80 (15)
C13—C2—C20—O235.73 (18)C1—N1—C4—C342.03 (16)
C3—C2—C20—O2160.51 (14)C5—N1—C4—C3170.61 (14)
C1—C2—C20—O287.49 (16)C21—C3—C4—N1153.41 (14)
C11—C12—C7—C82.1 (2)C2—C3—C4—N123.74 (16)
C1—C12—C7—C8178.14 (15)C25—C26—C21—C221.1 (3)
C11—C12—C7—N2176.58 (14)C25—C26—C21—C3178.44 (17)
C1—C12—C7—N23.23 (18)C4—C3—C21—C22136.12 (17)
C6—N2—C7—C8179.74 (16)C2—C3—C21—C22100.01 (19)
C6—N2—C7—C121.21 (19)C4—C3—C21—C2644.4 (2)
C4—N1—C1—C12169.27 (13)C2—C3—C21—C2679.5 (2)
C5—N1—C1—C1263.08 (19)C19—C18—C17—C160.6 (3)
C4—N1—C1—C676.35 (16)C7—C12—C11—C103.1 (2)
C5—N1—C1—C651.30 (19)C1—C12—C11—C10177.14 (16)
C4—N1—C1—C241.45 (15)C18—C17—C16—C150.0 (3)
C5—N1—C1—C2169.10 (14)C18—C17—C16—C27179.60 (19)
C11—C12—C1—N154.2 (2)C14—C15—C16—C170.4 (3)
C7—C12—C1—N1125.58 (14)C14—C15—C16—C27179.28 (18)
C11—C12—C1—C6176.09 (17)C12—C11—C10—C92.0 (3)
C7—C12—C1—C63.69 (16)C11—C10—C9—C80.3 (3)
C11—C12—C1—C265.0 (2)C7—C8—C9—C101.4 (3)
C7—C12—C1—C2115.27 (15)C26—C21—C22—C230.7 (3)
O1—C6—C1—N155.0 (2)C3—C21—C22—C23178.8 (2)
N2—C6—C1—N1124.53 (14)C21—C26—C25—C240.3 (3)
O1—C6—C1—C12176.54 (16)C26—C25—C24—C230.8 (4)
N2—C6—C1—C122.97 (16)C25—C24—C23—C221.2 (4)
O1—C6—C1—C258.6 (2)C21—C22—C23—C240.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.982.242.795 (2)115
C4—H4B···O10.972.513.059 (2)116
C13—H13A···O10.972.443.114 (2)126
C26—H26···O10.932.483.265 (2)142
N2—H2···O1i0.862.062.852 (2)153
C18—H18···Cg2ii0.932.883.758 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H24N2O3
Mr424.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.1019 (5), 11.1740 (4), 17.8156 (7)
β (°) 100.986 (2)
V3)2169.57 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
20613, 4481, 3019
Rint0.033
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.02
No. of reflections4481
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.982.242.795 (2)115
C4—H4B···O10.972.513.059 (2)116
C13—H13A···O10.972.443.114 (2)126
C26—H26···O10.932.483.265 (2)142
N2—H2···O1i0.862.062.852 (2)152.9
C18—H18···Cg2ii0.932.883.758 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationAli, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2533–o2534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64–74.  Google Scholar
First citationSelvanayagam, S., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o751.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.  CrossRef CAS Web of Science Google Scholar
First citationWaldmann, H. (1995). Synlett, pp. 133–141.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds