metal-organic compounds
(1,2,3,4-Tetrahydroisoquinoline-2-carbodithioato-κ2S,S′)(thiocyanato-κN)(triphenylphosphane)nickel(II)
aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, India, and bDepartment of Physics, Kalasalingam University, Krishnankoil 626 126, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com
The NiII atom in the mononuclear title compound, [Ni(C10H10NS2)(NCS)(C18H15P)], exists within a S2PN donor set that defines a distorted square-planar geometry. A significant asymmetry in the Ni—S bond lengths support the less effective trans effect of SCN− over PPh3.
Related literature
For general background to dithiocarbamates and their biological activity, see: Gunay et al. (1999); Hogarth (2005); Ozkirimli et al. (2005). Nickel complexes of phosphine ligands have been studied for their anticancer activity, see: Jarret et al. (1993). Nickel(II) dithiocarbamates can react with Lewis bases such as as well as hard bases such as nitrogenous ligands, see: Srinivasan et al. (2009); Travnicek et al. (2008). For the preparation of the title compound, see: Valarmathi et al. (2011).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
https://doi.org/10.1107/S1600536811050550/bt5724sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811050550/bt5724Isup2.hkl
Compound (I) was prepared according to the literature procedure (Valarmathi et al., 2011). Single crystals of (I) were obtained by slow evaporation of dichloromethane and ethanol (2:1) solution of (I) at room temperature.
H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93-0.97 Å, and Uiso(H) = 1.2Ueq(C) for H atoms.
Dithiocarbamates are versatile ligands which have been shown to bind to all transition elements supporting a wide range of
(Hogarth, 2005). They have been shown to posses a broad spectrum of biological activities such as fungicidal (Ozkirimli et al., 2005) and bactericidal (Gunay et al., 1999). Nickel complexes of phosphine ligands have been studied for their anticancer activity (Jarret et al., 1993). Nickel(II) dithiocarbamates are borderline acceptors and they can react with Lewis bases such as as well as hard bases such as nitrogenous ligands (Srinivasan et al., 2009; Travnicek et al., 2008). In view of these importance we have undertaken the determination of the title compound, and the results are presented here.The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1.
The structure consists of distorted square planar metal coordination with NiS2PN chromophore. Deviation of the plane from a perfect square is caused by the small bite angle subtended by the sulfur atoms of the chelating dithiocarbamate at the nickel atom. The Ni—S bond distances [2.218 (1) and 2.162 (1) Å, respectively] are significantly different, due to the different trans influences exerted by phosphine and NCS-. PPh3 being a good π-acceptor has a greater trans influence and hence the Ni—S bond trans to P is longer than the one trans to NCS anion.
The shortening of Ni—P distance is due the strong back bonding in nickel atom. The C—P—C angles deviate appreciably from the normal tetrahedral angle due to the crowding of the phenyl rings. The short Ni—N distance, 1.867 (2) Å, shows the effective bonding between the nickel atom and NCS-. The Ni—N—C angle 170.9 (2)° indicates deviation from the linearity and is due to steric compulsions of the bulky PPh3 group.
The C—S bond lengths are 1.707 (3) and 1.717 (3) Å which are shorter than the typical single bond value of 1.81 Å and longer than C=S distance of 1.69 Å, indicating partial double bond character. The short thioureide C—N distance, 1.315 (3) Å indicates that the π-electron density is delocalised over the S2CN moiety and that this bond has partial double bond character.
In addition to the van der Waals interactions, the molecular structure is influenced only by intramolecular C—H···S hydrogen bonds involving sulphur atoms S1 and S2. (Fig. 2 and Table 1).
For general background to dithiocarbamates and their biological activity, see: Gunay et al. (1999); Hogarth (2005); Ozkirimli et al. (2005). Nickel complexes of phosphine ligands have been studied for their anticancer activity, see: Jarret et al. (1993). Nickel(II) dithiocarbamates can react with Lewis bases such as
as well as hard bases such as nitrogenous ligands, see: Srinivasan et al. (2009); Travnicek et al. (2008). For the preparation of the title compound, see: Valarmathi et al. (2011).Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: 'ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009)'; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).[Ni(C10H10NS2)(NCS)(C18H15P)] | F(000) = 1216 |
Mr = 587.37 | Dx = 1.440 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 8723 reflections |
a = 13.7981 (4) Å | θ = 2.5–26.3° |
b = 13.1429 (4) Å | µ = 1.03 mm−1 |
c = 14.9447 (4) Å | T = 292 K |
β = 91.693 (2)° | Block, pale-yellow |
V = 2708.99 (13) Å3 | 0.25 × 0.20 × 0.15 mm |
Z = 4 |
Bruker KAPPA APEXII CCD diffractometer | 7287 independent reflections |
Radiation source: fine-focus sealed tube | 5132 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω and φ scan | θmax = 29.2°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker 1999) | h = −18→17 |
Tmin = 0.783, Tmax = 0.861 | k = −11→17 |
33862 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0574P)2 + 1.2033P] where P = (Fo2 + 2Fc2)/3 |
7287 reflections | (Δ/σ)max = 0.001 |
325 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Ni(C10H10NS2)(NCS)(C18H15P)] | V = 2708.99 (13) Å3 |
Mr = 587.37 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.7981 (4) Å | µ = 1.03 mm−1 |
b = 13.1429 (4) Å | T = 292 K |
c = 14.9447 (4) Å | 0.25 × 0.20 × 0.15 mm |
β = 91.693 (2)° |
Bruker KAPPA APEXII CCD diffractometer | 7287 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker 1999) | 5132 reflections with I > 2σ(I) |
Tmin = 0.783, Tmax = 0.861 | Rint = 0.035 |
33862 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.55 e Å−3 |
7287 reflections | Δρmin = −0.30 e Å−3 |
325 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.67037 (18) | 0.52602 (19) | 0.77990 (18) | 0.0474 (6) | |
C2 | 0.70333 (19) | 0.61484 (19) | 0.43746 (18) | 0.0486 (6) | |
C3 | 0.5892 (3) | 0.5795 (3) | 0.3133 (2) | 0.0739 (9) | |
H3A | 0.5591 | 0.6295 | 0.2737 | 0.089* | |
H3B | 0.5448 | 0.5654 | 0.3609 | 0.089* | |
C4 | 0.6072 (3) | 0.4837 (3) | 0.2622 (3) | 0.0850 (11) | |
H4A | 0.6227 | 0.4289 | 0.3036 | 0.102* | |
H4B | 0.5490 | 0.4650 | 0.2280 | 0.102* | |
C5 | 0.6874 (2) | 0.4983 (3) | 0.2015 (2) | 0.0694 (9) | |
C6 | 0.6980 (4) | 0.4273 (3) | 0.1283 (3) | 0.0919 (12) | |
H6 | 0.6541 | 0.3740 | 0.1207 | 0.110* | |
C7 | 0.7711 (4) | 0.4377 (4) | 0.0712 (3) | 0.0969 (13) | |
H7 | 0.7773 | 0.3920 | 0.0242 | 0.116* | |
C8 | 0.8378 (3) | 0.5175 (4) | 0.0825 (3) | 0.0950 (13) | |
H8 | 0.8875 | 0.5249 | 0.0424 | 0.114* | |
C9 | 0.8305 (3) | 0.5845 (3) | 0.1519 (2) | 0.0777 (10) | |
H9 | 0.8755 | 0.6365 | 0.1602 | 0.093* | |
C10 | 0.7549 (2) | 0.5731 (2) | 0.20951 (19) | 0.0592 (7) | |
C11 | 0.7468 (3) | 0.6536 (3) | 0.2850 (2) | 0.0742 (9) | |
H11A | 0.8102 | 0.6644 | 0.3131 | 0.089* | |
H11B | 0.7250 | 0.7176 | 0.2593 | 0.089* | |
C12 | 1.00159 (18) | 0.65116 (18) | 0.63240 (16) | 0.0424 (5) | |
C13 | 0.9915 (2) | 0.7503 (2) | 0.60153 (18) | 0.0518 (6) | |
H13 | 0.9327 | 0.7838 | 0.6071 | 0.062* | |
C14 | 1.0679 (2) | 0.7995 (2) | 0.5627 (2) | 0.0631 (8) | |
H14 | 1.0608 | 0.8663 | 0.5430 | 0.076* | |
C15 | 1.1541 (2) | 0.7499 (3) | 0.5532 (2) | 0.0698 (9) | |
H15 | 1.2054 | 0.7827 | 0.5263 | 0.084* | |
C16 | 1.1653 (2) | 0.6520 (3) | 0.5833 (2) | 0.0707 (9) | |
H16 | 1.2240 | 0.6185 | 0.5765 | 0.085* | |
C17 | 1.0890 (2) | 0.6025 (2) | 0.6240 (2) | 0.0580 (7) | |
H17 | 1.0972 | 0.5366 | 0.6455 | 0.070* | |
C18 | 0.92192 (16) | 0.46836 (17) | 0.71702 (16) | 0.0401 (5) | |
C19 | 0.9523 (2) | 0.3997 (2) | 0.65279 (19) | 0.0526 (6) | |
H19 | 0.9652 | 0.4223 | 0.5954 | 0.063* | |
C20 | 0.9633 (2) | 0.2978 (2) | 0.6743 (2) | 0.0663 (8) | |
H20 | 0.9850 | 0.2525 | 0.6315 | 0.080* | |
C21 | 0.9426 (2) | 0.2629 (2) | 0.7583 (2) | 0.0632 (8) | |
H21 | 0.9508 | 0.1945 | 0.7725 | 0.076* | |
C22 | 0.9100 (2) | 0.3294 (2) | 0.8207 (2) | 0.0587 (7) | |
H22 | 0.8946 | 0.3056 | 0.8771 | 0.070* | |
C23 | 0.89970 (19) | 0.4318 (2) | 0.80110 (18) | 0.0492 (6) | |
H23 | 0.8778 | 0.4762 | 0.8445 | 0.059* | |
C24 | 0.89695 (17) | 0.67053 (17) | 0.79026 (15) | 0.0404 (5) | |
C25 | 0.9742 (2) | 0.6615 (2) | 0.85052 (18) | 0.0534 (6) | |
H25 | 1.0243 | 0.6165 | 0.8390 | 0.064* | |
C26 | 0.9775 (2) | 0.7188 (2) | 0.9275 (2) | 0.0671 (8) | |
H26 | 1.0290 | 0.7114 | 0.9685 | 0.080* | |
C27 | 0.9048 (3) | 0.7866 (2) | 0.9437 (2) | 0.0658 (8) | |
H27 | 0.9073 | 0.8254 | 0.9958 | 0.079* | |
C28 | 0.8290 (2) | 0.7977 (2) | 0.8845 (2) | 0.0619 (7) | |
H28 | 0.7803 | 0.8445 | 0.8958 | 0.074* | |
C29 | 0.82414 (19) | 0.7394 (2) | 0.80687 (18) | 0.0503 (6) | |
H29 | 0.7721 | 0.7468 | 0.7664 | 0.060* | |
N1 | 0.69817 (16) | 0.54668 (18) | 0.71207 (15) | 0.0518 (5) | |
N2 | 0.67965 (18) | 0.6210 (2) | 0.35176 (15) | 0.0612 (6) | |
P1 | 0.89629 (4) | 0.59881 (4) | 0.68659 (4) | 0.03763 (14) | |
S1 | 0.63111 (5) | 0.56870 (6) | 0.51886 (5) | 0.05756 (19) | |
S2 | 0.81349 (5) | 0.64882 (6) | 0.48486 (4) | 0.05379 (18) | |
S3 | 0.63080 (8) | 0.50024 (8) | 0.87781 (6) | 0.0838 (3) | |
Ni1 | 0.75893 (2) | 0.59313 (2) | 0.60984 (2) | 0.04025 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0428 (14) | 0.0467 (13) | 0.0524 (16) | −0.0003 (10) | −0.0034 (11) | 0.0053 (11) |
C2 | 0.0488 (15) | 0.0510 (14) | 0.0455 (14) | 0.0054 (11) | −0.0073 (11) | 0.0023 (11) |
C3 | 0.068 (2) | 0.098 (3) | 0.0535 (18) | 0.0035 (17) | −0.0239 (16) | −0.0040 (16) |
C4 | 0.069 (2) | 0.098 (3) | 0.086 (3) | −0.0164 (19) | −0.0205 (19) | −0.003 (2) |
C5 | 0.067 (2) | 0.078 (2) | 0.0623 (19) | −0.0082 (16) | −0.0242 (16) | 0.0088 (16) |
C6 | 0.109 (3) | 0.081 (2) | 0.084 (3) | 0.013 (2) | −0.023 (2) | −0.011 (2) |
C7 | 0.106 (3) | 0.111 (3) | 0.072 (3) | 0.034 (3) | −0.020 (2) | −0.023 (2) |
C8 | 0.091 (3) | 0.121 (3) | 0.073 (2) | 0.033 (3) | −0.014 (2) | −0.006 (2) |
C9 | 0.070 (2) | 0.100 (3) | 0.063 (2) | 0.0029 (18) | −0.0101 (17) | 0.0145 (18) |
C10 | 0.0552 (17) | 0.0711 (18) | 0.0505 (16) | 0.0061 (13) | −0.0122 (13) | 0.0131 (13) |
C11 | 0.087 (2) | 0.088 (2) | 0.0470 (17) | −0.0120 (18) | −0.0133 (16) | 0.0092 (15) |
C12 | 0.0427 (13) | 0.0472 (13) | 0.0371 (12) | −0.0033 (10) | −0.0012 (10) | −0.0015 (10) |
C13 | 0.0558 (16) | 0.0490 (14) | 0.0506 (15) | −0.0033 (12) | 0.0039 (12) | 0.0004 (11) |
C14 | 0.083 (2) | 0.0525 (15) | 0.0543 (17) | −0.0181 (15) | 0.0068 (15) | −0.0016 (13) |
C15 | 0.067 (2) | 0.082 (2) | 0.0611 (19) | −0.0297 (17) | 0.0171 (15) | −0.0127 (16) |
C16 | 0.0481 (17) | 0.083 (2) | 0.081 (2) | −0.0028 (15) | 0.0127 (15) | −0.0028 (18) |
C17 | 0.0484 (16) | 0.0613 (16) | 0.0645 (18) | 0.0008 (12) | 0.0058 (13) | 0.0031 (13) |
C18 | 0.0359 (12) | 0.0424 (12) | 0.0416 (12) | 0.0001 (9) | −0.0062 (9) | −0.0004 (10) |
C19 | 0.0547 (16) | 0.0523 (15) | 0.0507 (15) | 0.0004 (12) | −0.0032 (12) | −0.0057 (12) |
C20 | 0.0629 (19) | 0.0477 (15) | 0.088 (2) | 0.0046 (13) | −0.0062 (16) | −0.0211 (15) |
C21 | 0.0542 (17) | 0.0381 (13) | 0.096 (2) | −0.0036 (11) | −0.0123 (16) | 0.0037 (15) |
C22 | 0.0560 (17) | 0.0531 (15) | 0.0664 (18) | −0.0091 (12) | −0.0106 (14) | 0.0164 (14) |
C23 | 0.0524 (15) | 0.0490 (13) | 0.0458 (14) | −0.0008 (11) | −0.0034 (11) | 0.0031 (11) |
C24 | 0.0448 (13) | 0.0396 (11) | 0.0369 (12) | 0.0000 (9) | 0.0003 (10) | 0.0002 (9) |
C25 | 0.0569 (16) | 0.0524 (14) | 0.0499 (15) | 0.0060 (12) | −0.0120 (12) | −0.0062 (12) |
C26 | 0.079 (2) | 0.0700 (19) | 0.0515 (17) | −0.0049 (16) | −0.0184 (15) | −0.0068 (14) |
C27 | 0.089 (2) | 0.0596 (17) | 0.0493 (16) | −0.0127 (16) | 0.0071 (16) | −0.0168 (14) |
C28 | 0.0659 (19) | 0.0561 (16) | 0.0646 (18) | 0.0009 (13) | 0.0178 (15) | −0.0133 (14) |
C29 | 0.0476 (15) | 0.0514 (14) | 0.0519 (15) | 0.0038 (11) | 0.0013 (12) | −0.0030 (11) |
N1 | 0.0451 (12) | 0.0603 (13) | 0.0498 (13) | 0.0018 (10) | −0.0036 (10) | 0.0028 (11) |
N2 | 0.0602 (15) | 0.0798 (16) | 0.0428 (13) | 0.0006 (12) | −0.0109 (11) | 0.0018 (11) |
P1 | 0.0381 (3) | 0.0410 (3) | 0.0336 (3) | 0.0027 (2) | −0.0021 (2) | 0.0014 (2) |
S1 | 0.0445 (4) | 0.0752 (5) | 0.0522 (4) | −0.0037 (3) | −0.0108 (3) | 0.0107 (3) |
S2 | 0.0529 (4) | 0.0690 (4) | 0.0390 (3) | −0.0097 (3) | −0.0059 (3) | 0.0059 (3) |
S3 | 0.1015 (7) | 0.0936 (7) | 0.0572 (5) | −0.0079 (5) | 0.0185 (5) | 0.0166 (4) |
Ni1 | 0.03948 (18) | 0.04412 (17) | 0.03685 (17) | 0.00331 (12) | −0.00393 (12) | 0.00315 (12) |
C1—N1 | 1.128 (3) | C15—C16 | 1.370 (5) |
C1—S3 | 1.613 (3) | C15—H15 | 0.9300 |
C2—N2 | 1.315 (3) | C16—C17 | 1.392 (4) |
C2—S1 | 1.707 (3) | C16—H16 | 0.9300 |
C2—S2 | 1.717 (3) | C17—H17 | 0.9300 |
C3—N2 | 1.464 (4) | C18—C23 | 1.388 (3) |
C3—C4 | 1.497 (5) | C18—C19 | 1.391 (3) |
C3—H3A | 0.9700 | C18—P1 | 1.806 (2) |
C3—H3B | 0.9700 | C19—C20 | 1.385 (4) |
C4—C5 | 1.464 (5) | C19—H19 | 0.9300 |
C4—H4A | 0.9700 | C20—C21 | 1.374 (5) |
C4—H4B | 0.9700 | C20—H20 | 0.9300 |
C5—C10 | 1.357 (4) | C21—C22 | 1.364 (4) |
C5—C6 | 1.449 (5) | C21—H21 | 0.9300 |
C6—C7 | 1.347 (6) | C22—C23 | 1.383 (4) |
C6—H6 | 0.9300 | C22—H22 | 0.9300 |
C7—C8 | 1.402 (6) | C23—H23 | 0.9300 |
C7—H7 | 0.9300 | C24—C25 | 1.380 (3) |
C8—C9 | 1.366 (5) | C24—C29 | 1.381 (3) |
C8—H8 | 0.9300 | C24—P1 | 1.813 (2) |
C9—C10 | 1.380 (5) | C25—C26 | 1.375 (4) |
C9—H9 | 0.9300 | C25—H25 | 0.9300 |
C10—C11 | 1.553 (5) | C26—C27 | 1.368 (5) |
C11—N2 | 1.447 (4) | C26—H26 | 0.9300 |
C11—H11A | 0.9700 | C27—C28 | 1.358 (4) |
C11—H11B | 0.9700 | C27—H27 | 0.9300 |
C12—C17 | 1.374 (4) | C28—C29 | 1.390 (4) |
C12—C13 | 1.387 (4) | C28—H28 | 0.9300 |
C12—P1 | 1.819 (2) | C29—H29 | 0.9300 |
C13—C14 | 1.380 (4) | N1—Ni1 | 1.867 (2) |
C13—H13 | 0.9300 | P1—Ni1 | 2.1874 (6) |
C14—C15 | 1.367 (5) | S1—Ni1 | 2.218 (1) |
C14—H14 | 0.9300 | S2—Ni1 | 2.162 (1) |
N1—C1—S3 | 178.2 (3) | C12—C17—H17 | 120.0 |
N2—C2—S1 | 125.6 (2) | C16—C17—H17 | 120.0 |
N2—C2—S2 | 125.3 (2) | C23—C18—C19 | 118.6 (2) |
S1—C2—S2 | 109.07 (14) | C23—C18—P1 | 120.66 (19) |
N2—C3—C4 | 111.2 (3) | C19—C18—P1 | 120.16 (19) |
N2—C3—H3A | 109.4 | C20—C19—C18 | 120.0 (3) |
C4—C3—H3A | 109.4 | C20—C19—H19 | 120.0 |
N2—C3—H3B | 109.4 | C18—C19—H19 | 120.0 |
C4—C3—H3B | 109.4 | C21—C20—C19 | 120.7 (3) |
H3A—C3—H3B | 108.0 | C21—C20—H20 | 119.6 |
C5—C4—C3 | 110.2 (3) | C19—C20—H20 | 119.6 |
C5—C4—H4A | 109.6 | C22—C21—C20 | 119.5 (3) |
C3—C4—H4A | 109.6 | C22—C21—H21 | 120.3 |
C5—C4—H4B | 109.6 | C20—C21—H21 | 120.3 |
C3—C4—H4B | 109.6 | C21—C22—C23 | 120.9 (3) |
H4A—C4—H4B | 108.1 | C21—C22—H22 | 119.6 |
C10—C5—C6 | 116.6 (4) | C23—C22—H22 | 119.6 |
C10—C5—C4 | 124.8 (3) | C22—C23—C18 | 120.3 (3) |
C6—C5—C4 | 118.6 (3) | C22—C23—H23 | 119.9 |
C7—C6—C5 | 120.5 (4) | C18—C23—H23 | 119.9 |
C7—C6—H6 | 119.8 | C25—C24—C29 | 119.4 (2) |
C5—C6—H6 | 119.8 | C25—C24—P1 | 119.81 (19) |
C6—C7—C8 | 120.0 (4) | C29—C24—P1 | 120.62 (19) |
C6—C7—H7 | 120.0 | C26—C25—C24 | 120.3 (3) |
C8—C7—H7 | 120.0 | C26—C25—H25 | 119.8 |
C9—C8—C7 | 120.7 (4) | C24—C25—H25 | 119.8 |
C9—C8—H8 | 119.6 | C27—C26—C25 | 119.9 (3) |
C7—C8—H8 | 119.6 | C27—C26—H26 | 120.0 |
C8—C9—C10 | 118.5 (4) | C25—C26—H26 | 120.0 |
C8—C9—H9 | 120.8 | C28—C27—C26 | 120.6 (3) |
C10—C9—H9 | 120.8 | C28—C27—H27 | 119.7 |
C5—C10—C9 | 123.6 (3) | C26—C27—H27 | 119.7 |
C5—C10—C11 | 119.6 (3) | C27—C28—C29 | 120.1 (3) |
C9—C10—C11 | 116.8 (3) | C27—C28—H28 | 119.9 |
N2—C11—C10 | 111.1 (3) | C29—C28—H28 | 119.9 |
N2—C11—H11A | 109.4 | C24—C29—C28 | 119.6 (3) |
C10—C11—H11A | 109.4 | C24—C29—H29 | 120.2 |
N2—C11—H11B | 109.4 | C28—C29—H29 | 120.2 |
C10—C11—H11B | 109.4 | C1—N1—Ni1 | 170.9 (2) |
H11A—C11—H11B | 108.0 | C2—N2—C11 | 123.0 (3) |
C17—C12—C13 | 119.1 (2) | C2—N2—C3 | 122.9 (3) |
C17—C12—P1 | 125.4 (2) | C11—N2—C3 | 113.3 (2) |
C13—C12—P1 | 115.43 (19) | C18—P1—C24 | 106.40 (11) |
C14—C13—C12 | 120.6 (3) | C18—P1—C12 | 108.54 (11) |
C14—C13—H13 | 119.7 | C24—P1—C12 | 101.53 (11) |
C12—C13—H13 | 119.7 | C18—P1—Ni1 | 105.06 (8) |
C15—C14—C13 | 119.9 (3) | C24—P1—Ni1 | 116.63 (8) |
C15—C14—H14 | 120.1 | C12—P1—Ni1 | 118.07 (8) |
C13—C14—H14 | 120.1 | C2—S1—Ni1 | 85.13 (9) |
C14—C15—C16 | 120.2 (3) | C2—S2—Ni1 | 86.67 (9) |
C14—C15—H15 | 119.9 | N1—Ni1—S2 | 173.69 (7) |
C16—C15—H15 | 119.9 | N1—Ni1—P1 | 89.15 (7) |
C15—C16—C17 | 120.2 (3) | S2—Ni1—P1 | 97.07 (3) |
C15—C16—H16 | 119.9 | N1—Ni1—S1 | 94.94 (7) |
C17—C16—H16 | 119.9 | S2—Ni1—S1 | 79.06 (3) |
C12—C17—C16 | 120.0 (3) | P1—Ni1—S1 | 170.83 (3) |
N2—C3—C4—C5 | −48.3 (4) | C10—C11—N2—C2 | 125.0 (3) |
C3—C4—C5—C10 | 19.4 (5) | C10—C11—N2—C3 | −45.3 (4) |
C3—C4—C5—C6 | −162.1 (3) | C4—C3—N2—C2 | −105.5 (4) |
C10—C5—C6—C7 | −1.1 (5) | C4—C3—N2—C11 | 64.7 (4) |
C4—C5—C6—C7 | −179.7 (4) | C23—C18—P1—C24 | 26.0 (2) |
C5—C6—C7—C8 | 0.3 (6) | C19—C18—P1—C24 | −162.5 (2) |
C6—C7—C8—C9 | 0.9 (6) | C23—C18—P1—C12 | 134.6 (2) |
C7—C8—C9—C10 | −1.3 (5) | C19—C18—P1—C12 | −53.9 (2) |
C6—C5—C10—C9 | 0.7 (5) | C23—C18—P1—Ni1 | −98.25 (19) |
C4—C5—C10—C9 | 179.2 (3) | C19—C18—P1—Ni1 | 73.2 (2) |
C6—C5—C10—C11 | 178.6 (3) | C25—C24—P1—C18 | 50.6 (2) |
C4—C5—C10—C11 | −2.9 (5) | C29—C24—P1—C18 | −133.8 (2) |
C8—C9—C10—C5 | 0.5 (5) | C25—C24—P1—C12 | −62.8 (2) |
C8—C9—C10—C11 | −177.4 (3) | C29—C24—P1—C12 | 112.7 (2) |
C5—C10—C11—N2 | 15.0 (4) | C25—C24—P1—Ni1 | 167.41 (18) |
C9—C10—C11—N2 | −167.0 (3) | C29—C24—P1—Ni1 | −17.1 (2) |
C17—C12—C13—C14 | 0.1 (4) | C17—C12—P1—C18 | −5.7 (3) |
P1—C12—C13—C14 | 177.2 (2) | C13—C12—P1—C18 | 177.39 (19) |
C12—C13—C14—C15 | 1.0 (4) | C17—C12—P1—C24 | 106.1 (2) |
C13—C14—C15—C16 | −0.9 (5) | C13—C12—P1—C24 | −70.8 (2) |
C14—C15—C16—C17 | −0.2 (5) | C17—C12—P1—Ni1 | −125.0 (2) |
C13—C12—C17—C16 | −1.3 (4) | C13—C12—P1—Ni1 | 58.1 (2) |
P1—C12—C17—C16 | −178.1 (2) | N2—C2—S1—Ni1 | 176.0 (3) |
C15—C16—C17—C12 | 1.4 (5) | S2—C2—S1—Ni1 | −2.32 (12) |
C23—C18—C19—C20 | −2.4 (4) | N2—C2—S2—Ni1 | −176.0 (2) |
P1—C18—C19—C20 | −174.1 (2) | S1—C2—S2—Ni1 | 2.37 (12) |
C18—C19—C20—C21 | 1.4 (4) | C1—N1—Ni1—S2 | −139.3 (12) |
C19—C20—C21—C22 | 0.6 (4) | C1—N1—Ni1—P1 | 30.9 (14) |
C20—C21—C22—C23 | −1.5 (4) | C1—N1—Ni1—S1 | −157.3 (14) |
C21—C22—C23—C18 | 0.4 (4) | C2—S2—Ni1—N1 | −20.1 (7) |
C19—C18—C23—C22 | 1.6 (4) | C2—S2—Ni1—P1 | 169.83 (9) |
P1—C18—C23—C22 | 173.2 (2) | C2—S2—Ni1—S1 | −1.76 (9) |
C29—C24—C25—C26 | 1.6 (4) | C18—P1—Ni1—N1 | 64.00 (11) |
P1—C24—C25—C26 | 177.2 (2) | C24—P1—Ni1—N1 | −53.51 (11) |
C24—C25—C26—C27 | −1.3 (5) | C12—P1—Ni1—N1 | −174.89 (12) |
C25—C26—C27—C28 | 0.2 (5) | C18—P1—Ni1—S2 | −117.09 (9) |
C26—C27—C28—C29 | 0.6 (5) | C24—P1—Ni1—S2 | 125.41 (9) |
C25—C24—C29—C28 | −0.8 (4) | C12—P1—Ni1—S2 | 4.03 (9) |
P1—C24—C29—C28 | −176.4 (2) | C18—P1—Ni1—S1 | −52.7 (2) |
C27—C28—C29—C24 | −0.3 (4) | C24—P1—Ni1—S1 | −170.20 (18) |
S3—C1—N1—Ni1 | 46 (9) | C12—P1—Ni1—S1 | 68.4 (2) |
S1—C2—N2—C11 | −175.1 (2) | C2—S1—Ni1—N1 | 179.78 (11) |
S2—C2—N2—C11 | 3.0 (4) | C2—S1—Ni1—S2 | 1.77 (9) |
S1—C2—N2—C3 | −5.8 (4) | C2—S1—Ni1—P1 | −63.9 (2) |
S2—C2—N2—C3 | 172.3 (2) |
Experimental details
Crystal data | |
Chemical formula | [Ni(C10H10NS2)(NCS)(C18H15P)] |
Mr | 587.37 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 292 |
a, b, c (Å) | 13.7981 (4), 13.1429 (4), 14.9447 (4) |
β (°) | 91.693 (2) |
V (Å3) | 2708.99 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.03 |
Crystal size (mm) | 0.25 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Bruker KAPPA APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker 1999) |
Tmin, Tmax | 0.783, 0.861 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33862, 7287, 5132 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.687 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.123, 1.03 |
No. of reflections | 7287 |
No. of parameters | 325 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.30 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), 'ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009)', SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
ST thanks the SAIF, Indian Institute of Technolgy, Chennai, for the data collection.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gunay, N. S., Capan, G., Ulusay, N., Ergenc, N., Otuk, G. & Kay, D. (1999). Farmaco, 54, 826–831. Web of Science PubMed CAS Google Scholar
Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71–561. Web of Science CrossRef CAS Google Scholar
Jarret, P. S., Dhubhghaill, O. M. N. & Salder, P. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1863–1870. Google Scholar
Ozkirimli, A., Apak, T. I., Kiraz, M. & Yengenoglu, Y. (2005). Arch. Pharmacol. Res. 28, 1213–1218. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srinivasan, N., Sathyaselvabala, V., Kuppulekshmy, K., Valarmathi, P. & Thirumaran, S. (2009). Monatsh. Chem. 140, 1431–1436. Web of Science CSD CrossRef CAS Google Scholar
Travnicek, Z., Pastorek, R. & Slovak, V. (2008). Polyhedron, 27, 411–419. CAS Google Scholar
Valarmathi, P., Srinivasan, N. & Thirumaran, S. (2011). J. Sulfur Chem. 32, 583–591. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dithiocarbamates are versatile ligands which have been shown to bind to all transition elements supporting a wide range of oxidation state (Hogarth, 2005). They have been shown to posses a broad spectrum of biological activities such as fungicidal (Ozkirimli et al., 2005) and bactericidal (Gunay et al., 1999). Nickel complexes of phosphine ligands have been studied for their anticancer activity (Jarret et al., 1993). Nickel(II) dithiocarbamates are borderline acceptors and they can react with Lewis bases such as phosphines as well as hard bases such as nitrogenous ligands (Srinivasan et al., 2009; Travnicek et al., 2008). In view of these importance we have undertaken the crystal structure determination of the title compound, and the results are presented here.
The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1.
The structure consists of distorted square planar metal coordination with NiS2PN chromophore. Deviation of the plane from a perfect square is caused by the small bite angle subtended by the sulfur atoms of the chelating dithiocarbamate at the nickel atom. The Ni—S bond distances [2.218 (1) and 2.162 (1) Å, respectively] are significantly different, due to the different trans influences exerted by phosphine and NCS-. PPh3 being a good π-acceptor has a greater trans influence and hence the Ni—S bond trans to P is longer than the one trans to NCS anion.
The shortening of Ni—P distance is due the strong back bonding in nickel atom. The C—P—C angles deviate appreciably from the normal tetrahedral angle due to the crowding of the phenyl rings. The short Ni—N distance, 1.867 (2) Å, shows the effective bonding between the nickel atom and NCS-. The Ni—N—C angle 170.9 (2)° indicates deviation from the linearity and is due to steric compulsions of the bulky PPh3 group.
The C—S bond lengths are 1.707 (3) and 1.717 (3) Å which are shorter than the typical single bond value of 1.81 Å and longer than C=S distance of 1.69 Å, indicating partial double bond character. The short thioureide C—N distance, 1.315 (3) Å indicates that the π-electron density is delocalised over the S2CN moiety and that this bond has partial double bond character.
In addition to the van der Waals interactions, the molecular structure is influenced only by intramolecular C—H···S hydrogen bonds involving sulphur atoms S1 and S2. (Fig. 2 and Table 1).