metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1,2,3,4-Tetra­hydro­iso­quinoline-2-carbo­di­thio­ato-κ2S,S′)(thio­cyanato-κN)(tri­phenyl­phosphane)nickel(II)

aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, India, and bDepartment of Physics, Kalasalingam University, Krishnankoil 626 126, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 22 November 2011; accepted 24 November 2011; online 30 November 2011)

The NiII atom in the mononuclear title compound, [Ni(C10H10NS2)(NCS)(C18H15P)], exists within a S2PN donor set that defines a distorted square-planar geometry. A significant asymmetry in the Ni—S bond lengths support the less effective trans effect of SCN over PPh3.

Related literature

For general background to dithio­carbamates and their bio­logical activity, see: Gunay et al. (1999[Gunay, N. S., Capan, G., Ulusay, N., Ergenc, N., Otuk, G. & Kay, D. (1999). Farmaco, 54, 826-831.]); Hogarth (2005[Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.]); Ozkirimli et al. (2005[Ozkirimli, A., Apak, T. I., Kiraz, M. & Yengenoglu, Y. (2005). Arch. Pharmacol. Res. 28, 1213-1218.]). Nickel complexes of phosphine ligands have been studied for their anti­cancer activity, see: Jarret et al. (1993[Jarret, P. S., Dhubhghaill, O. M. N. & Salder, P. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1863-1870.]). Nickel(II) dithio­carbamates can react with Lewis bases such as phosphines as well as hard bases such as nitro­genous ligands, see: Srinivasan et al. (2009[Srinivasan, N., Sathyaselvabala, V., Kuppulekshmy, K., Valarmathi, P. & Thirumaran, S. (2009). Monatsh. Chem. 140, 1431-1436.]); Travnicek et al. (2008[Travnicek, Z., Pastorek, R. & Slovak, V. (2008). Polyhedron, 27, 411-419.]). For the preparation of the title compound, see: Valarmathi et al. (2011[Valarmathi, P., Srinivasan, N. & Thirumaran, S. (2011). J. Sulfur Chem. 32, 583-591.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H10NS2)(NCS)(C18H15P)]

  • Mr = 587.37

  • Monoclinic, P 21 /n

  • a = 13.7981 (4) Å

  • b = 13.1429 (4) Å

  • c = 14.9447 (4) Å

  • β = 91.693 (2)°

  • V = 2708.99 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 292 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.783, Tmax = 0.861

  • 33862 measured reflections

  • 7287 independent reflections

  • 5132 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.123

  • S = 1.03

  • 7287 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

N1—Ni1 1.867 (2)
P1—Ni1 2.1874 (6)
S1—Ni1 2.218 (1)
S2—Ni1 2.162 (1)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Dithiocarbamates are versatile ligands which have been shown to bind to all transition elements supporting a wide range of oxidation state (Hogarth, 2005). They have been shown to posses a broad spectrum of biological activities such as fungicidal (Ozkirimli et al., 2005) and bactericidal (Gunay et al., 1999). Nickel complexes of phosphine ligands have been studied for their anticancer activity (Jarret et al., 1993). Nickel(II) dithiocarbamates are borderline acceptors and they can react with Lewis bases such as phosphines as well as hard bases such as nitrogenous ligands (Srinivasan et al., 2009; Travnicek et al., 2008). In view of these importance we have undertaken the crystal structure determination of the title compound, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1.

The structure consists of distorted square planar metal coordination with NiS2PN chromophore. Deviation of the plane from a perfect square is caused by the small bite angle subtended by the sulfur atoms of the chelating dithiocarbamate at the nickel atom. The Ni—S bond distances [2.218 (1) and 2.162 (1) Å, respectively] are significantly different, due to the different trans influences exerted by phosphine and NCS-. PPh3 being a good π-acceptor has a greater trans influence and hence the Ni—S bond trans to P is longer than the one trans to NCS anion.

The shortening of Ni—P distance is due the strong back bonding in nickel atom. The C—P—C angles deviate appreciably from the normal tetrahedral angle due to the crowding of the phenyl rings. The short Ni—N distance, 1.867 (2) Å, shows the effective bonding between the nickel atom and NCS-. The Ni—N—C angle 170.9 (2)° indicates deviation from the linearity and is due to steric compulsions of the bulky PPh3 group.

The C—S bond lengths are 1.707 (3) and 1.717 (3) Å which are shorter than the typical single bond value of 1.81 Å and longer than C=S distance of 1.69 Å, indicating partial double bond character. The short thioureide C—N distance, 1.315 (3) Å indicates that the π-electron density is delocalised over the S2CN moiety and that this bond has partial double bond character.

In addition to the van der Waals interactions, the molecular structure is influenced only by intramolecular C—H···S hydrogen bonds involving sulphur atoms S1 and S2. (Fig. 2 and Table 1).

Related literature top

For general background to dithiocarbamates and their biological activity, see: Gunay et al. (1999); Hogarth (2005); Ozkirimli et al. (2005). Nickel complexes of phosphine ligands have been studied for their anticancer activity, see: Jarret et al. (1993). Nickel(II) dithiocarbamates can react with Lewis bases such as phosphines as well as hard bases such as nitrogenous ligands, see: Srinivasan et al. (2009); Travnicek et al. (2008). For the preparation of the title compound, see: Valarmathi et al. (2011).

Experimental top

Compound (I) was prepared according to the literature procedure (Valarmathi et al., 2011). Single crystals of (I) were obtained by slow evaporation of dichloromethane and ethanol (2:1) solution of (I) at room temperature.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93-0.97 Å, and Uiso(H) = 1.2Ueq(C) for H atoms.

Structure description top

Dithiocarbamates are versatile ligands which have been shown to bind to all transition elements supporting a wide range of oxidation state (Hogarth, 2005). They have been shown to posses a broad spectrum of biological activities such as fungicidal (Ozkirimli et al., 2005) and bactericidal (Gunay et al., 1999). Nickel complexes of phosphine ligands have been studied for their anticancer activity (Jarret et al., 1993). Nickel(II) dithiocarbamates are borderline acceptors and they can react with Lewis bases such as phosphines as well as hard bases such as nitrogenous ligands (Srinivasan et al., 2009; Travnicek et al., 2008). In view of these importance we have undertaken the crystal structure determination of the title compound, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1.

The structure consists of distorted square planar metal coordination with NiS2PN chromophore. Deviation of the plane from a perfect square is caused by the small bite angle subtended by the sulfur atoms of the chelating dithiocarbamate at the nickel atom. The Ni—S bond distances [2.218 (1) and 2.162 (1) Å, respectively] are significantly different, due to the different trans influences exerted by phosphine and NCS-. PPh3 being a good π-acceptor has a greater trans influence and hence the Ni—S bond trans to P is longer than the one trans to NCS anion.

The shortening of Ni—P distance is due the strong back bonding in nickel atom. The C—P—C angles deviate appreciably from the normal tetrahedral angle due to the crowding of the phenyl rings. The short Ni—N distance, 1.867 (2) Å, shows the effective bonding between the nickel atom and NCS-. The Ni—N—C angle 170.9 (2)° indicates deviation from the linearity and is due to steric compulsions of the bulky PPh3 group.

The C—S bond lengths are 1.707 (3) and 1.717 (3) Å which are shorter than the typical single bond value of 1.81 Å and longer than C=S distance of 1.69 Å, indicating partial double bond character. The short thioureide C—N distance, 1.315 (3) Å indicates that the π-electron density is delocalised over the S2CN moiety and that this bond has partial double bond character.

In addition to the van der Waals interactions, the molecular structure is influenced only by intramolecular C—H···S hydrogen bonds involving sulphur atoms S1 and S2. (Fig. 2 and Table 1).

For general background to dithiocarbamates and their biological activity, see: Gunay et al. (1999); Hogarth (2005); Ozkirimli et al. (2005). Nickel complexes of phosphine ligands have been studied for their anticancer activity, see: Jarret et al. (1993). Nickel(II) dithiocarbamates can react with Lewis bases such as phosphines as well as hard bases such as nitrogenous ligands, see: Srinivasan et al. (2009); Travnicek et al. (2008). For the preparation of the title compound, see: Valarmathi et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: 'ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009)'; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the b axis; H-bonds are shown as dashed lines. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
(1,2,3,4-Tetrahydroisoquinoline-2-carbodithioato- κ2S,S')(thiocyanato-κN)(triphenylphosphane)nickel(II) top
Crystal data top
[Ni(C10H10NS2)(NCS)(C18H15P)]F(000) = 1216
Mr = 587.37Dx = 1.440 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8723 reflections
a = 13.7981 (4) Åθ = 2.5–26.3°
b = 13.1429 (4) ŵ = 1.03 mm1
c = 14.9447 (4) ÅT = 292 K
β = 91.693 (2)°Block, pale-yellow
V = 2708.99 (13) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
7287 independent reflections
Radiation source: fine-focus sealed tube5132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scanθmax = 29.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker 1999)
h = 1817
Tmin = 0.783, Tmax = 0.861k = 1117
33862 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0574P)2 + 1.2033P]
where P = (Fo2 + 2Fc2)/3
7287 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Ni(C10H10NS2)(NCS)(C18H15P)]V = 2708.99 (13) Å3
Mr = 587.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.7981 (4) ŵ = 1.03 mm1
b = 13.1429 (4) ÅT = 292 K
c = 14.9447 (4) Å0.25 × 0.20 × 0.15 mm
β = 91.693 (2)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
7287 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 1999)
5132 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.861Rint = 0.035
33862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.03Δρmax = 0.55 e Å3
7287 reflectionsΔρmin = 0.30 e Å3
325 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67037 (18)0.52602 (19)0.77990 (18)0.0474 (6)
C20.70333 (19)0.61484 (19)0.43746 (18)0.0486 (6)
C30.5892 (3)0.5795 (3)0.3133 (2)0.0739 (9)
H3A0.55910.62950.27370.089*
H3B0.54480.56540.36090.089*
C40.6072 (3)0.4837 (3)0.2622 (3)0.0850 (11)
H4A0.62270.42890.30360.102*
H4B0.54900.46500.22800.102*
C50.6874 (2)0.4983 (3)0.2015 (2)0.0694 (9)
C60.6980 (4)0.4273 (3)0.1283 (3)0.0919 (12)
H60.65410.37400.12070.110*
C70.7711 (4)0.4377 (4)0.0712 (3)0.0969 (13)
H70.77730.39200.02420.116*
C80.8378 (3)0.5175 (4)0.0825 (3)0.0950 (13)
H80.88750.52490.04240.114*
C90.8305 (3)0.5845 (3)0.1519 (2)0.0777 (10)
H90.87550.63650.16020.093*
C100.7549 (2)0.5731 (2)0.20951 (19)0.0592 (7)
C110.7468 (3)0.6536 (3)0.2850 (2)0.0742 (9)
H11A0.81020.66440.31310.089*
H11B0.72500.71760.25930.089*
C121.00159 (18)0.65116 (18)0.63240 (16)0.0424 (5)
C130.9915 (2)0.7503 (2)0.60153 (18)0.0518 (6)
H130.93270.78380.60710.062*
C141.0679 (2)0.7995 (2)0.5627 (2)0.0631 (8)
H141.06080.86630.54300.076*
C151.1541 (2)0.7499 (3)0.5532 (2)0.0698 (9)
H151.20540.78270.52630.084*
C161.1653 (2)0.6520 (3)0.5833 (2)0.0707 (9)
H161.22400.61850.57650.085*
C171.0890 (2)0.6025 (2)0.6240 (2)0.0580 (7)
H171.09720.53660.64550.070*
C180.92192 (16)0.46836 (17)0.71702 (16)0.0401 (5)
C190.9523 (2)0.3997 (2)0.65279 (19)0.0526 (6)
H190.96520.42230.59540.063*
C200.9633 (2)0.2978 (2)0.6743 (2)0.0663 (8)
H200.98500.25250.63150.080*
C210.9426 (2)0.2629 (2)0.7583 (2)0.0632 (8)
H210.95080.19450.77250.076*
C220.9100 (2)0.3294 (2)0.8207 (2)0.0587 (7)
H220.89460.30560.87710.070*
C230.89970 (19)0.4318 (2)0.80110 (18)0.0492 (6)
H230.87780.47620.84450.059*
C240.89695 (17)0.67053 (17)0.79026 (15)0.0404 (5)
C250.9742 (2)0.6615 (2)0.85052 (18)0.0534 (6)
H251.02430.61650.83900.064*
C260.9775 (2)0.7188 (2)0.9275 (2)0.0671 (8)
H261.02900.71140.96850.080*
C270.9048 (3)0.7866 (2)0.9437 (2)0.0658 (8)
H270.90730.82540.99580.079*
C280.8290 (2)0.7977 (2)0.8845 (2)0.0619 (7)
H280.78030.84450.89580.074*
C290.82414 (19)0.7394 (2)0.80687 (18)0.0503 (6)
H290.77210.74680.76640.060*
N10.69817 (16)0.54668 (18)0.71207 (15)0.0518 (5)
N20.67965 (18)0.6210 (2)0.35176 (15)0.0612 (6)
P10.89629 (4)0.59881 (4)0.68659 (4)0.03763 (14)
S10.63111 (5)0.56870 (6)0.51886 (5)0.05756 (19)
S20.81349 (5)0.64882 (6)0.48486 (4)0.05379 (18)
S30.63080 (8)0.50024 (8)0.87781 (6)0.0838 (3)
Ni10.75893 (2)0.59313 (2)0.60984 (2)0.04025 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0428 (14)0.0467 (13)0.0524 (16)0.0003 (10)0.0034 (11)0.0053 (11)
C20.0488 (15)0.0510 (14)0.0455 (14)0.0054 (11)0.0073 (11)0.0023 (11)
C30.068 (2)0.098 (3)0.0535 (18)0.0035 (17)0.0239 (16)0.0040 (16)
C40.069 (2)0.098 (3)0.086 (3)0.0164 (19)0.0205 (19)0.003 (2)
C50.067 (2)0.078 (2)0.0623 (19)0.0082 (16)0.0242 (16)0.0088 (16)
C60.109 (3)0.081 (2)0.084 (3)0.013 (2)0.023 (2)0.011 (2)
C70.106 (3)0.111 (3)0.072 (3)0.034 (3)0.020 (2)0.023 (2)
C80.091 (3)0.121 (3)0.073 (2)0.033 (3)0.014 (2)0.006 (2)
C90.070 (2)0.100 (3)0.063 (2)0.0029 (18)0.0101 (17)0.0145 (18)
C100.0552 (17)0.0711 (18)0.0505 (16)0.0061 (13)0.0122 (13)0.0131 (13)
C110.087 (2)0.088 (2)0.0470 (17)0.0120 (18)0.0133 (16)0.0092 (15)
C120.0427 (13)0.0472 (13)0.0371 (12)0.0033 (10)0.0012 (10)0.0015 (10)
C130.0558 (16)0.0490 (14)0.0506 (15)0.0033 (12)0.0039 (12)0.0004 (11)
C140.083 (2)0.0525 (15)0.0543 (17)0.0181 (15)0.0068 (15)0.0016 (13)
C150.067 (2)0.082 (2)0.0611 (19)0.0297 (17)0.0171 (15)0.0127 (16)
C160.0481 (17)0.083 (2)0.081 (2)0.0028 (15)0.0127 (15)0.0028 (18)
C170.0484 (16)0.0613 (16)0.0645 (18)0.0008 (12)0.0058 (13)0.0031 (13)
C180.0359 (12)0.0424 (12)0.0416 (12)0.0001 (9)0.0062 (9)0.0004 (10)
C190.0547 (16)0.0523 (15)0.0507 (15)0.0004 (12)0.0032 (12)0.0057 (12)
C200.0629 (19)0.0477 (15)0.088 (2)0.0046 (13)0.0062 (16)0.0211 (15)
C210.0542 (17)0.0381 (13)0.096 (2)0.0036 (11)0.0123 (16)0.0037 (15)
C220.0560 (17)0.0531 (15)0.0664 (18)0.0091 (12)0.0106 (14)0.0164 (14)
C230.0524 (15)0.0490 (13)0.0458 (14)0.0008 (11)0.0034 (11)0.0031 (11)
C240.0448 (13)0.0396 (11)0.0369 (12)0.0000 (9)0.0003 (10)0.0002 (9)
C250.0569 (16)0.0524 (14)0.0499 (15)0.0060 (12)0.0120 (12)0.0062 (12)
C260.079 (2)0.0700 (19)0.0515 (17)0.0049 (16)0.0184 (15)0.0068 (14)
C270.089 (2)0.0596 (17)0.0493 (16)0.0127 (16)0.0071 (16)0.0168 (14)
C280.0659 (19)0.0561 (16)0.0646 (18)0.0009 (13)0.0178 (15)0.0133 (14)
C290.0476 (15)0.0514 (14)0.0519 (15)0.0038 (11)0.0013 (12)0.0030 (11)
N10.0451 (12)0.0603 (13)0.0498 (13)0.0018 (10)0.0036 (10)0.0028 (11)
N20.0602 (15)0.0798 (16)0.0428 (13)0.0006 (12)0.0109 (11)0.0018 (11)
P10.0381 (3)0.0410 (3)0.0336 (3)0.0027 (2)0.0021 (2)0.0014 (2)
S10.0445 (4)0.0752 (5)0.0522 (4)0.0037 (3)0.0108 (3)0.0107 (3)
S20.0529 (4)0.0690 (4)0.0390 (3)0.0097 (3)0.0059 (3)0.0059 (3)
S30.1015 (7)0.0936 (7)0.0572 (5)0.0079 (5)0.0185 (5)0.0166 (4)
Ni10.03948 (18)0.04412 (17)0.03685 (17)0.00331 (12)0.00393 (12)0.00315 (12)
Geometric parameters (Å, º) top
C1—N11.128 (3)C15—C161.370 (5)
C1—S31.613 (3)C15—H150.9300
C2—N21.315 (3)C16—C171.392 (4)
C2—S11.707 (3)C16—H160.9300
C2—S21.717 (3)C17—H170.9300
C3—N21.464 (4)C18—C231.388 (3)
C3—C41.497 (5)C18—C191.391 (3)
C3—H3A0.9700C18—P11.806 (2)
C3—H3B0.9700C19—C201.385 (4)
C4—C51.464 (5)C19—H190.9300
C4—H4A0.9700C20—C211.374 (5)
C4—H4B0.9700C20—H200.9300
C5—C101.357 (4)C21—C221.364 (4)
C5—C61.449 (5)C21—H210.9300
C6—C71.347 (6)C22—C231.383 (4)
C6—H60.9300C22—H220.9300
C7—C81.402 (6)C23—H230.9300
C7—H70.9300C24—C251.380 (3)
C8—C91.366 (5)C24—C291.381 (3)
C8—H80.9300C24—P11.813 (2)
C9—C101.380 (5)C25—C261.375 (4)
C9—H90.9300C25—H250.9300
C10—C111.553 (5)C26—C271.368 (5)
C11—N21.447 (4)C26—H260.9300
C11—H11A0.9700C27—C281.358 (4)
C11—H11B0.9700C27—H270.9300
C12—C171.374 (4)C28—C291.390 (4)
C12—C131.387 (4)C28—H280.9300
C12—P11.819 (2)C29—H290.9300
C13—C141.380 (4)N1—Ni11.867 (2)
C13—H130.9300P1—Ni12.1874 (6)
C14—C151.367 (5)S1—Ni12.218 (1)
C14—H140.9300S2—Ni12.162 (1)
N1—C1—S3178.2 (3)C12—C17—H17120.0
N2—C2—S1125.6 (2)C16—C17—H17120.0
N2—C2—S2125.3 (2)C23—C18—C19118.6 (2)
S1—C2—S2109.07 (14)C23—C18—P1120.66 (19)
N2—C3—C4111.2 (3)C19—C18—P1120.16 (19)
N2—C3—H3A109.4C20—C19—C18120.0 (3)
C4—C3—H3A109.4C20—C19—H19120.0
N2—C3—H3B109.4C18—C19—H19120.0
C4—C3—H3B109.4C21—C20—C19120.7 (3)
H3A—C3—H3B108.0C21—C20—H20119.6
C5—C4—C3110.2 (3)C19—C20—H20119.6
C5—C4—H4A109.6C22—C21—C20119.5 (3)
C3—C4—H4A109.6C22—C21—H21120.3
C5—C4—H4B109.6C20—C21—H21120.3
C3—C4—H4B109.6C21—C22—C23120.9 (3)
H4A—C4—H4B108.1C21—C22—H22119.6
C10—C5—C6116.6 (4)C23—C22—H22119.6
C10—C5—C4124.8 (3)C22—C23—C18120.3 (3)
C6—C5—C4118.6 (3)C22—C23—H23119.9
C7—C6—C5120.5 (4)C18—C23—H23119.9
C7—C6—H6119.8C25—C24—C29119.4 (2)
C5—C6—H6119.8C25—C24—P1119.81 (19)
C6—C7—C8120.0 (4)C29—C24—P1120.62 (19)
C6—C7—H7120.0C26—C25—C24120.3 (3)
C8—C7—H7120.0C26—C25—H25119.8
C9—C8—C7120.7 (4)C24—C25—H25119.8
C9—C8—H8119.6C27—C26—C25119.9 (3)
C7—C8—H8119.6C27—C26—H26120.0
C8—C9—C10118.5 (4)C25—C26—H26120.0
C8—C9—H9120.8C28—C27—C26120.6 (3)
C10—C9—H9120.8C28—C27—H27119.7
C5—C10—C9123.6 (3)C26—C27—H27119.7
C5—C10—C11119.6 (3)C27—C28—C29120.1 (3)
C9—C10—C11116.8 (3)C27—C28—H28119.9
N2—C11—C10111.1 (3)C29—C28—H28119.9
N2—C11—H11A109.4C24—C29—C28119.6 (3)
C10—C11—H11A109.4C24—C29—H29120.2
N2—C11—H11B109.4C28—C29—H29120.2
C10—C11—H11B109.4C1—N1—Ni1170.9 (2)
H11A—C11—H11B108.0C2—N2—C11123.0 (3)
C17—C12—C13119.1 (2)C2—N2—C3122.9 (3)
C17—C12—P1125.4 (2)C11—N2—C3113.3 (2)
C13—C12—P1115.43 (19)C18—P1—C24106.40 (11)
C14—C13—C12120.6 (3)C18—P1—C12108.54 (11)
C14—C13—H13119.7C24—P1—C12101.53 (11)
C12—C13—H13119.7C18—P1—Ni1105.06 (8)
C15—C14—C13119.9 (3)C24—P1—Ni1116.63 (8)
C15—C14—H14120.1C12—P1—Ni1118.07 (8)
C13—C14—H14120.1C2—S1—Ni185.13 (9)
C14—C15—C16120.2 (3)C2—S2—Ni186.67 (9)
C14—C15—H15119.9N1—Ni1—S2173.69 (7)
C16—C15—H15119.9N1—Ni1—P189.15 (7)
C15—C16—C17120.2 (3)S2—Ni1—P197.07 (3)
C15—C16—H16119.9N1—Ni1—S194.94 (7)
C17—C16—H16119.9S2—Ni1—S179.06 (3)
C12—C17—C16120.0 (3)P1—Ni1—S1170.83 (3)
N2—C3—C4—C548.3 (4)C10—C11—N2—C2125.0 (3)
C3—C4—C5—C1019.4 (5)C10—C11—N2—C345.3 (4)
C3—C4—C5—C6162.1 (3)C4—C3—N2—C2105.5 (4)
C10—C5—C6—C71.1 (5)C4—C3—N2—C1164.7 (4)
C4—C5—C6—C7179.7 (4)C23—C18—P1—C2426.0 (2)
C5—C6—C7—C80.3 (6)C19—C18—P1—C24162.5 (2)
C6—C7—C8—C90.9 (6)C23—C18—P1—C12134.6 (2)
C7—C8—C9—C101.3 (5)C19—C18—P1—C1253.9 (2)
C6—C5—C10—C90.7 (5)C23—C18—P1—Ni198.25 (19)
C4—C5—C10—C9179.2 (3)C19—C18—P1—Ni173.2 (2)
C6—C5—C10—C11178.6 (3)C25—C24—P1—C1850.6 (2)
C4—C5—C10—C112.9 (5)C29—C24—P1—C18133.8 (2)
C8—C9—C10—C50.5 (5)C25—C24—P1—C1262.8 (2)
C8—C9—C10—C11177.4 (3)C29—C24—P1—C12112.7 (2)
C5—C10—C11—N215.0 (4)C25—C24—P1—Ni1167.41 (18)
C9—C10—C11—N2167.0 (3)C29—C24—P1—Ni117.1 (2)
C17—C12—C13—C140.1 (4)C17—C12—P1—C185.7 (3)
P1—C12—C13—C14177.2 (2)C13—C12—P1—C18177.39 (19)
C12—C13—C14—C151.0 (4)C17—C12—P1—C24106.1 (2)
C13—C14—C15—C160.9 (5)C13—C12—P1—C2470.8 (2)
C14—C15—C16—C170.2 (5)C17—C12—P1—Ni1125.0 (2)
C13—C12—C17—C161.3 (4)C13—C12—P1—Ni158.1 (2)
P1—C12—C17—C16178.1 (2)N2—C2—S1—Ni1176.0 (3)
C15—C16—C17—C121.4 (5)S2—C2—S1—Ni12.32 (12)
C23—C18—C19—C202.4 (4)N2—C2—S2—Ni1176.0 (2)
P1—C18—C19—C20174.1 (2)S1—C2—S2—Ni12.37 (12)
C18—C19—C20—C211.4 (4)C1—N1—Ni1—S2139.3 (12)
C19—C20—C21—C220.6 (4)C1—N1—Ni1—P130.9 (14)
C20—C21—C22—C231.5 (4)C1—N1—Ni1—S1157.3 (14)
C21—C22—C23—C180.4 (4)C2—S2—Ni1—N120.1 (7)
C19—C18—C23—C221.6 (4)C2—S2—Ni1—P1169.83 (9)
P1—C18—C23—C22173.2 (2)C2—S2—Ni1—S11.76 (9)
C29—C24—C25—C261.6 (4)C18—P1—Ni1—N164.00 (11)
P1—C24—C25—C26177.2 (2)C24—P1—Ni1—N153.51 (11)
C24—C25—C26—C271.3 (5)C12—P1—Ni1—N1174.89 (12)
C25—C26—C27—C280.2 (5)C18—P1—Ni1—S2117.09 (9)
C26—C27—C28—C290.6 (5)C24—P1—Ni1—S2125.41 (9)
C25—C24—C29—C280.8 (4)C12—P1—Ni1—S24.03 (9)
P1—C24—C29—C28176.4 (2)C18—P1—Ni1—S152.7 (2)
C27—C28—C29—C240.3 (4)C24—P1—Ni1—S1170.20 (18)
S3—C1—N1—Ni146 (9)C12—P1—Ni1—S168.4 (2)
S1—C2—N2—C11175.1 (2)C2—S1—Ni1—N1179.78 (11)
S2—C2—N2—C113.0 (4)C2—S1—Ni1—S21.77 (9)
S1—C2—N2—C35.8 (4)C2—S1—Ni1—P163.9 (2)
S2—C2—N2—C3172.3 (2)

Experimental details

Crystal data
Chemical formula[Ni(C10H10NS2)(NCS)(C18H15P)]
Mr587.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)13.7981 (4), 13.1429 (4), 14.9447 (4)
β (°) 91.693 (2)
V3)2708.99 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker KAPPA APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 1999)
Tmin, Tmax0.783, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
33862, 7287, 5132
Rint0.035
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.123, 1.03
No. of reflections7287
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.30

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), 'ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009)', SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
N1—Ni11.867 (2)S1—Ni12.218 (1)
P1—Ni12.1874 (6)S2—Ni12.162 (1)
 

Acknowledgements

ST thanks the SAIF, Indian Institute of Technolgy, Chennai, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunay, N. S., Capan, G., Ulusay, N., Ergenc, N., Otuk, G. & Kay, D. (1999). Farmaco, 54, 826–831.  Web of Science PubMed CAS Google Scholar
First citationHogarth, G. (2005). Prog. Inorg. Chem. 53, 71–561.  Web of Science CrossRef CAS Google Scholar
First citationJarret, P. S., Dhubhghaill, O. M. N. & Salder, P. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1863–1870.  Google Scholar
First citationOzkirimli, A., Apak, T. I., Kiraz, M. & Yengenoglu, Y. (2005). Arch. Pharmacol. Res. 28, 1213–1218.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, N., Sathyaselvabala, V., Kuppulekshmy, K., Valarmathi, P. & Thirumaran, S. (2009). Monatsh. Chem. 140, 1431–1436.  Web of Science CSD CrossRef CAS Google Scholar
First citationTravnicek, Z., Pastorek, R. & Slovak, V. (2008). Polyhedron, 27, 411–419.  CAS Google Scholar
First citationValarmathi, P., Srinivasan, N. & Thirumaran, S. (2011). J. Sulfur Chem. 32, 583–591.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds