organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­bromo-4-oxo-2,2,6,6-tetra­methyl­piperidin-1-yl oxide

aJiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Xuzhou Normal University, Xuzhou 221116, People's Repulic of China, and bState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: benbenshell@yahoo.com.cn, licuiyun0909@yahoo.cn

(Received 12 October 2011; accepted 7 November 2011; online 12 November 2011)

In the title compound, C9H14Br2NO2, the substituted ring exhibits a chair conformation. A crystallographic mirror plane, passing through the N atom, the O atoms and the C atom in the 4-position, bis­ects the mol­ecule.

Related literature

For medical applications of similar compounds, see: Aubert et al. (2011[Aubert, M., Wilen, C.-E., Pfaendner, R., Kniesel, S., Hoppe, H. & Roth, M. (2011). Polymer. Degrad. Stabil. 96, 328-333.]); Brike (1990[Brike, M. E. (1990). Synth. Commun. 20, 597-601.]); Xu et al. (2009[Xu, S.-P., Cheng, K. & Shi, L. (2009). Z. Kristallogr. New Cryst. Struct. 224, 461-462.]). For puckering parameters see: Cremer & Pople(1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14Br2NO2

  • Mr = 328.03

  • Orthorhombic, P n m a

  • a = 11.6745 (9) Å

  • b = 16.0848 (14) Å

  • c = 5.9301 (4) Å

  • V = 1113.57 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.26 mm−1

  • T = 298 K

  • 0.45 × 0.42 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.139, Tmax = 0.355

  • 5193 measured reflections

  • 1018 independent reflections

  • 774 reflections with I > 2σ(I)

  • Rint = 0.118

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 1.04

  • 1018 reflections

  • 72 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3,5-dibromo-4-oxo-2,2,6,6-tetramethylpiperidin-1-yl oxide is an important intermediate medicament. It is synthesized in a wide range of medical applications (Aubert et al. (2011); Brike (1990); Xu et al. (2009)). The complete molecule of the title compound, C9H14Br2NO2, is generated by crystallographic mirror symmetry, with two O, one C in the 3-position and one N atom lying on the mirror plane, Fig1. The substituted cyclohexyl ring adopts a chair conformation ( QT=0.562 (4)Å, θ =19.0 (4)°, φ =180.0 (12)° ), Cremer & Pople, (1975)

Related literature top

For medical applications of similar compounds, see: Aubert et al. (2011); Brike (1990); Xu et al. (2009). For puckering parameters see: Cremer & Pople(1975).

Experimental top

The title compound was synthetized by reaction between 4-Oxo-2,2,6,6-tetramethylpiperidin-1-yl oxide (2 mmol) and bromine (2 mmol), dissolved in CH2CH2Cl2 and mixed together for 2 h. Large block crystals were precipitated, filtered ,washed with ethanol and dried in air (yield 80%).

Refinement top

All H atoms were positioned geometrically(C—H = 0.96–0.98 Å,) and were refined as riding, with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Structure description top

3,5-dibromo-4-oxo-2,2,6,6-tetramethylpiperidin-1-yl oxide is an important intermediate medicament. It is synthesized in a wide range of medical applications (Aubert et al. (2011); Brike (1990); Xu et al. (2009)). The complete molecule of the title compound, C9H14Br2NO2, is generated by crystallographic mirror symmetry, with two O, one C in the 3-position and one N atom lying on the mirror plane, Fig1. The substituted cyclohexyl ring adopts a chair conformation ( QT=0.562 (4)Å, θ =19.0 (4)°, φ =180.0 (12)° ), Cremer & Pople, (1975)

For medical applications of similar compounds, see: Aubert et al. (2011); Brike (1990); Xu et al. (2009). For puckering parameters see: Cremer & Pople(1975).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
3,5-Dibromo-4-oxo-2,2,6,6-tetramethylpiperidin-1-yl oxide top
Crystal data top
C9H14Br2NO2Dx = 1.957 Mg m3
Mr = 328.03Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1704 reflections
a = 11.6745 (9) Åθ = 3.5–26.6°
b = 16.0848 (14) ŵ = 7.26 mm1
c = 5.9301 (4) ÅT = 298 K
V = 1113.57 (15) Å3Block, orange
Z = 40.45 × 0.42 × 0.18 mm
F(000) = 644
Data collection top
Bruker SMART CCD area-detector
diffractometer
1018 independent reflections
Radiation source: fine-focus sealed tube774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.118
phi and ω scansθmax = 25.0°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1312
Tmin = 0.139, Tmax = 0.355k = 1918
5193 measured reflectionsl = 67
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0364P)2]
where P = (Fo2 + 2Fc2)/3
1018 reflections(Δ/σ)max < 0.001
72 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C9H14Br2NO2V = 1113.57 (15) Å3
Mr = 328.03Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.6745 (9) ŵ = 7.26 mm1
b = 16.0848 (14) ÅT = 298 K
c = 5.9301 (4) Å0.45 × 0.42 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1018 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
774 reflections with I > 2σ(I)
Tmin = 0.139, Tmax = 0.355Rint = 0.118
5193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
1018 reflectionsΔρmin = 0.64 e Å3
72 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28737 (4)0.42632 (3)0.59566 (7)0.0414 (2)
N10.4892 (4)0.25000.2492 (7)0.0268 (11)
O10.5770 (4)0.25000.1217 (6)0.0448 (11)
O20.2994 (3)0.25000.7814 (7)0.0384 (10)
C10.4591 (3)0.3333 (2)0.3498 (6)0.0237 (9)
C20.3343 (3)0.3265 (2)0.4364 (6)0.0263 (9)
H20.28440.32060.30450.032*
C30.3177 (4)0.25000.5827 (10)0.0277 (13)
C40.5446 (3)0.3542 (3)0.5367 (7)0.0354 (10)
H4A0.53100.31880.66430.053*
H4B0.53540.41120.58080.053*
H4C0.62120.34560.48240.053*
C50.4652 (4)0.3975 (3)0.1615 (8)0.0418 (11)
H5A0.54250.40120.10690.063*
H5B0.44160.45070.21820.063*
H5C0.41550.38110.04050.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0384 (3)0.0281 (3)0.0576 (4)0.00706 (19)0.00867 (18)0.0047 (2)
N10.024 (2)0.033 (3)0.023 (3)0.0000.0032 (17)0.000
O10.039 (3)0.050 (3)0.046 (3)0.0000.0234 (19)0.000
O20.048 (3)0.034 (2)0.033 (3)0.0000.0153 (19)0.000
C10.025 (2)0.022 (2)0.024 (2)0.0017 (17)0.0009 (14)0.0011 (16)
C20.023 (2)0.024 (2)0.033 (2)0.0032 (17)0.0028 (14)0.0031 (17)
C30.011 (3)0.026 (3)0.046 (4)0.0000.001 (2)0.000
C40.024 (2)0.034 (2)0.047 (3)0.001 (2)0.0046 (17)0.007 (2)
C50.053 (3)0.034 (2)0.039 (3)0.001 (2)0.006 (2)0.007 (2)
Geometric parameters (Å, º) top
Br1—C21.942 (4)C2—H20.9800
N1—O11.274 (5)C3—C2i1.518 (5)
N1—C1i1.509 (4)C4—H4A0.9600
N1—C11.509 (4)C4—H4B0.9600
O2—C31.198 (6)C4—H4C0.9600
C1—C51.523 (6)C5—H5A0.9600
C1—C41.529 (5)C5—H5B0.9600
C1—C21.548 (5)C5—H5C0.9600
C2—C31.518 (5)
O1—N1—C1i115.0 (2)O2—C3—C2i125.8 (2)
O1—N1—C1115.0 (2)O2—C3—C2125.8 (2)
C1i—N1—C1125.3 (4)C2i—C3—C2108.3 (5)
N1—C1—C5107.5 (3)C1—C4—H4A109.5
N1—C1—C4109.2 (3)C1—C4—H4B109.5
C5—C1—C4110.6 (3)H4A—C4—H4B109.5
N1—C1—C2106.7 (3)C1—C4—H4C109.5
C5—C1—C2109.6 (3)H4A—C4—H4C109.5
C4—C1—C2112.9 (3)H4B—C4—H4C109.5
C3—C2—C1111.5 (3)C1—C5—H5A109.5
C3—C2—Br1110.9 (3)C1—C5—H5B109.5
C1—C2—Br1111.6 (3)H5A—C5—H5B109.5
C3—C2—H2107.5C1—C5—H5C109.5
C1—C2—H2107.5H5A—C5—H5C109.5
Br1—C2—H2107.5H5B—C5—H5C109.5
O1—N1—C1—C546.0 (5)C4—C1—C2—C369.8 (4)
C1i—N1—C1—C5159.6 (3)N1—C1—C2—Br1174.9 (2)
O1—N1—C1—C474.1 (4)C5—C1—C2—Br169.0 (3)
C1i—N1—C1—C480.3 (5)C4—C1—C2—Br154.8 (4)
O1—N1—C1—C2163.5 (4)C1—C2—C3—O2111.8 (5)
C1i—N1—C1—C242.1 (6)Br1—C2—C3—O213.2 (6)
N1—C1—C2—C350.2 (4)C1—C2—C3—C2i65.4 (5)
C5—C1—C2—C3166.4 (3)Br1—C2—C3—C2i169.5 (2)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC9H14Br2NO2
Mr328.03
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)11.6745 (9), 16.0848 (14), 5.9301 (4)
V3)1113.57 (15)
Z4
Radiation typeMo Kα
µ (mm1)7.26
Crystal size (mm)0.45 × 0.42 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.139, 0.355
No. of measured, independent and
observed [I > 2σ(I)] reflections
5193, 1018, 774
Rint0.118
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.04
No. of reflections1018
No. of parameters72
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.64

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationAubert, M., Wilen, C.-E., Pfaendner, R., Kniesel, S., Hoppe, H. & Roth, M. (2011). Polymer. Degrad. Stabil. 96, 328–333.  Web of Science CrossRef CAS Google Scholar
First citationBrike, M. E. (1990). Synth. Commun. 20, 597–601.  Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, S.-P., Cheng, K. & Shi, L. (2009). Z. Kristallogr. New Cryst. Struct. 224, 461-462.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds