organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Eth­­oxy­carbonyl-N,N,N-tri­methyl­anilinium iodide

aCollege of Chemistry & Materials Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, 215500 Jiangsu, People's Republic of China
*Correspondence e-mail: chemxytang@hotmail.com

(Received 3 November 2011; accepted 18 November 2011; online 30 November 2011)

In the title molecular salt, C12H18NO2+·I, the C atoms of the ethyl group are disordered over two sets of sites [occupancies of 0.76 (4) and 0.24 (4)]. In the crystal, ion pairs linked by weak C—H⋯I interactions occur.

Related literature

The title compound is a key intermediate in the preparation of carboxylates. A wide variety of model metal carboxylic compounds has been prepared with the aim of mimicing the structures and functions of the active sites of metal metalloenzymes, see: Liu et al. (2004[Liu, C. L., Wang, M., Zhang, T. L. & Sun, H. Z. (2004). Coord. Chem. Rev. 248, 147-168.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18NO2+·I

  • Mr = 335.17

  • Triclinic, [P \overline 1]

  • a = 7.4790 (15) Å

  • b = 10.008 (2) Å

  • c = 10.158 (2) Å

  • α = 71.16 (3)°

  • β = 83.30 (3)°

  • γ = 84.62 (3)°

  • V = 713.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.23 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.594, Tmax = 0.644

  • 7462 measured reflections

  • 3258 independent reflections

  • 2708 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.082

  • S = 1.14

  • 3258 reflections

  • 169 parameters

  • 38 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯I1i 0.93 3.02 3.932 (4) 166
Symmetry code: (i) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL/PC and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, the chemistry of metal complexes of carboxylates has been receiving an increasing attention. To date, a wide variety of model metal carboxylic compounds has been prepared with the aim to mimic the structures and functions of the active sites of metal metalloenzymes [Liu et al., 2004]. The title compound (I), is a key intermediate in the preparation of carboxylates, which we are designing for the synthesis of metal complexes. The structure of the title compound, [C12H18NO2]+ .I-, comprises discrete ions which are interconected by weak C—H···I hydrogen bonds. These hydrogen bonds appear to complement the Coulombic interaction and help to stabilize the structure further.The molecular structure is stabilize by one intramolecular C—H···O hydrogen bond. The C atoms of ethyl group are disorder over two occupied positions [0.76 (4)/0.24 (4)].

Related literature top

For a metal compound with a similar structure, see: Liu et al. (2004).

For related literature, see: Johnson (1976).

Experimental top

The title compound was synthesized by reaction of 4-Dimethylamino-benzoic acid ethyl ester (0.966 g, 5 mmol) and Iodomethane (0.710 g, 5 mmol) in acetone (40 ml). The solution was vigorously stirring for 24 h to afford white precipitates. The precipitates were collected by filtration, re-dissolved in MeOH (10 ml) then allowed to stand for several days to produce white crystals (I). Yield: 1.44 g (86%). The crystal used for the crystal structure determination was obtained directly from the above preparation. Analysis, found: C, 43.32; H, 5.31; N, 4.12%. calculated. for C12H18INO2: C, 43.00; H, 5.41; N, 4.18%.

Refinement top

Carbon-bond H atoms were positioned geometrically (C—H = 0.97 Å for methylene group, C—H = 0.96 Å for methyl group, C—H = 0.93 Å for phenyl group), and were included in the refinement in the riding mode approximation, with Uiso(H) = 1.2Ueq(C) for methylene group and phenyl group and Uiso(H) = 1.5Ueq(C) for methyl group. The ethyl group C atoms are disorder over two occupied positions [0.76 (4)/0.24 (4)].

Structure description top

Recently, the chemistry of metal complexes of carboxylates has been receiving an increasing attention. To date, a wide variety of model metal carboxylic compounds has been prepared with the aim to mimic the structures and functions of the active sites of metal metalloenzymes [Liu et al., 2004]. The title compound (I), is a key intermediate in the preparation of carboxylates, which we are designing for the synthesis of metal complexes. The structure of the title compound, [C12H18NO2]+ .I-, comprises discrete ions which are interconected by weak C—H···I hydrogen bonds. These hydrogen bonds appear to complement the Coulombic interaction and help to stabilize the structure further.The molecular structure is stabilize by one intramolecular C—H···O hydrogen bond. The C atoms of ethyl group are disorder over two occupied positions [0.76 (4)/0.24 (4)].

For a metal compound with a similar structure, see: Liu et al. (2004).

For related literature, see: Johnson (1976).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP-II (Johnson, 1976) plot of complex (I) at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii. The C11 and C12 atoms of ethyl group are disorder over two sites.
4-Ethoxycarbonyl-N,N,N-trimethylanilinium iodide top
Crystal data top
C12H18NO2+·IZ = 2
Mr = 335.17F(000) = 332
Triclinic, P1Dx = 1.560 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4790 (15) ÅCell parameters from 7462 reflections
b = 10.008 (2) Åθ = 3.7–27.5°
c = 10.158 (2) ŵ = 2.23 mm1
α = 71.16 (3)°T = 293 K
β = 83.30 (3)°Block, colourless
γ = 84.62 (3)°0.3 × 0.2 × 0.2 mm
V = 713.4 (2) Å3
Data collection top
Rigaku SCXmini
diffractometer
3258 independent reflections
Radiation source: fine-focus sealed tube2708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 99
Tmin = 0.594, Tmax = 0.644k = 1212
7462 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.025P)2 + 0.3117P]
where P = (Fo2 + 2Fc2)/3
3258 reflections(Δ/σ)max = 0.006
169 parametersΔρmax = 0.32 e Å3
38 restraintsΔρmin = 0.37 e Å3
Crystal data top
C12H18NO2+·Iγ = 84.62 (3)°
Mr = 335.17V = 713.4 (2) Å3
Triclinic, P1Z = 2
a = 7.4790 (15) ÅMo Kα radiation
b = 10.008 (2) ŵ = 2.23 mm1
c = 10.158 (2) ÅT = 293 K
α = 71.16 (3)°0.3 × 0.2 × 0.2 mm
β = 83.30 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3258 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2708 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.644Rint = 0.032
7462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04438 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.14Δρmax = 0.32 e Å3
3258 reflectionsΔρmin = 0.37 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.20239 (3)0.72149 (3)0.14771 (3)0.06381 (12)
N11.2692 (4)0.2438 (3)0.1056 (3)0.0486 (7)
O10.5587 (4)0.3017 (4)0.5043 (3)0.0916 (11)
O20.6021 (5)0.0665 (4)0.5856 (4)0.1038 (12)
C71.3112 (6)0.1205 (5)0.0509 (5)0.0749 (13)
H7A1.32630.03520.12760.112*
H7B1.42030.13500.01060.112*
H7C1.21370.11260.00070.112*
C91.2508 (6)0.3751 (4)0.0189 (4)0.0627 (10)
H9A1.15140.36820.06780.094*
H9B1.35980.38420.08040.094*
H9C1.22940.45660.01230.094*
C81.4246 (5)0.2575 (5)0.1829 (5)0.0694 (12)
H8A1.40240.34060.21140.104*
H8B1.53440.26490.12250.104*
H8C1.43520.17560.26380.104*
C41.1010 (4)0.2256 (4)0.2045 (4)0.0462 (8)
C31.0206 (6)0.0988 (4)0.2559 (5)0.0686 (12)
H31.06450.02250.22580.082*
C51.0316 (5)0.3386 (4)0.2463 (5)0.0661 (12)
H51.08520.42480.21010.079*
C20.8712 (6)0.0872 (5)0.3544 (5)0.0755 (13)
H20.81740.00120.39120.091*
C60.8824 (6)0.3245 (5)0.3419 (5)0.0719 (12)
H60.83520.40190.36900.086*
C10.8022 (5)0.1976 (5)0.3980 (4)0.0578 (10)
C100.6433 (6)0.1801 (6)0.5068 (4)0.0692 (12)
C110.4077 (14)0.311 (2)0.6100 (10)0.079 (4)0.76 (4)
H11B0.41950.38990.64330.095*0.76 (4)
H11A0.40650.22470.68910.095*0.76 (4)
C120.2393 (16)0.3312 (14)0.5389 (12)0.083 (3)0.76 (4)
H12A0.23790.42060.46600.125*0.76 (4)
H12B0.13660.32950.60550.125*0.76 (4)
H12C0.23490.25650.49940.125*0.76 (4)
C11A0.397 (4)0.233 (6)0.602 (4)0.093 (11)0.24 (4)
H11C0.33810.16990.56720.111*0.24 (4)
H11D0.42490.18570.69740.111*0.24 (4)
C12A0.301 (7)0.370 (6)0.581 (6)0.126 (17)0.24 (4)
H12D0.37470.43230.60290.188*0.24 (4)
H12E0.19070.35940.64190.188*0.24 (4)
H12F0.27320.40940.48600.188*0.24 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05640 (17)0.05706 (18)0.0804 (2)0.01560 (12)0.00974 (13)0.02719 (14)
N10.0453 (16)0.0458 (17)0.0531 (18)0.0050 (13)0.0003 (14)0.0144 (14)
O10.0593 (18)0.123 (3)0.067 (2)0.0124 (19)0.0189 (16)0.0077 (19)
O20.101 (3)0.109 (3)0.083 (2)0.041 (2)0.025 (2)0.007 (2)
C70.076 (3)0.058 (3)0.094 (3)0.010 (2)0.024 (3)0.038 (2)
C90.069 (3)0.054 (2)0.056 (2)0.0056 (19)0.005 (2)0.0074 (18)
C80.044 (2)0.101 (3)0.063 (3)0.017 (2)0.0006 (19)0.023 (2)
C40.0404 (18)0.044 (2)0.052 (2)0.0057 (15)0.0008 (16)0.0140 (16)
C30.078 (3)0.055 (3)0.076 (3)0.021 (2)0.011 (2)0.027 (2)
C50.053 (2)0.050 (2)0.084 (3)0.0090 (18)0.018 (2)0.013 (2)
C20.076 (3)0.070 (3)0.075 (3)0.037 (2)0.020 (2)0.017 (2)
C60.055 (2)0.061 (3)0.089 (3)0.003 (2)0.019 (2)0.019 (2)
C10.048 (2)0.066 (3)0.055 (2)0.0092 (18)0.0023 (18)0.014 (2)
C100.057 (2)0.101 (4)0.045 (2)0.025 (3)0.002 (2)0.012 (2)
C110.055 (5)0.118 (11)0.058 (4)0.005 (5)0.018 (4)0.026 (5)
C120.062 (6)0.105 (7)0.078 (6)0.004 (4)0.015 (4)0.031 (4)
C11A0.078 (17)0.12 (3)0.087 (17)0.043 (18)0.029 (13)0.046 (18)
C12A0.08 (3)0.19 (4)0.12 (3)0.02 (2)0.06 (3)0.08 (3)
Geometric parameters (Å, º) top
N1—C41.501 (5)C3—H30.9300
N1—C71.503 (5)C5—C61.377 (5)
N1—C91.510 (5)C5—H50.9300
N1—C81.516 (5)C2—C11.356 (6)
O1—C101.312 (6)C2—H20.9300
O1—C111.483 (9)C6—C11.376 (6)
O1—C11A1.54 (3)C6—H60.9300
O2—C101.204 (5)C1—C101.507 (6)
C7—H7A0.9600C11—C121.49 (2)
C7—H7B0.9600C11—H11B0.9700
C7—H7C0.9600C11—H11A0.9700
C9—H9A0.9600C12—H12A0.9600
C9—H9B0.9600C12—H12B0.9600
C9—H9C0.9600C12—H12C0.9600
C8—H8A0.9600C11A—C12A1.46 (8)
C8—H8B0.9600C11A—H11C0.9700
C8—H8C0.9600C11A—H11D0.9700
C4—C51.370 (5)C12A—H12D0.9600
C4—C31.374 (5)C12A—H12E0.9600
C3—C21.397 (6)C12A—H12F0.9600
C4—N1—C7111.8 (3)C6—C5—C4119.9 (4)
C4—N1—C9111.2 (3)C6—C5—H5120.0
C7—N1—C9107.3 (3)C4—C5—H5120.0
C4—N1—C8108.3 (3)C1—C2—C3122.0 (4)
C7—N1—C8109.4 (3)C1—C2—H2119.0
C9—N1—C8108.8 (3)C3—C2—H2119.0
C10—O1—C11121.3 (8)C5—C6—C1121.1 (4)
C10—O1—C11A94 (2)C5—C6—H6119.5
C11—O1—C11A31.7 (16)C1—C6—H6119.5
N1—C7—H7A109.5C2—C1—C6118.3 (4)
N1—C7—H7B109.5C2—C1—C10120.5 (4)
H7A—C7—H7B109.5C6—C1—C10121.2 (4)
N1—C7—H7C109.5O2—C10—O1125.2 (5)
H7A—C7—H7C109.5O2—C10—C1122.7 (5)
H7B—C7—H7C109.5O1—C10—C1112.1 (4)
N1—C9—H9A109.5O1—C11—C12106.3 (9)
N1—C9—H9B109.5O1—C11—H11B110.5
H9A—C9—H9B109.5C12—C11—H11B110.5
N1—C9—H9C109.5O1—C11—H11A110.5
H9A—C9—H9C109.5C12—C11—H11A110.5
H9B—C9—H9C109.5H11B—C11—H11A108.7
N1—C8—H8A109.5C12A—C11A—O191 (4)
N1—C8—H8B109.5C12A—C11A—H11C113.5
H8A—C8—H8B109.5O1—C11A—H11C113.5
N1—C8—H8C109.5C12A—C11A—H11D113.5
H8A—C8—H8C109.5O1—C11A—H11D113.5
H8B—C8—H8C109.5H11C—C11A—H11D110.8
C5—C4—C3120.3 (4)C11A—C12A—H12D109.5
C5—C4—N1118.1 (3)C11A—C12A—H12E109.5
C3—C4—N1121.7 (3)H12D—C12A—H12E109.5
C4—C3—C2118.4 (4)C11A—C12A—H12F109.5
C4—C3—H3120.8H12D—C12A—H12F109.5
C2—C3—H3120.8H12E—C12A—H12F109.5
C7—N1—C4—C5170.5 (4)C5—C6—C1—C21.5 (7)
C9—N1—C4—C550.5 (5)C5—C6—C1—C10177.6 (4)
C8—N1—C4—C569.0 (4)C11—O1—C10—O25.2 (10)
C7—N1—C4—C311.5 (5)C11A—O1—C10—O211.3 (17)
C9—N1—C4—C3131.4 (4)C11—O1—C10—C1174.8 (8)
C8—N1—C4—C3109.1 (4)C11A—O1—C10—C1168.7 (16)
C5—C4—C3—C22.1 (7)C2—C1—C10—O220.7 (7)
N1—C4—C3—C2175.9 (4)C6—C1—C10—O2158.4 (5)
C3—C4—C5—C61.1 (7)C2—C1—C10—O1159.3 (4)
N1—C4—C5—C6177.0 (4)C6—C1—C10—O121.6 (6)
C4—C3—C2—C11.3 (7)C10—O1—C11—C12104.2 (13)
C4—C5—C6—C10.7 (7)C11A—O1—C11—C1272 (4)
C3—C2—C1—C60.5 (7)C10—O1—C11A—C12A174 (4)
C3—C2—C1—C10178.7 (4)C11—O1—C11A—C12A34 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···I1i0.933.023.932 (4)166
C11—H11A···O20.972.462.792 (18)100
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H18NO2+·I
Mr335.17
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4790 (15), 10.008 (2), 10.158 (2)
α, β, γ (°)71.16 (3), 83.30 (3), 84.62 (3)
V3)713.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.23
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.594, 0.644
No. of measured, independent and
observed [I > 2σ(I)] reflections
7462, 3258, 2708
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.082, 1.14
No. of reflections3258
No. of parameters169
No. of restraints38
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.37

Computer programs: CrystalClear (Rigaku, 2005), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008) and ORTEPII (Johnson, 1976), SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···I1i0.933.023.932 (4)166.4
C11—H11A···O20.972.462.792 (18)99.9
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of the Education Commission of Jiangsu Province of China (No.11KJB150001) and a start-up grant from the Changshu Institute of Technology (No. ky2009069).

References

First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLiu, C. L., Wang, M., Zhang, T. L. & Sun, H. Z. (2004). Coord. Chem. Rev. 248, 147–168.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds