metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido[1-(pyridin-2-yl)ethanone oximato-κ2N,N′][1-(2-pyrid­yl)ethanone oxime-κ2N,N′]copper(II) trihydrate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng@lcu.edu.cn

(Received 6 November 2011; accepted 17 November 2011; online 23 November 2011)

In the title compound, [Cu(C7H7N2O)Cl(C7H8N2O)]·3H2O, the metal ion is five-coordinated by the N atoms from the 1-(pyridin-2-yl)ethanone oximate and 1-(pyridin-2-yl)ethanone oxime ligands and by the chloride anion in a distorted square-pyramidal geometry. The distortion parameter is 0.192. The two organic ligands are linked by an intra­molecular O—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by O—H⋯O and O—H⋯Cl hydrogen bonds. The title compound is the hydrated form of a previously reported structure [Wu & Wu (2008[Wu, G. & Wu, D. (2008). Acta Cryst. E64, m828.]). Acta Cryst. E64, m828]. There are only slight variations in the mol­ecular geometries of the two compounds.

Related literature

For uses of oximes, see: Chaudhuri (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-190.]). For theoretical research, see: Pavlishchuk et al. (2003[Pavlishchuk, V. V., Kolotilov, S. V., Addison, A. W., Prushan, M. J., Schollmeyer, D., Thompson, L. K., Weyhermüller, T. & Goreshnik, E. A. (2003). Dalton Trans. pp. 1587-1595.]). For related structure, see: Zuo et al. (2007[Zuo, J., Dou, J., Li, D., Wang, D. & Sun, Y. (2007). Acta Cryst. E63, m3183-m3184.]); Wu & Wu (2008[Wu, G. & Wu, D. (2008). Acta Cryst. E64, m828.]). For the properties of related complexes, see: Davidson et al. (2007[Davidson, M. G., Johnson, A. L., Jones, M. D., Lunn, M. D. & Mahon, M. F. (2007). Polyhedron, 26, 975-980.]); Clerac et al. (2002[Clerac, R., Miyasaka, H., Yamashita, M. & Coulon, C. (2002). J Am. Chem. Soc. 124, 12837-12844.]). For the distortion parameter, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H7N2O)Cl(C7H8N2O)]·3H2O

  • Mr = 424.34

  • Triclinic, [P \overline 1]

  • a = 8.3980 (9) Å

  • b = 10.2559 (11) Å

  • c = 12.1121 (13) Å

  • α = 114.199 (2)°

  • β = 93.462 (1)°

  • γ = 103.972 (1)°

  • V = 908.29 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 298 K

  • 0.45 × 0.41 × 0.24 mm

Data collection
  • Siemens SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.575, Tmax = 0.733

  • 4646 measured reflections

  • 3156 independent reflections

  • 2493 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.00

  • 3156 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 1.975 (3)
Cu1—N3 2.004 (3)
Cu1—N4 2.038 (2)
Cu1—N2 2.071 (3)
Cu1—Cl1 2.4584 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5D⋯Cl1 0.85 2.40 3.244 (3) 174
O5—H5C⋯O3i 0.85 2.01 2.857 (5) 173
O4—H4D⋯Cl1ii 0.85 2.44 3.275 (3) 168
O4—H4C⋯O1ii 0.85 2.60 3.165 (4) 126
O4—H4C⋯O1iii 0.85 2.23 3.063 (4) 167
O3—H3D⋯O5iv 0.85 1.94 2.785 (4) 173
O3—H3C⋯O4ii 0.85 1.96 2.802 (4) 172
O1—H1⋯O2 0.82 1.67 2.452 (4) 160
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) x+1, y+1, z; (iv) -x+1, -y+1, -z+2.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There is currently a renewed interest in the coordination chemistry of oximes (Davidson et al., 2007; Pavlishchuk et al., 2003). The organic ligand is methyl 2-pyridyl ketone oxime, [(py)C(Me)NOH], which belongs to the family of 2-pyridyl oximes (Chaudhuri, 2003). 2-pyridyl oximes are a subclass of oximes whose anions are versatile ligands for a variety of research objectives and have been key ligands in several areas of molecular magnetism, including single-molecule and single-chain magnets (Clerac et al., 2002). We report here the synthesis and crystal structure of the title compound. In the title complex (Fig.1) the asymmetric unit consists of one metallic complex and three water molecules. The Cu center is five-coordinate by the N atoms from the methyl(2-pyridyl)ketooxime ligand and one chloride anions.The two methyl(2-pyridyl)ketooxime ligands are coordinated to copper to form two five-membered CuC2N2 rings. The copper atom adopts a distorted 4+1 square-pyramidal coordination mode with the distortion parameter being 0.192 (Addison et al., 1984) which is smaller than the values reported in the literature (Wu & Wu, 2008) and the angles around copper ion ranging from 78.86 (1)° for N1-Cu1-N2 to 168.50 (1)° for N1-Cu1-N4. There exists one deprotonated and one protonated oxime ligand with a strong intramolecular hydrogen bond between the OH group and the negatively charged oxygen of the other ligand (O1···O2 = 2.452 Å) which is shorter than the reported literature (Wu & Wu, 2008), (Table 2). The molecular conformation is stabilized by one intramolecular O—H···O and O—H···Cl hydrogen bonds interactions and the crystal structure is stabilized by six O—H···O hydrogen bonds interactions (Table 2, Fig.2).

Related literature top

For uses of oximes, see: Chaudhuri (2003). For theoretical research, see: Pavlishchuk et al. (2003). For related structure, see: Zuo et al. (2007); Wu & Wu (2008). For the properties of related complexes, see: Davidson et al. (2007); Clerac et al. (2002). For the distortion parameter, see: Addison et al. (1984).

Experimental top

A solution of CuCl2 (0.0426g, 0.25mmol) in MeOH (10 ml) was added to a solution of (py)C(Me)NOH (0.068 g, 0.5 mmol) in MeOH (10 ml). The resulting dark green solution was stirred for about 6 h and was then allowed to slowly concentrate by solvent evaporation at room temperature. Dark green block crystals suitable for X-ray diffraction were obtained within two weeks. (56.7%, m.p. 310-315K). FTIR (KBr) v (cm-l): 3424(O—H); 1597,(C=N); 2917, 1437, (C—H); 1157, 1177, 1260, (N—O).

Refinement top

All H atoms were placed in geometrically idealized positions (C—H 0.96(methyl), C—H 0.93(pyridyl), O—H 0.85 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq or 1.5Ueq(C), Uiso(H) =1.2Ueq(O).

Structure description top

There is currently a renewed interest in the coordination chemistry of oximes (Davidson et al., 2007; Pavlishchuk et al., 2003). The organic ligand is methyl 2-pyridyl ketone oxime, [(py)C(Me)NOH], which belongs to the family of 2-pyridyl oximes (Chaudhuri, 2003). 2-pyridyl oximes are a subclass of oximes whose anions are versatile ligands for a variety of research objectives and have been key ligands in several areas of molecular magnetism, including single-molecule and single-chain magnets (Clerac et al., 2002). We report here the synthesis and crystal structure of the title compound. In the title complex (Fig.1) the asymmetric unit consists of one metallic complex and three water molecules. The Cu center is five-coordinate by the N atoms from the methyl(2-pyridyl)ketooxime ligand and one chloride anions.The two methyl(2-pyridyl)ketooxime ligands are coordinated to copper to form two five-membered CuC2N2 rings. The copper atom adopts a distorted 4+1 square-pyramidal coordination mode with the distortion parameter being 0.192 (Addison et al., 1984) which is smaller than the values reported in the literature (Wu & Wu, 2008) and the angles around copper ion ranging from 78.86 (1)° for N1-Cu1-N2 to 168.50 (1)° for N1-Cu1-N4. There exists one deprotonated and one protonated oxime ligand with a strong intramolecular hydrogen bond between the OH group and the negatively charged oxygen of the other ligand (O1···O2 = 2.452 Å) which is shorter than the reported literature (Wu & Wu, 2008), (Table 2). The molecular conformation is stabilized by one intramolecular O—H···O and O—H···Cl hydrogen bonds interactions and the crystal structure is stabilized by six O—H···O hydrogen bonds interactions (Table 2, Fig.2).

For uses of oximes, see: Chaudhuri (2003). For theoretical research, see: Pavlishchuk et al. (2003). For related structure, see: Zuo et al. (2007); Wu & Wu (2008). For the properties of related complexes, see: Davidson et al. (2007); Clerac et al. (2002). For the distortion parameter, see: Addison et al. (1984).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Chlorido[1-(pyridin-2-yl)ethanone oximato-κ2N,N'][1-(2-pyridyl)ethanone oxime-κ2N,N']copper(II) trihydrate top
Crystal data top
[Cu(C7H7N2O)Cl(C7H8N2O)]·3H2OZ = 2
Mr = 424.34F(000) = 438
Triclinic, P1Dx = 1.552 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3980 (9) ÅCell parameters from 2075 reflections
b = 10.2559 (11) Åθ = 2.5–26.8°
c = 12.1121 (13) ŵ = 1.38 mm1
α = 114.199 (2)°T = 298 K
β = 93.462 (1)°Block, dark-green
γ = 103.972 (1)°0.45 × 0.41 × 0.24 mm
V = 908.29 (17) Å3
Data collection top
Siemens SMART 1000 CCD
diffractometer
3156 independent reflections
Radiation source: fine-focus sealed tube2493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.575, Tmax = 0.733k = 712
4646 measured reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.7087P]
where P = (Fo2 + 2Fc2)/3
3156 reflections(Δ/σ)max = 0.022
228 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C7H7N2O)Cl(C7H8N2O)]·3H2Oγ = 103.972 (1)°
Mr = 424.34V = 908.29 (17) Å3
Triclinic, P1Z = 2
a = 8.3980 (9) ÅMo Kα radiation
b = 10.2559 (11) ŵ = 1.38 mm1
c = 12.1121 (13) ÅT = 298 K
α = 114.199 (2)°0.45 × 0.41 × 0.24 mm
β = 93.462 (1)°
Data collection top
Siemens SMART 1000 CCD
diffractometer
3156 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2493 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.733Rint = 0.018
4646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.00Δρmax = 0.41 e Å3
3156 reflectionsΔρmin = 0.30 e Å3
228 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.08870 (5)0.44895 (4)0.68063 (3)0.03697 (15)
Cl10.35260 (11)0.46847 (10)0.79450 (8)0.0481 (2)
N10.0912 (4)0.2780 (3)0.5265 (2)0.0418 (7)
N20.1968 (3)0.5577 (3)0.5806 (2)0.0364 (6)
N30.0916 (3)0.3230 (3)0.7265 (3)0.0403 (7)
N40.0355 (3)0.6084 (3)0.8295 (2)0.0355 (6)
O10.0222 (3)0.1363 (2)0.5044 (2)0.0568 (7)
H10.02470.13380.56130.085*
O20.1472 (3)0.1713 (3)0.6666 (2)0.0555 (7)
O30.4005 (4)0.0145 (3)0.8601 (3)0.0820 (10)
H3C0.35880.04940.81650.098*
H3D0.40730.07220.93550.098*
O40.7339 (4)0.8940 (3)0.3036 (3)0.0840 (10)
H4C0.81800.94950.36050.101*
H4D0.72510.80320.28680.101*
O50.5675 (4)0.8149 (3)0.8877 (3)0.0795 (9)
H5C0.51050.86840.87720.095*
H5D0.50430.72600.86160.095*
C10.1862 (6)0.1812 (4)0.3309 (3)0.0639 (11)
H1A0.20690.10280.34810.096*
H1B0.27720.21960.29770.096*
H1C0.08470.14240.27220.096*
C20.1705 (4)0.3039 (4)0.4468 (3)0.0421 (8)
C30.2392 (4)0.4625 (4)0.4784 (3)0.0373 (7)
C40.3404 (4)0.5153 (4)0.4109 (3)0.0474 (9)
H40.36950.44870.34160.057*
C50.3981 (5)0.6664 (5)0.4465 (3)0.0534 (10)
H50.46780.70300.40240.064*
C60.3516 (5)0.7628 (4)0.5479 (3)0.0506 (9)
H60.38800.86550.57320.061*
C70.2498 (4)0.7036 (4)0.6111 (3)0.0439 (8)
H70.21630.76870.67860.053*
C80.3054 (5)0.3094 (4)0.8534 (4)0.0558 (10)
H8A0.33150.20370.80350.084*
H8B0.40120.34190.84360.084*
H8C0.27500.33130.93820.084*
C90.1636 (4)0.3891 (4)0.8147 (3)0.0397 (8)
C100.0901 (4)0.5520 (4)0.8775 (3)0.0375 (7)
C110.1392 (5)0.6427 (4)0.9816 (3)0.0502 (9)
H110.22800.60261.01160.060*
C120.0552 (5)0.7932 (4)1.0402 (4)0.0577 (10)
H120.08710.85591.11000.069*
C130.0756 (5)0.8495 (4)0.9948 (3)0.0505 (9)
H130.13530.95031.03390.061*
C140.1169 (4)0.7534 (4)0.8898 (3)0.0436 (8)
H140.20630.79200.85950.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0435 (3)0.0338 (2)0.0336 (2)0.01245 (17)0.01058 (18)0.01352 (17)
Cl10.0494 (5)0.0579 (6)0.0446 (5)0.0244 (4)0.0113 (4)0.0246 (4)
N10.0512 (18)0.0330 (15)0.0382 (16)0.0145 (13)0.0054 (14)0.0118 (12)
N20.0428 (16)0.0390 (15)0.0312 (14)0.0154 (12)0.0093 (12)0.0170 (12)
N30.0412 (16)0.0367 (15)0.0424 (16)0.0098 (12)0.0051 (13)0.0180 (13)
N40.0402 (16)0.0366 (15)0.0340 (14)0.0148 (12)0.0107 (12)0.0170 (12)
O10.0778 (19)0.0337 (13)0.0522 (15)0.0157 (12)0.0182 (14)0.0119 (12)
O20.0658 (17)0.0346 (13)0.0603 (16)0.0062 (12)0.0103 (14)0.0201 (12)
O30.113 (3)0.0569 (18)0.070 (2)0.0055 (17)0.0038 (19)0.0344 (16)
O40.097 (3)0.0676 (19)0.074 (2)0.0333 (18)0.0174 (18)0.0177 (17)
O50.075 (2)0.073 (2)0.087 (2)0.0174 (17)0.0154 (18)0.0332 (18)
C10.088 (3)0.052 (2)0.043 (2)0.030 (2)0.020 (2)0.0075 (18)
C20.049 (2)0.046 (2)0.0309 (17)0.0222 (16)0.0064 (16)0.0121 (15)
C30.0375 (19)0.052 (2)0.0283 (16)0.0204 (15)0.0055 (14)0.0187 (15)
C40.051 (2)0.064 (2)0.0372 (19)0.0252 (19)0.0133 (17)0.0253 (18)
C50.054 (2)0.076 (3)0.048 (2)0.023 (2)0.0184 (19)0.042 (2)
C60.060 (2)0.051 (2)0.046 (2)0.0140 (18)0.0075 (18)0.0272 (18)
C70.053 (2)0.046 (2)0.0337 (18)0.0160 (17)0.0093 (16)0.0178 (16)
C80.044 (2)0.068 (3)0.067 (3)0.0134 (19)0.0167 (19)0.041 (2)
C90.0348 (18)0.050 (2)0.0443 (19)0.0130 (15)0.0057 (15)0.0302 (17)
C100.0376 (19)0.0488 (19)0.0365 (18)0.0196 (15)0.0086 (15)0.0245 (16)
C110.051 (2)0.065 (2)0.049 (2)0.0258 (19)0.0245 (18)0.0308 (19)
C120.071 (3)0.058 (2)0.047 (2)0.032 (2)0.027 (2)0.0164 (19)
C130.065 (3)0.043 (2)0.044 (2)0.0227 (18)0.0137 (19)0.0157 (17)
C140.049 (2)0.0412 (19)0.0411 (19)0.0136 (16)0.0113 (16)0.0175 (16)
Geometric parameters (Å, º) top
Cu1—N11.975 (3)C1—H1C0.9600
Cu1—N32.004 (3)C2—C31.462 (5)
Cu1—N42.038 (2)C3—C41.382 (5)
Cu1—N22.071 (3)C4—C51.374 (5)
Cu1—Cl12.4584 (10)C4—H40.9300
N1—C21.284 (4)C5—C61.374 (5)
N1—O11.333 (3)C5—H50.9300
N2—C71.333 (4)C6—C71.377 (5)
N2—C31.357 (4)C6—H60.9300
N3—C91.284 (4)C7—H70.9300
N3—O21.359 (3)C8—C91.490 (5)
N4—C141.331 (4)C8—H8A0.9600
N4—C101.357 (4)C8—H8B0.9600
O1—H10.8200C8—H8C0.9600
O3—H3C0.8500C9—C101.467 (5)
O3—H3D0.8499C10—C111.382 (5)
O4—H4C0.8500C11—C121.379 (5)
O4—H4D0.8499C11—H110.9300
O5—H5C0.8501C12—C131.367 (5)
O5—H5D0.8500C12—H120.9300
C1—C21.492 (4)C13—C141.379 (5)
C1—H1A0.9600C13—H130.9300
C1—H1B0.9600C14—H140.9300
N1—Cu1—N392.87 (11)C4—C3—C2123.6 (3)
N1—Cu1—N4168.50 (11)C5—C4—C3119.8 (3)
N3—Cu1—N478.92 (10)C5—C4—H4120.1
N1—Cu1—N278.86 (11)C3—C4—H4120.1
N3—Cu1—N2157.52 (11)C4—C5—C6119.3 (3)
N4—Cu1—N2105.76 (10)C4—C5—H5120.4
N1—Cu1—Cl196.51 (9)C6—C5—H5120.4
N3—Cu1—Cl1105.86 (8)C5—C6—C7118.3 (3)
N4—Cu1—Cl193.50 (8)C5—C6—H6120.8
N2—Cu1—Cl195.89 (8)C7—C6—H6120.8
C2—N1—O1118.3 (3)N2—C7—C6123.4 (3)
C2—N1—Cu1118.7 (2)N2—C7—H7118.3
O1—N1—Cu1122.9 (2)C6—C7—H7118.3
C7—N2—C3118.0 (3)C9—C8—H8A109.5
C7—N2—Cu1129.7 (2)C9—C8—H8B109.5
C3—N2—Cu1111.4 (2)H8A—C8—H8B109.5
C9—N3—O2117.7 (3)C9—C8—H8C109.5
C9—N3—Cu1118.3 (2)H8A—C8—H8C109.5
O2—N3—Cu1123.9 (2)H8B—C8—H8C109.5
C14—N4—C10117.7 (3)N3—C9—C10113.8 (3)
C14—N4—Cu1128.6 (2)N3—C9—C8123.8 (3)
C10—N4—Cu1113.4 (2)C10—C9—C8122.3 (3)
N1—O1—H1109.5N4—C10—C11121.6 (3)
H3C—O3—H3D108.6N4—C10—C9115.3 (3)
H4C—O4—H4D108.7C11—C10—C9123.0 (3)
H5C—O5—H5D108.6C12—C11—C10119.3 (3)
C2—C1—H1A109.5C12—C11—H11120.4
C2—C1—H1B109.5C10—C11—H11120.4
H1A—C1—H1B109.5C13—C12—C11119.3 (3)
C2—C1—H1C109.5C13—C12—H12120.3
H1A—C1—H1C109.5C11—C12—H12120.3
H1B—C1—H1C109.5C12—C13—C14118.5 (3)
N1—C2—C3114.2 (3)C12—C13—H13120.7
N1—C2—C1122.3 (3)C14—C13—H13120.7
C3—C2—C1123.5 (3)N4—C14—C13123.5 (3)
N2—C3—C4121.1 (3)N4—C14—H14118.2
N2—C3—C2115.3 (3)C13—C14—H14118.2
N3—Cu1—N1—C2167.8 (3)Cu1—N1—C2—C1176.8 (3)
N4—Cu1—N1—C2123.8 (5)C7—N2—C3—C42.8 (5)
N2—Cu1—N1—C28.9 (3)Cu1—N2—C3—C4167.7 (3)
Cl1—Cu1—N1—C285.9 (3)C7—N2—C3—C2177.2 (3)
N3—Cu1—N1—O116.2 (3)Cu1—N2—C3—C212.3 (3)
N4—Cu1—N1—O160.2 (7)N1—C2—C3—N25.6 (4)
N2—Cu1—N1—O1175.1 (3)C1—C2—C3—N2172.9 (3)
Cl1—Cu1—N1—O190.2 (3)N1—C2—C3—C4174.4 (3)
N1—Cu1—N2—C7179.7 (3)C1—C2—C3—C47.2 (5)
N3—Cu1—N2—C7109.7 (4)N2—C3—C4—C50.8 (5)
N4—Cu1—N2—C710.5 (3)C2—C3—C4—C5179.3 (3)
Cl1—Cu1—N2—C784.8 (3)C3—C4—C5—C61.1 (6)
N1—Cu1—N2—C311.2 (2)C4—C5—C6—C70.8 (6)
N3—Cu1—N2—C381.2 (3)C3—N2—C7—C63.2 (5)
N4—Cu1—N2—C3179.6 (2)Cu1—N2—C7—C6165.3 (3)
Cl1—Cu1—N2—C384.3 (2)C5—C6—C7—N21.5 (6)
N1—Cu1—N3—C9167.7 (3)O2—N3—C9—C10177.3 (3)
N4—Cu1—N3—C94.2 (2)Cu1—N3—C9—C105.3 (4)
N2—Cu1—N3—C9100.3 (3)O2—N3—C9—C80.9 (5)
Cl1—Cu1—N3—C994.7 (2)Cu1—N3—C9—C8176.5 (3)
N1—Cu1—N3—O29.6 (3)C14—N4—C10—C113.7 (5)
N4—Cu1—N3—O2178.5 (3)Cu1—N4—C10—C11177.5 (3)
N2—Cu1—N3—O276.9 (4)C14—N4—C10—C9173.8 (3)
Cl1—Cu1—N3—O288.0 (2)Cu1—N4—C10—C90.0 (3)
N1—Cu1—N4—C14144.0 (5)N3—C9—C10—N43.4 (4)
N3—Cu1—N4—C14171.0 (3)C8—C9—C10—N4178.4 (3)
N2—Cu1—N4—C1431.6 (3)N3—C9—C10—C11174.1 (3)
Cl1—Cu1—N4—C1465.5 (3)C8—C9—C10—C114.1 (5)
N1—Cu1—N4—C1043.0 (6)N4—C10—C11—C122.2 (5)
N3—Cu1—N4—C102.0 (2)C9—C10—C11—C12175.2 (3)
N2—Cu1—N4—C10155.4 (2)C10—C11—C12—C130.4 (6)
Cl1—Cu1—N4—C10107.5 (2)C11—C12—C13—C141.3 (6)
O1—N1—C2—C3179.1 (3)C10—N4—C14—C132.8 (5)
Cu1—N1—C2—C34.7 (4)Cu1—N4—C14—C13175.6 (3)
O1—N1—C2—C10.6 (5)C12—C13—C14—N40.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5D···Cl10.852.403.244 (3)174
O5—H5C···O3i0.852.012.857 (5)173
O4—H4D···Cl1ii0.852.443.275 (3)168
O4—H4C···O1ii0.852.603.165 (4)126
O4—H4C···O1iii0.852.233.063 (4)167
O3—H3D···O5iv0.851.942.785 (4)173
O3—H3C···O4ii0.851.962.802 (4)172
O1—H1···O20.821.672.452 (4)160
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C7H7N2O)Cl(C7H8N2O)]·3H2O
Mr424.34
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.3980 (9), 10.2559 (11), 12.1121 (13)
α, β, γ (°)114.199 (2), 93.462 (1), 103.972 (1)
V3)908.29 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.45 × 0.41 × 0.24
Data collection
DiffractometerSiemens SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.575, 0.733
No. of measured, independent and
observed [I > 2σ(I)] reflections
4646, 3156, 2493
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.00
No. of reflections3156
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N11.975 (3)Cu1—N22.071 (3)
Cu1—N32.004 (3)Cu1—Cl12.4584 (10)
Cu1—N42.038 (2)
N1—Cu1—N392.87 (11)N1—Cu1—N278.86 (11)
N1—Cu1—N4168.50 (11)N3—Cu1—N2157.52 (11)
N3—Cu1—N478.92 (10)N4—Cu1—N2105.76 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5D···Cl10.852.403.244 (3)173.6
O5—H5C···O3i0.852.012.857 (5)173.3
O4—H4D···Cl1ii0.852.443.275 (3)167.5
O4—H4C···O1ii0.852.603.165 (4)125.5
O4—H4C···O1iii0.852.233.063 (4)167.1
O3—H3D···O5iv0.851.942.785 (4)172.6
O3—H3C···O4ii0.851.962.802 (4)172.0
O1—H1···O20.821.672.452 (4)159.7
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of PR China (Project Nos. 20971063, 21041002) and Shandong Province Higher School Science and Technology Plan Projects (project No. J10LB61).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–190.  Web of Science CrossRef CAS Google Scholar
First citationClerac, R., Miyasaka, H., Yamashita, M. & Coulon, C. (2002). J Am. Chem. Soc. 124, 12837–12844.  Web of Science PubMed CAS Google Scholar
First citationDavidson, M. G., Johnson, A. L., Jones, M. D., Lunn, M. D. & Mahon, M. F. (2007). Polyhedron, 26, 975–980.  Web of Science CSD CrossRef CAS Google Scholar
First citationPavlishchuk, V. V., Kolotilov, S. V., Addison, A. W., Prushan, M. J., Schollmeyer, D., Thompson, L. K., Weyhermüller, T. & Goreshnik, E. A. (2003). Dalton Trans. pp. 1587–1595.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWu, G. & Wu, D. (2008). Acta Cryst. E64, m828.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZuo, J., Dou, J., Li, D., Wang, D. & Sun, Y. (2007). Acta Cryst. E63, m3183–m3184.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds