organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(2-Hy­dr­oxy­naphthalen-1-yl)methyl­­idene]-4-nitro­benzohydrazide

aInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China
*Correspondence e-mail: xfli@shmtu.edu.cn

(Received 25 October 2011; accepted 31 October 2011; online 12 November 2011)

In the title mol­ecule, C18H13N3O4, the hy­droxy group is involved in the formation of an intra­molecular O—H⋯N hydrogen bond. The dihedral angle between the planes of the benzene ring and the naphthyl ring system is 9.0 (2)°. In the crystal, mol­ecules are linked through N—H⋯O hydrogen bonds into chains along the c axis.

Related literature

For recently published crystal structures of hydrazone compounds, see: Horkaew et al. (2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]); Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]); Su et al. (2011[Su, F., Gu, Z.-G. & Lin, J. (2011). Acta Cryst. E67, o1634.]); Zhi et al. (2011[Zhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13N3O4

  • Mr = 335.31

  • Monoclinic, P 21 /c

  • a = 11.208 (3) Å

  • b = 15.432 (3) Å

  • c = 8.982 (2) Å

  • β = 90.701 (2)°

  • V = 1553.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.983

  • 8323 measured reflections

  • 2817 independent reflections

  • 1564 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.127

  • S = 1.02

  • 2817 reflections

  • 232 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.86 (1) 1.85 (2) 2.599 (3) 144 (3)
N2—H2⋯O2i 0.90 (1) 2.06 (1) 2.923 (3) 160 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a continuation of structural studies of hydrazone compounds (Horkaew et al., 2011; Fun et al., 2011; Su et al., 2011; Zhi et al., 2011), we present here the title new hydrazone compound (I).

In (I) (Fig. 1), intramolecular O—H···N hydrogen bond (Table 1) and conjugation effects of the molecule lead to the flattening of the whole molecule. The dihedral angle between the benzene ring and the naphthyl ring is 9.0 (2)°. The bond lengths and angles are normal and comparable to those observed in the related structures (Horkaew et al., 2011; Fun et al., 2011; Su et al., 2011; Zhi et al., 2011).

In the crystal structure of the compound, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) to form chains along the c axis (Fig. 2).

Related literature top

For recently published crystal structures of hydrazone compounds, see: Horkaew et al. (2011); Fun et al. (2011); Su et al. (2011); Zhi et al. (2011).

Experimental top

Equimolar quantities (0.5 mmol each) of 2-hydroxy-1-naphthaldehyde and 4-nitrobenzohydrazide were mixed in 30 ml me thanol. The mixture was stirred at reflux for 30 min and cooled to room temperature. Yellow block-shaped single crytals were formed by slow evaporation of the solvent in air.

Refinement top

The N- and O-bound H atoms were located in a difference Fourier map and were refined with distance restraints [N—H = 0.90 (1) Å, O—H = 0.85 (1) Å], and with Uiso(H) fixed to 0.08. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

As a continuation of structural studies of hydrazone compounds (Horkaew et al., 2011; Fun et al., 2011; Su et al., 2011; Zhi et al., 2011), we present here the title new hydrazone compound (I).

In (I) (Fig. 1), intramolecular O—H···N hydrogen bond (Table 1) and conjugation effects of the molecule lead to the flattening of the whole molecule. The dihedral angle between the benzene ring and the naphthyl ring is 9.0 (2)°. The bond lengths and angles are normal and comparable to those observed in the related structures (Horkaew et al., 2011; Fun et al., 2011; Su et al., 2011; Zhi et al., 2011).

In the crystal structure of the compound, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) to form chains along the c axis (Fig. 2).

For recently published crystal structures of hydrazone compounds, see: Horkaew et al. (2011); Fun et al. (2011); Su et al. (2011); Zhi et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the displacement ellipsoids drawn at the 30% probability level. Intramolecular O—H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A portion of the crystal packing viewed approximately along the b axis. Intermolecular N—H···O hydrogen bonds are shown as dashed lines. H-atoms not involved in the hydrogen bonding have been omitted.
N'-[(2-Hydroxynaphthalen-1-yl)methylidene]-4-nitrobenzohydrazide top
Crystal data top
C18H13N3O4F(000) = 696
Mr = 335.31Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.208 (3) ÅCell parameters from 1804 reflections
b = 15.432 (3) Åθ = 2.2–28.2°
c = 8.982 (2) ŵ = 0.10 mm1
β = 90.701 (2)°T = 298 K
V = 1553.4 (6) Å3Block, yellow
Z = 40.20 × 0.20 × 0.17 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2817 independent reflections
Radiation source: fine-focus sealed tube1564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω scanθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.980, Tmax = 0.983k = 1816
8323 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.3228P]
where P = (Fo2 + 2Fc2)/3
2817 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H13N3O4V = 1553.4 (6) Å3
Mr = 335.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.208 (3) ŵ = 0.10 mm1
b = 15.432 (3) ÅT = 298 K
c = 8.982 (2) Å0.20 × 0.20 × 0.17 mm
β = 90.701 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2817 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1564 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.983Rint = 0.059
8323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0692 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.18 e Å3
2817 reflectionsΔρmin = 0.24 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2035 (2)0.17748 (14)0.5732 (2)0.0418 (6)
N20.2552 (2)0.24273 (14)0.4891 (2)0.0411 (6)
N30.4644 (2)0.60204 (17)0.2185 (3)0.0537 (7)
O10.06218 (18)0.12126 (14)0.7791 (2)0.0601 (6)
O20.25885 (18)0.33099 (12)0.6893 (2)0.0533 (6)
O30.5244 (2)0.58734 (14)0.1093 (3)0.0714 (7)
O40.4424 (2)0.67498 (14)0.2634 (3)0.0884 (9)
C10.1483 (2)0.02893 (16)0.5926 (3)0.0360 (7)
C20.0776 (2)0.04214 (18)0.7164 (3)0.0438 (7)
C30.0168 (3)0.0276 (2)0.7829 (3)0.0561 (9)
H30.03140.01770.86480.067*
C40.0283 (3)0.1091 (2)0.7281 (4)0.0575 (9)
H4A0.01360.15400.77240.069*
C50.1020 (2)0.12764 (18)0.6053 (3)0.0462 (8)
C60.1163 (3)0.21292 (19)0.5488 (4)0.0634 (10)
H60.07470.25840.59200.076*
C70.1890 (3)0.2291 (2)0.4333 (4)0.0697 (10)
H70.19770.28540.39810.084*
C80.2511 (3)0.1615 (2)0.3673 (4)0.0650 (10)
H80.30130.17300.28790.078*
C90.2395 (3)0.07840 (17)0.4173 (3)0.0504 (8)
H90.28250.03440.37180.060*
C100.1632 (2)0.05776 (16)0.5373 (3)0.0377 (7)
C110.2028 (2)0.10178 (16)0.5167 (3)0.0377 (7)
H110.23800.09290.42480.045*
C120.2780 (2)0.31916 (16)0.5567 (3)0.0377 (7)
C130.3284 (2)0.38988 (16)0.4623 (3)0.0341 (6)
C140.3080 (2)0.47496 (16)0.5080 (3)0.0416 (7)
H140.26410.48490.59350.050*
C150.3512 (2)0.54420 (17)0.4296 (3)0.0436 (8)
H150.33650.60070.46040.052*
C160.4170 (2)0.52799 (16)0.3039 (3)0.0386 (7)
C170.4401 (2)0.44479 (17)0.2556 (3)0.0431 (7)
H170.48450.43550.17020.052*
C180.3963 (2)0.37526 (17)0.3363 (3)0.0418 (7)
H180.41240.31890.30600.050*
H20.263 (3)0.2326 (19)0.3912 (13)0.080*
H10.100 (3)0.1599 (15)0.730 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0548 (16)0.0325 (13)0.0381 (15)0.0026 (11)0.0055 (12)0.0056 (12)
N20.0596 (16)0.0313 (13)0.0326 (14)0.0049 (11)0.0078 (13)0.0009 (12)
N30.0514 (17)0.0484 (18)0.061 (2)0.0082 (13)0.0051 (15)0.0071 (15)
O10.0646 (16)0.0614 (15)0.0547 (16)0.0077 (12)0.0191 (12)0.0034 (12)
O20.0846 (16)0.0478 (12)0.0279 (12)0.0042 (10)0.0145 (11)0.0027 (9)
O30.0816 (18)0.0724 (16)0.0608 (16)0.0184 (13)0.0259 (14)0.0057 (13)
O40.106 (2)0.0380 (13)0.122 (2)0.0020 (13)0.0465 (17)0.0116 (14)
C10.0366 (16)0.0398 (17)0.0317 (17)0.0017 (13)0.0015 (14)0.0060 (13)
C20.0439 (18)0.0465 (18)0.0409 (19)0.0049 (14)0.0008 (16)0.0026 (15)
C30.047 (2)0.079 (2)0.043 (2)0.0017 (17)0.0121 (16)0.0169 (18)
C40.053 (2)0.052 (2)0.067 (2)0.0131 (16)0.0026 (19)0.0260 (18)
C50.0410 (18)0.0447 (19)0.053 (2)0.0038 (14)0.0023 (16)0.0124 (16)
C60.068 (2)0.037 (2)0.085 (3)0.0094 (16)0.012 (2)0.0134 (19)
C70.081 (3)0.038 (2)0.091 (3)0.0013 (18)0.010 (2)0.006 (2)
C80.075 (2)0.048 (2)0.072 (3)0.0029 (18)0.005 (2)0.0115 (18)
C90.057 (2)0.0370 (18)0.058 (2)0.0003 (14)0.0067 (17)0.0002 (15)
C100.0387 (17)0.0341 (16)0.0402 (18)0.0008 (13)0.0045 (14)0.0076 (14)
C110.0428 (17)0.0367 (17)0.0338 (17)0.0012 (13)0.0065 (13)0.0058 (14)
C120.0427 (17)0.0377 (17)0.0329 (18)0.0023 (13)0.0033 (14)0.0011 (14)
C130.0376 (16)0.0339 (16)0.0307 (17)0.0016 (13)0.0018 (13)0.0022 (13)
C140.0487 (18)0.0394 (17)0.0370 (18)0.0017 (13)0.0126 (14)0.0052 (14)
C150.0482 (18)0.0344 (16)0.048 (2)0.0036 (13)0.0071 (16)0.0034 (14)
C160.0380 (16)0.0349 (16)0.0428 (18)0.0053 (13)0.0020 (14)0.0011 (14)
C170.0462 (18)0.0490 (18)0.0344 (18)0.0047 (14)0.0109 (14)0.0030 (15)
C180.0478 (18)0.0369 (16)0.0408 (19)0.0023 (13)0.0053 (15)0.0082 (14)
Geometric parameters (Å, º) top
N1—C111.274 (3)C6—C71.351 (4)
N1—N21.390 (3)C6—H60.9300
N2—C121.350 (3)C7—C81.392 (4)
N2—H20.898 (10)C7—H70.9300
N3—O31.218 (3)C8—C91.365 (4)
N3—O41.222 (3)C8—H80.9300
N3—C161.479 (3)C9—C101.420 (4)
O1—C21.357 (3)C9—H90.9300
O1—H10.859 (10)C11—H110.9300
O2—C121.227 (3)C12—C131.496 (3)
C1—C21.388 (4)C13—C181.391 (3)
C1—C101.437 (3)C13—C141.395 (3)
C1—C111.453 (3)C14—C151.371 (3)
C2—C31.411 (4)C14—H140.9300
C3—C41.357 (4)C15—C161.379 (4)
C3—H30.9300C15—H150.9300
C4—C51.415 (4)C16—C171.381 (3)
C4—H4A0.9300C17—C181.388 (3)
C5—C101.420 (3)C17—H170.9300
C5—C61.420 (4)C18—H180.9300
C11—N1—N2116.7 (2)C7—C8—H8119.5
C12—N2—N1117.8 (2)C8—C9—C10121.4 (3)
C12—N2—H2125 (2)C8—C9—H9119.3
N1—N2—H2117 (2)C10—C9—H9119.3
O3—N3—O4123.6 (3)C5—C10—C9117.0 (2)
O3—N3—C16118.7 (3)C5—C10—C1120.0 (3)
O4—N3—C16117.7 (3)C9—C10—C1123.0 (2)
C2—O1—H1110 (2)N1—C11—C1121.6 (3)
C2—C1—C10118.9 (2)N1—C11—H11119.2
C2—C1—C11120.6 (2)C1—C11—H11119.2
C10—C1—C11120.5 (2)O2—C12—N2122.2 (2)
O1—C2—C1122.8 (3)O2—C12—C13120.9 (2)
O1—C2—C3116.5 (3)N2—C12—C13117.0 (2)
C1—C2—C3120.7 (3)C18—C13—C14119.0 (2)
C4—C3—C2120.3 (3)C18—C13—C12123.8 (2)
C4—C3—H3119.9C14—C13—C12117.1 (2)
C2—C3—H3119.9C15—C14—C13121.5 (3)
C3—C4—C5122.0 (3)C15—C14—H14119.3
C3—C4—H4A119.0C13—C14—H14119.3
C5—C4—H4A119.0C14—C15—C16118.3 (2)
C4—C5—C10118.1 (3)C14—C15—H15120.8
C4—C5—C6122.4 (3)C16—C15—H15120.8
C10—C5—C6119.5 (3)C15—C16—C17122.0 (2)
C7—C6—C5121.2 (3)C15—C16—N3118.9 (3)
C7—C6—H6119.4C17—C16—N3119.0 (3)
C5—C6—H6119.4C16—C17—C18119.1 (3)
C6—C7—C8119.9 (3)C16—C17—H17120.5
C6—C7—H7120.1C18—C17—H17120.5
C8—C7—H7120.1C17—C18—C13120.0 (2)
C9—C8—C7120.9 (3)C17—C18—H18120.0
C9—C8—H8119.5C13—C18—H18120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (1)1.85 (2)2.599 (3)144 (3)
N2—H2···O2i0.90 (1)2.06 (1)2.923 (3)160 (3)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H13N3O4
Mr335.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.208 (3), 15.432 (3), 8.982 (2)
β (°) 90.701 (2)
V3)1553.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8323, 2817, 1564
Rint0.059
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.127, 1.02
No. of reflections2817
No. of parameters232
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.859 (10)1.85 (2)2.599 (3)144 (3)
N2—H2···O2i0.898 (10)2.062 (14)2.923 (3)160 (3)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (21141007), Shanghai Natural Science Foundation (11ZR1414800), the `Chen Guang' project supported by the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation (09 C G52), the Project of Shanghai Municipal Education Commission (09YZ245, 10YZ111) and Shanghai Maritime University (20110017, 20110013) for financial support.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, F., Gu, Z.-G. & Lin, J. (2011). Acta Cryst. E67, o1634.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds