organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4,4′′-Di­fluoro-5′-meth­­oxy-1,1′:3′,1′′-terphenyl-4′-yl)-3-(4-methyl­phen­yl)prop-2-en-1-one

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, bMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, and cUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 25 October 2011; accepted 31 October 2011; online 5 November 2011)

In the meta-terphenyl fragment of the title mol­ecule, C29H22F2O2, the two fluoro­phenyl rings are twisted from the central benzene ring by 46.72 (6) and 41.70 (6)°, respectively. In the crystal, weak C—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules into layers parallel to the ab plane. The crystal packing exhibits ππ inter­actions, the shortest distance between the centroids of aromatic rings being 3.6364 (7) Å.

Related literature

For the pharmacological importance of terphenyls, see: Liu (2006[Liu, J. K. (2006). Chem. Rev. 106, 2209-2223.]). For our studies of different chalcone derivatives, see: Samshuddin et al. (2011a[Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o1954-o1955.],b[Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011b). Der Pharma Chem. 3, 232-240.]); Fun et al. (2010a[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582-o583.],b[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864-o865.]); Jasinski et al. (2010a[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948-o1949.],b[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o2018.]); Baktir et al. (2011a[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262-o1263.],b[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292-o1293.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C29H22F2O2

  • Mr = 440.47

  • Triclinic, [P \overline 1]

  • a = 6.9020 (3) Å

  • b = 11.3965 (6) Å

  • c = 14.8362 (8) Å

  • α = 96.177 (2)°

  • β = 93.381 (2)°

  • γ = 106.446 (2)°

  • V = 1107.85 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.36 × 0.24 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 20122 measured reflections

  • 5516 independent reflections

  • 4020 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.06

  • 5516 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯F1i 0.98 2.46 3.3756 (14) 156
C25—H25⋯O1ii 0.95 2.43 3.2812 (15) 149
Symmetry codes: (i) x+1, y+1, z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In view of pharmacological importance of terphenyls (Liu, 2006) and chalcones, and in continuation of our works on the synthesis of various derivatives of 4,4'-difluoro chalcone (Samshuddin et al., 2011a,b; Fun et al., 2010a,b; Jasinski et al., 2010a,b; Baktir et al., 2011a,b), the molecular and crystal structure of the title compound (I) is reported.

In (I) (Fig. 1), the C=C double of the Michael system is (E)-configured. The least-squares planes defined by the carbon atoms of the para-fluoro phenyl rings of the terphenyl moiety and its central phenyl ring enclose angles of 41.70 (6)° and 46.72 (6)°, respectively.

In the crystal structure, intermolecular C–H···O and C–H···F contacts are present (Table 1). While the C–H···O contacts are apparent between the ketonic oxygen atom and one of the phenyl-bonded hydrogen atoms, the C–H···F contacts are supported by one of the hydrogen atoms of the methoxy substituent on the terphenyl's central phenyl group. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the C–H···O contacts necessitate a C11(10) descriptor on the unitary level and the C–H···F contacts necessitate a C11(11) descriptor on the same level. These two antidromic chains connect the molecules to planes perpendicular to the crystallographic c axis. The shortest intercentroid distance between two aromatic systems was found at 3.6364 (7) Å and is apparent between one of the para-fluoro phenyl moieties and its symmetry-generated equivalent. The packing of the title compound in the crystal structure is shown in Figure 2.

Related literature top

For the pharmacological importance of terphenyls, see: Liu (2006). For our studies of different chalcone derivatives, see: Samshuddin et al. (2011a,b); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktir et al. (2011a,b). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a mixture of 1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl) ethanone (0.338 g, 0.001 mol) and 4-methylbenzaldehyde (0.120 g, 0.001 mol) in 30 ml e thanol, 1 ml of 10% sodium hydroxide solution was added and stirred at 278–283 K for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol (yield: 76%). Single crystals suitable for the X-ray diffraction study were grown from DMF by slow evaporation at room temperature.

Refinement top

C-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic and vinylic carbon atoms) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with Uiso(H) set to 1.5Ueq(C).

Structure description top

In view of pharmacological importance of terphenyls (Liu, 2006) and chalcones, and in continuation of our works on the synthesis of various derivatives of 4,4'-difluoro chalcone (Samshuddin et al., 2011a,b; Fun et al., 2010a,b; Jasinski et al., 2010a,b; Baktir et al., 2011a,b), the molecular and crystal structure of the title compound (I) is reported.

In (I) (Fig. 1), the C=C double of the Michael system is (E)-configured. The least-squares planes defined by the carbon atoms of the para-fluoro phenyl rings of the terphenyl moiety and its central phenyl ring enclose angles of 41.70 (6)° and 46.72 (6)°, respectively.

In the crystal structure, intermolecular C–H···O and C–H···F contacts are present (Table 1). While the C–H···O contacts are apparent between the ketonic oxygen atom and one of the phenyl-bonded hydrogen atoms, the C–H···F contacts are supported by one of the hydrogen atoms of the methoxy substituent on the terphenyl's central phenyl group. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the C–H···O contacts necessitate a C11(10) descriptor on the unitary level and the C–H···F contacts necessitate a C11(11) descriptor on the same level. These two antidromic chains connect the molecules to planes perpendicular to the crystallographic c axis. The shortest intercentroid distance between two aromatic systems was found at 3.6364 (7) Å and is apparent between one of the para-fluoro phenyl moieties and its symmetry-generated equivalent. The packing of the title compound in the crystal structure is shown in Figure 2.

For the pharmacological importance of terphenyls, see: Liu (2006). For our studies of different chalcone derivatives, see: Samshuddin et al. (2011a,b); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktir et al. (2011a,b). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atomic labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. A portion of the crystal packing viewed down the a-axis.
(E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''- terphenyl-4'-yl)-3-(4-methylphenyl)prop-2-en-1-one top
Crystal data top
C29H22F2O2Z = 2
Mr = 440.47F(000) = 460
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Melting point: 465 K
a = 6.9020 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3965 (6) ÅCell parameters from 8632 reflections
c = 14.8362 (8) Åθ = 2.5–28.3°
α = 96.177 (2)°µ = 0.09 mm1
β = 93.381 (2)°T = 200 K
γ = 106.446 (2)°Platelet, colourless
V = 1107.85 (10) Å30.36 × 0.24 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
4020 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 28.4°, θmin = 1.9°
φ and ω scansh = 99
20122 measured reflectionsk = 1515
5516 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.0888P]
where P = (Fo2 + 2Fc2)/3
5516 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C29H22F2O2γ = 106.446 (2)°
Mr = 440.47V = 1107.85 (10) Å3
Triclinic, P1Z = 2
a = 6.9020 (3) ÅMo Kα radiation
b = 11.3965 (6) ŵ = 0.09 mm1
c = 14.8362 (8) ÅT = 200 K
α = 96.177 (2)°0.36 × 0.24 × 0.11 mm
β = 93.381 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4020 reflections with I > 2σ(I)
20122 measured reflectionsRint = 0.042
5516 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
5516 reflectionsΔρmin = 0.24 e Å3
300 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.32392 (11)0.70671 (6)0.46700 (6)0.0469 (2)
F20.80404 (14)0.05047 (10)0.94895 (6)0.0661 (3)
O10.20131 (13)0.21294 (8)0.70190 (7)0.0448 (2)
O20.19220 (12)0.09542 (7)0.60606 (6)0.0358 (2)
C10.06141 (17)0.17004 (10)0.71538 (8)0.0305 (3)
C20.13900 (18)0.24573 (11)0.75946 (8)0.0336 (3)
H20.23900.20610.77330.040*
C30.18420 (19)0.36734 (11)0.78036 (9)0.0364 (3)
H30.08110.40410.76510.044*
C40.34886 (17)0.06610 (12)0.55736 (9)0.0376 (3)
H4A0.40980.01420.59130.056*
H4B0.45320.14240.55030.056*
H4C0.29090.02160.49720.056*
C50.9333 (2)0.70099 (15)0.96324 (12)0.0630 (5)
H5A0.95020.78470.94820.095*
H5B1.04890.67330.94500.095*
H5C0.92630.70081.02900.095*
C110.08873 (15)0.03487 (10)0.68885 (8)0.0263 (2)
C120.04172 (15)0.00001 (10)0.62946 (8)0.0270 (2)
C130.01112 (15)0.12245 (10)0.59474 (8)0.0273 (2)
H130.09810.14390.55280.033*
C140.14791 (15)0.21398 (10)0.62168 (8)0.0265 (2)
C150.27208 (15)0.18035 (10)0.68396 (8)0.0273 (2)
H150.37640.24300.70450.033*
C160.24777 (15)0.05737 (10)0.71708 (8)0.0260 (2)
C210.18947 (15)0.34472 (10)0.58167 (8)0.0268 (2)
C220.19231 (16)0.37483 (11)0.48819 (8)0.0308 (3)
H220.16170.31090.45050.037*
C230.23905 (16)0.49661 (11)0.44927 (9)0.0334 (3)
H230.24250.51720.38530.040*
C240.28010 (16)0.58650 (10)0.50542 (9)0.0327 (3)
C250.27847 (17)0.56188 (11)0.59813 (9)0.0354 (3)
H250.30690.62660.63510.042*
C260.23396 (17)0.43962 (11)0.63608 (9)0.0318 (3)
H260.23380.42020.70000.038*
C310.39190 (16)0.02834 (10)0.78062 (8)0.0279 (2)
C320.32771 (18)0.05884 (11)0.85792 (8)0.0351 (3)
H320.18720.10020.87200.042*
C330.4659 (2)0.08601 (13)0.91445 (9)0.0427 (3)
H330.42200.14660.96640.051*
C340.6676 (2)0.02359 (13)0.89374 (10)0.0425 (3)
C350.73750 (18)0.06496 (13)0.82011 (9)0.0395 (3)
H350.87800.10770.80810.047*
C360.59796 (16)0.09080 (11)0.76341 (8)0.0325 (3)
H360.64380.15210.71200.039*
C410.3765 (2)0.45038 (11)0.82446 (9)0.0373 (3)
C420.5431 (2)0.40945 (13)0.84736 (11)0.0496 (4)
H420.53460.32480.83280.059*
C430.7201 (2)0.49057 (13)0.89099 (11)0.0526 (4)
H430.83120.46040.90610.063*
C440.7401 (2)0.61507 (12)0.91337 (9)0.0456 (3)
C450.5773 (2)0.65663 (12)0.88825 (10)0.0477 (4)
H450.58840.74190.90110.057*
C460.3984 (2)0.57627 (12)0.84473 (10)0.0435 (3)
H460.28890.60730.82840.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0460 (4)0.0236 (4)0.0651 (6)0.0042 (3)0.0076 (4)0.0058 (3)
F20.0647 (6)0.0905 (7)0.0592 (6)0.0438 (5)0.0305 (5)0.0092 (5)
O10.0439 (5)0.0328 (5)0.0615 (7)0.0168 (4)0.0003 (4)0.0101 (4)
O20.0357 (4)0.0264 (4)0.0418 (5)0.0010 (3)0.0141 (4)0.0051 (4)
C10.0366 (6)0.0260 (6)0.0301 (6)0.0095 (5)0.0056 (5)0.0066 (5)
C20.0384 (6)0.0270 (6)0.0340 (7)0.0075 (5)0.0025 (5)0.0041 (5)
C30.0450 (7)0.0280 (6)0.0352 (7)0.0087 (5)0.0063 (5)0.0038 (5)
C40.0288 (6)0.0398 (7)0.0415 (7)0.0032 (5)0.0100 (5)0.0085 (6)
C50.0609 (9)0.0533 (10)0.0569 (10)0.0055 (7)0.0006 (8)0.0081 (8)
C110.0274 (5)0.0243 (5)0.0264 (6)0.0067 (4)0.0007 (4)0.0039 (4)
C120.0253 (5)0.0251 (5)0.0288 (6)0.0036 (4)0.0011 (4)0.0059 (4)
C130.0249 (5)0.0274 (6)0.0294 (6)0.0071 (4)0.0036 (4)0.0030 (5)
C140.0258 (5)0.0245 (5)0.0284 (6)0.0067 (4)0.0003 (4)0.0040 (4)
C150.0247 (5)0.0255 (6)0.0301 (6)0.0039 (4)0.0029 (4)0.0059 (5)
C160.0251 (5)0.0273 (6)0.0256 (6)0.0077 (4)0.0005 (4)0.0040 (4)
C210.0222 (5)0.0240 (5)0.0335 (6)0.0059 (4)0.0029 (4)0.0033 (4)
C220.0298 (5)0.0274 (6)0.0345 (7)0.0067 (4)0.0048 (5)0.0047 (5)
C230.0296 (5)0.0320 (6)0.0359 (7)0.0068 (5)0.0035 (5)0.0015 (5)
C240.0248 (5)0.0224 (6)0.0481 (8)0.0049 (4)0.0034 (5)0.0023 (5)
C250.0339 (6)0.0248 (6)0.0479 (8)0.0067 (5)0.0060 (5)0.0099 (5)
C260.0314 (5)0.0300 (6)0.0336 (6)0.0079 (4)0.0043 (5)0.0051 (5)
C310.0298 (5)0.0287 (6)0.0283 (6)0.0116 (4)0.0044 (4)0.0078 (5)
C320.0375 (6)0.0340 (7)0.0334 (7)0.0101 (5)0.0041 (5)0.0032 (5)
C330.0552 (8)0.0406 (7)0.0353 (7)0.0188 (6)0.0097 (6)0.0017 (6)
C340.0476 (7)0.0536 (8)0.0394 (8)0.0298 (6)0.0190 (6)0.0143 (6)
C350.0302 (6)0.0520 (8)0.0424 (8)0.0173 (5)0.0078 (5)0.0164 (6)
C360.0306 (5)0.0362 (6)0.0326 (6)0.0118 (5)0.0026 (5)0.0077 (5)
C410.0484 (7)0.0263 (6)0.0334 (7)0.0046 (5)0.0065 (5)0.0020 (5)
C420.0581 (8)0.0282 (7)0.0574 (9)0.0076 (6)0.0049 (7)0.0034 (6)
C430.0541 (8)0.0412 (8)0.0570 (10)0.0079 (6)0.0068 (7)0.0056 (7)
C440.0540 (8)0.0378 (8)0.0347 (7)0.0014 (6)0.0069 (6)0.0016 (6)
C450.0619 (9)0.0286 (7)0.0445 (8)0.0027 (6)0.0124 (7)0.0061 (6)
C460.0535 (8)0.0299 (7)0.0448 (8)0.0095 (6)0.0098 (6)0.0012 (6)
Geometric parameters (Å, º) top
F1—C241.3676 (13)C21—C261.3946 (16)
F2—C341.3610 (14)C22—C231.3841 (16)
O1—C11.2153 (14)C22—H220.9500
O2—C121.3660 (12)C23—C241.3678 (17)
O2—C41.4310 (14)C23—H230.9500
C1—C21.4770 (16)C24—C251.3727 (19)
C1—C111.5032 (15)C25—C261.3861 (17)
C2—C31.3288 (17)C25—H250.9500
C2—H20.9500C26—H260.9500
C3—C411.4625 (18)C31—C361.3927 (15)
C3—H30.9500C31—C321.3945 (17)
C4—H4A0.9800C32—C331.3837 (17)
C4—H4B0.9800C32—H320.9500
C4—H4C0.9800C33—C341.371 (2)
C5—C441.507 (2)C33—H330.9500
C5—H5A0.9800C34—C351.367 (2)
C5—H5B0.9800C35—C361.3873 (17)
C5—H5C0.9800C35—H350.9500
C11—C121.4020 (16)C36—H360.9500
C11—C161.4075 (15)C41—C421.395 (2)
C12—C131.3869 (16)C41—C461.3967 (17)
C13—C141.3949 (15)C42—C431.380 (2)
C13—H130.9500C42—H420.9500
C14—C151.3923 (15)C43—C441.387 (2)
C14—C211.4840 (15)C43—H430.9500
C15—C161.3938 (15)C44—C451.384 (2)
C15—H150.9500C45—C461.3850 (19)
C16—C311.4891 (15)C45—H450.9500
C21—C221.3900 (17)C46—H460.9500
C12—O2—C4117.89 (9)C24—C23—H23120.9
O1—C1—C2122.43 (11)C22—C23—H23120.9
O1—C1—C11120.40 (10)F1—C24—C23118.13 (11)
C2—C1—C11117.16 (10)F1—C24—C25118.60 (11)
C3—C2—C1122.25 (11)C23—C24—C25123.27 (11)
C3—C2—H2118.9C24—C25—C26117.94 (11)
C1—C2—H2118.9C24—C25—H25121.0
C2—C3—C41126.60 (12)C26—C25—H25121.0
C2—C3—H3116.7C25—C26—C21120.86 (12)
C41—C3—H3116.7C25—C26—H26119.6
O2—C4—H4A109.5C21—C26—H26119.6
O2—C4—H4B109.5C36—C31—C32118.37 (11)
H4A—C4—H4B109.5C36—C31—C16119.36 (10)
O2—C4—H4C109.5C32—C31—C16122.27 (10)
H4A—C4—H4C109.5C33—C32—C31120.91 (11)
H4B—C4—H4C109.5C33—C32—H32119.5
C44—C5—H5A109.5C31—C32—H32119.5
C44—C5—H5B109.5C34—C33—C32118.51 (13)
H5A—C5—H5B109.5C34—C33—H33120.7
C44—C5—H5C109.5C32—C33—H33120.7
H5A—C5—H5C109.5F2—C34—C35118.54 (12)
H5B—C5—H5C109.5F2—C34—C33118.68 (13)
C12—C11—C16118.99 (10)C35—C34—C33122.78 (12)
C12—C11—C1118.59 (9)C34—C35—C36118.27 (11)
C16—C11—C1122.31 (10)C34—C35—H35120.9
O2—C12—C13123.56 (10)C36—C35—H35120.9
O2—C12—C11115.00 (10)C35—C36—C31121.12 (12)
C13—C12—C11121.37 (9)C35—C36—H36119.4
C12—C13—C14119.73 (10)C31—C36—H36119.4
C12—C13—H13120.1C42—C41—C46117.55 (12)
C14—C13—H13120.1C42—C41—C3122.68 (12)
C15—C14—C13119.07 (10)C46—C41—C3119.77 (12)
C15—C14—C21120.41 (9)C43—C42—C41120.74 (13)
C13—C14—C21120.48 (10)C43—C42—H42119.6
C14—C15—C16121.90 (10)C41—C42—H42119.6
C14—C15—H15119.1C42—C43—C44121.73 (15)
C16—C15—H15119.1C42—C43—H43119.1
C15—C16—C11118.83 (10)C44—C43—H43119.1
C15—C16—C31118.77 (9)C45—C44—C43117.65 (13)
C11—C16—C31122.40 (10)C45—C44—C5121.74 (14)
C22—C21—C26118.81 (11)C43—C44—C5120.61 (15)
C22—C21—C14120.14 (10)C44—C45—C46121.26 (13)
C26—C21—C14121.01 (11)C44—C45—H45119.4
C23—C22—C21120.93 (11)C46—C45—H45119.4
C23—C22—H22119.5C45—C46—C41121.02 (14)
C21—C22—H22119.5C45—C46—H46119.5
C24—C23—C22118.18 (12)C41—C46—H46119.5
O1—C1—C2—C35.67 (19)C22—C23—C24—C250.43 (17)
C11—C1—C2—C3175.54 (11)F1—C24—C25—C26179.95 (10)
C1—C2—C3—C41179.52 (11)C23—C24—C25—C260.38 (17)
O1—C1—C11—C12123.37 (12)C24—C25—C26—C210.90 (17)
C2—C1—C11—C1257.82 (14)C22—C21—C26—C250.60 (16)
O1—C1—C11—C1652.71 (16)C14—C21—C26—C25178.12 (10)
C2—C1—C11—C16126.10 (11)C15—C16—C31—C3642.03 (15)
C4—O2—C12—C1312.40 (16)C11—C16—C31—C36137.58 (11)
C4—O2—C12—C11170.52 (10)C15—C16—C31—C32137.28 (12)
C16—C11—C12—O2179.66 (10)C11—C16—C31—C3243.11 (16)
C1—C11—C12—O24.12 (15)C36—C31—C32—C332.31 (18)
C16—C11—C12—C133.19 (16)C16—C31—C32—C33178.38 (11)
C1—C11—C12—C13173.03 (10)C31—C32—C33—C341.19 (19)
O2—C12—C13—C14179.30 (10)C32—C33—C34—F2179.71 (12)
C11—C12—C13—C142.40 (17)C32—C33—C34—C350.6 (2)
C12—C13—C14—C150.65 (16)F2—C34—C35—C36179.17 (11)
C12—C13—C14—C21176.85 (10)C33—C34—C35—C361.1 (2)
C13—C14—C15—C162.93 (16)C34—C35—C36—C310.09 (18)
C21—C14—C15—C16174.57 (10)C32—C31—C36—C351.75 (17)
C14—C15—C16—C112.12 (16)C16—C31—C36—C35178.91 (11)
C14—C15—C16—C31177.50 (10)C2—C3—C41—C422.5 (2)
C12—C11—C16—C150.93 (15)C2—C3—C41—C46177.86 (12)
C1—C11—C16—C15175.14 (10)C46—C41—C42—C432.0 (2)
C12—C11—C16—C31179.47 (10)C3—C41—C42—C43178.37 (13)
C1—C11—C16—C314.47 (16)C41—C42—C43—C440.3 (2)
C15—C14—C21—C22131.87 (11)C42—C43—C44—C451.7 (2)
C13—C14—C21—C2245.60 (15)C42—C43—C44—C5178.37 (15)
C15—C14—C21—C2645.62 (15)C43—C44—C45—C461.9 (2)
C13—C14—C21—C26136.91 (11)C5—C44—C45—C46178.15 (13)
C26—C21—C22—C230.24 (16)C44—C45—C46—C410.2 (2)
C14—C21—C22—C23177.31 (10)C42—C41—C46—C451.7 (2)
C21—C22—C23—C240.74 (16)C3—C41—C46—C45178.59 (12)
C22—C23—C24—F1179.24 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···F1i0.982.463.3756 (14)156
C25—H25···O1ii0.952.433.2812 (15)149
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC29H22F2O2
Mr440.47
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.9020 (3), 11.3965 (6), 14.8362 (8)
α, β, γ (°)96.177 (2), 93.381 (2), 106.446 (2)
V3)1107.85 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.24 × 0.11
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20122, 5516, 4020
Rint0.042
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.06
No. of reflections5516
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···F1i0.982.463.3756 (14)156.1
C25—H25···O1ii0.952.433.2812 (15)148.7
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
 

Acknowledgements

BN thanks the UGC for financial assistance through the SAP and a BSR one-time grants for the purchase of chemicals. SS thanks Mangalore University for access to research facilities.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262–o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o2018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J. K. (2006). Chem. Rev. 106, 2209–2223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o1954–o1955.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011b). Der Pharma Chem. 3, 232–240.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds