organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­bromo-6-[(quinolin-8-yl­amino)­methyl­­idene]cyclo­hexa-2,4-dien-1-one monohydrate

aDepartment of Chemistry, Okayama University of Science, Ridai-cho, Okayama 700-0005, Japan
*Correspondence e-mail: shiba@chem.ous.ac.jp

(Received 27 October 2011; accepted 16 November 2011; online 19 November 2011)

In the title compound, C16H10Br2N2O·H2O, bifurcated intra­molecular N—H⋯(N,O) hydrogen bonding defines the essential planarity of the main mol­ecule: the dihedral angle between the quinoline and benzene rings is 7.53 (8)°. Inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds consolidate the crystal packing, which exhibits ππ inter­actions with a distance of 3.588 (1) Å between the centroids of the aromatic rings and short Br⋯Br contacts of 3.5757 (6) Å.

Related literature

For a related structure, see: Shibahara et al. (2010[Shibahara, T., Takahashi, M., Maekawa, A. & Takagi, H. (2010). Acta Cryst. E66, o429.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10Br2N2O·H2O

  • Mr = 424.09

  • Triclinic, [P \overline 1]

  • a = 7.0027 (8) Å

  • b = 8.2782 (11) Å

  • c = 12.9164 (19) Å

  • α = 94.953 (9)°

  • β = 102.010 (5)°

  • γ = 94.551 (6)°

  • V = 725.99 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.61 mm−1

  • T = 93 K

  • 0.64 × 0.58 × 0.18 mm

Data collection
  • Rigaku Mercury70 diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.145, Tmax = 0.364

  • 6768 measured reflections

  • 3281 independent reflections

  • 3070 reflections with F2 > 2σ(F2)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.00

  • 3281 reflections

  • 239 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −1.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2a⋯O1 0.95 1.86 2.802 (4) 171
N1—H4⋯O1 0.83 1.90 2.592 (4) 140
N1—H4⋯N2 0.83 2.31 2.668 (3) 107
C7—H3⋯O2i 0.95 2.31 3.234 (4) 166
Symmetry code: (i) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The title dibromo compound (I) was obtained by the condensation reaction of salicylaldehyde with 8-aminoquinoline. We have reported the synthesis and X-ray structure of the corresponding dichloro compound 2,4-Dichloro-6-(8-quinolylaminomethylene)cyclohexa-2,4-dien-1-one methanol solvate (II).methanol (Shibahara et al., 2010). The compounds (I) and (II) exist in the keto form and the C=O and N—H bonds are mutually cis in the crystal structure (Fig. 1). The dihedral angle between the quinoline and benzene rings in (I) [7.53 (8)°] is smaller than that in (II) [11.17 (3)°]. The crystal packing of (I) exhibits π-π interactions with the distance of 3.588 (1) Å between the centroids of aromatic rings.

In the crystal structure of (I).H2O, H2O molecule are linked through intermolecular O—H···O, weak C—H···O hydrogen bonds (Table 1). There are short Br···Br contacts of 3.5757 (6) Å (the sum of van der Waals radii of Br, 3.70 Å). In addition, the O···O distance (2.981 (4) Å) between two adjacent water molecules is shorter than the sum (3.04 Å) of van der Waals radii.

Related literature top

For a related structure, see: Shibahara et al. (2010).

Experimental top

Refluxing a suspension of 8-aminoquinoline (104 mg, 0.7 mmol) and 3,5-dibromo-salicylaldehyde (200 mg, 0.7 mmol) in acetonitrile (2 ml) at 65°C for three hours gave red powder, C16H10Br2N2O (I), Yield 256 mg (83%). Anal. Found: C, 47.27; H, 2.05; N, 6.69%. Calcd for C16H10Br2N2O (I): C, 47.32; H, 2.48; N, 6.90%. Orange block single crystals of (I).H2O suitable for X-ray analysis were obtained by dissolving 10 mg of (I) in acetonitrile (10 ml) containing small amount of water (ca 0.2%) followed by the slow evaporation of the acetonitrile solution Yield 90%. Anal. Found: C, 45.51; H, 2.76; N, 6.34%. Calcd for C16H10Br2N2O (I).H2O: C, 45.31; H, 2.85; N, 6.61%.

Refinement top

H atoms were geometrically positioned (O—H 0.95 Å; C—H 0.94-0.98 Å; N—H 0.83 Å), and refined as riding, with Uiso(H) = 1.2 Ueq of the parent atom.

Structure description top

The title dibromo compound (I) was obtained by the condensation reaction of salicylaldehyde with 8-aminoquinoline. We have reported the synthesis and X-ray structure of the corresponding dichloro compound 2,4-Dichloro-6-(8-quinolylaminomethylene)cyclohexa-2,4-dien-1-one methanol solvate (II).methanol (Shibahara et al., 2010). The compounds (I) and (II) exist in the keto form and the C=O and N—H bonds are mutually cis in the crystal structure (Fig. 1). The dihedral angle between the quinoline and benzene rings in (I) [7.53 (8)°] is smaller than that in (II) [11.17 (3)°]. The crystal packing of (I) exhibits π-π interactions with the distance of 3.588 (1) Å between the centroids of aromatic rings.

In the crystal structure of (I).H2O, H2O molecule are linked through intermolecular O—H···O, weak C—H···O hydrogen bonds (Table 1). There are short Br···Br contacts of 3.5757 (6) Å (the sum of van der Waals radii of Br, 3.70 Å). In addition, the O···O distance (2.981 (4) Å) between two adjacent water molecules is shorter than the sum (3.04 Å) of van der Waals radii.

For a related structure, see: Shibahara et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I).H2O with the atom–labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
2,4-Dibromo-6-[(quinolin-8-ylamino)methylidene]cyclohexa-2,4-dien-1-one monohydrate top
Crystal data top
C16H10Br2N2O·H2OZ = 2
Mr = 424.09F(000) = 416.00
Triclinic, P1Dx = 1.940 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.0027 (8) ÅCell parameters from 2134 reflections
b = 8.2782 (11) Åθ = 3.1–30.0°
c = 12.9164 (19) ŵ = 5.61 mm1
α = 94.953 (9)°T = 93 K
β = 102.010 (5)°Block, orange
γ = 94.551 (6)°0.64 × 0.58 × 0.18 mm
V = 725.99 (17) Å3
Data collection top
Rigaku Mercury70
diffractometer
3070 reflections with F2 > 2σ(F2)
Detector resolution: 7.314 pixels mm-1Rint = 0.049
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 99
Tmin = 0.145, Tmax = 0.364k = 1010
6768 measured reflectionsl = 1616
3281 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0485P)2 + 1.155P]
where P = (Fo2 + 2Fc2)/3
3281 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 1.13 e Å3
3 restraintsΔρmin = 1.49 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H10Br2N2O·H2Oγ = 94.551 (6)°
Mr = 424.09V = 725.99 (17) Å3
Triclinic, P1Z = 2
a = 7.0027 (8) ÅMo Kα radiation
b = 8.2782 (11) ŵ = 5.61 mm1
c = 12.9164 (19) ÅT = 93 K
α = 94.953 (9)°0.64 × 0.58 × 0.18 mm
β = 102.010 (5)°
Data collection top
Rigaku Mercury70
diffractometer
3281 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
3070 reflections with F2 > 2σ(F2)
Tmin = 0.145, Tmax = 0.364Rint = 0.049
6768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.00Δρmax = 1.13 e Å3
3281 reflectionsΔρmin = 1.49 e Å3
239 parameters
Special details top

Geometry. The dihedral angle between the quinoline rings (C8~C16, N2) and the benzene rings (C1~C6) is 7.53 (8)o: Mean derivations of the atoms from the former and latter planes are 0.004 and 0.015 Å, respectively.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.34236 (4)0.27358 (3)0.49272 (2)0.01502 (11)
Br10.11289 (4)0.39307 (3)0.60673 (2)0.01673 (11)
O20.0121 (4)0.5645 (3)0.8971 (3)0.0284 (6)
O10.1087 (3)0.2673 (3)0.81099 (16)0.0151 (4)
N10.2083 (4)0.0514 (3)0.94081 (18)0.0110 (5)
N20.4089 (4)0.3076 (3)1.06739 (19)0.0134 (5)
C90.2975 (4)0.1272 (4)1.0815 (3)0.0125 (5)
C100.3944 (4)0.1428 (4)1.1866 (3)0.0139 (6)
C110.4926 (4)0.0104 (4)1.2520 (2)0.0138 (5)
C120.5002 (4)0.1450 (4)1.2159 (2)0.0123 (5)
C160.4041 (4)0.1628 (4)1.1104 (2)0.0109 (5)
C130.6009 (4)0.2872 (4)1.2787 (3)0.0155 (6)
C140.6063 (4)0.4315 (4)1.2356 (3)0.0165 (6)
C150.5084 (4)0.4354 (4)1.1284 (3)0.0145 (6)
C80.3016 (4)0.0233 (4)1.0440 (2)0.0103 (5)
C70.1134 (4)0.0578 (4)0.8644 (2)0.0112 (5)
C60.0197 (4)0.0169 (4)0.7638 (2)0.0112 (5)
C50.0839 (4)0.1449 (4)0.6883 (3)0.0123 (5)
C40.1845 (4)0.1088 (4)0.5924 (2)0.0121 (5)
C30.1870 (4)0.0531 (4)0.5671 (3)0.0133 (5)
C20.0905 (4)0.1771 (4)0.6392 (2)0.0121 (5)
C10.0202 (4)0.1516 (4)0.7428 (2)0.0112 (5)
H10.26200.07970.49910.0342*
H20.09120.25210.70720.0161*
H40.21390.14560.92420.0275*
H50.23670.22211.03810.0106*
H60.38900.24771.20910.0202*
H70.55390.01741.32340.0211*
H80.66750.28411.35190.0097*
H90.67270.53221.27160.0153*
H2a0.03420.46490.86120.0548*
H2b0.12460.55520.89550.1042*
H100.51480.53621.09860.0174*
H30.10740.16920.87720.0135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.02026 (17)0.01242 (17)0.00997 (16)0.00054 (11)0.00004 (11)0.00334 (11)
Br10.02187 (18)0.01128 (17)0.01506 (17)0.00026 (11)0.00019 (12)0.00230 (12)
O20.0317 (13)0.0174 (12)0.0381 (15)0.0017 (9)0.0168 (11)0.0071 (11)
O10.0196 (10)0.0114 (9)0.0125 (10)0.0009 (8)0.0020 (8)0.0027 (8)
N10.0143 (10)0.0124 (11)0.0077 (11)0.0023 (9)0.0054 (8)0.0003 (9)
N20.0162 (11)0.0138 (11)0.0106 (11)0.0008 (9)0.0049 (9)0.0005 (9)
C90.0154 (12)0.0125 (13)0.0103 (12)0.0012 (10)0.0056 (10)0.0013 (10)
C100.0170 (13)0.0147 (13)0.0124 (13)0.0037 (10)0.0080 (10)0.0014 (11)
C110.0145 (12)0.0200 (14)0.0073 (12)0.0034 (10)0.0031 (10)0.0000 (11)
C120.0119 (12)0.0176 (14)0.0086 (12)0.0018 (10)0.0055 (9)0.0011 (10)
C160.0126 (12)0.0138 (13)0.0082 (12)0.0024 (9)0.0069 (9)0.0000 (10)
C130.0158 (12)0.0220 (15)0.0084 (12)0.0008 (11)0.0040 (10)0.0020 (11)
C140.0170 (13)0.0196 (15)0.0128 (13)0.0022 (11)0.0070 (10)0.0050 (11)
C150.0179 (13)0.0135 (13)0.0126 (13)0.0003 (10)0.0067 (10)0.0029 (11)
C80.0114 (11)0.0143 (13)0.0060 (12)0.0033 (10)0.0046 (9)0.0021 (10)
C70.0133 (11)0.0117 (12)0.0093 (12)0.0007 (10)0.0048 (9)0.0012 (10)
C60.0129 (12)0.0117 (13)0.0102 (12)0.0017 (9)0.0058 (9)0.0003 (10)
C50.0145 (12)0.0120 (13)0.0112 (13)0.0024 (10)0.0050 (10)0.0010 (10)
C40.0138 (12)0.0130 (13)0.0093 (12)0.0001 (10)0.0044 (9)0.0038 (10)
C30.0156 (12)0.0160 (14)0.0094 (12)0.0024 (10)0.0052 (10)0.0007 (10)
C20.0147 (12)0.0115 (12)0.0105 (12)0.0020 (10)0.0030 (10)0.0017 (10)
C10.0138 (12)0.0129 (13)0.0079 (12)0.0016 (9)0.0047 (9)0.0001 (10)
Geometric parameters (Å, º) top
Br2—C41.899 (3)C6—C11.444 (4)
Br1—C21.883 (3)C5—C41.362 (4)
O1—C11.269 (3)C4—C31.407 (4)
N1—C81.405 (4)C3—C21.357 (4)
N1—C71.308 (4)C2—C11.441 (4)
N2—C161.365 (4)O2—H2a0.950
N2—C151.318 (4)O2—H2b0.950
C9—C101.408 (4)N1—H40.827
C9—C81.375 (4)C9—H50.940
C10—C111.366 (4)C10—H60.940
C11—C121.406 (5)C11—H70.941
C12—C161.415 (4)C13—H80.966
C12—C131.417 (4)C14—H90.953
C16—C81.423 (4)C15—H100.950
C13—C141.362 (5)C7—H30.950
C14—C151.417 (4)C5—H20.941
C7—C61.411 (4)C3—H10.977
C6—C51.416 (4)
Br1···O13.079 (2)N1···H5v3.5727
O1···N12.592 (4)N2···H5vi3.1676
O1···N23.507 (3)N2···H2biii2.4795
O1···C72.836 (4)N2···H10iv2.7204
N1···N22.668 (3)C9···H4v3.5576
N1···C12.846 (4)C9···H4vi3.4525
N2···C132.806 (4)C9···H10i3.2816
C9···C122.810 (4)C10···H4vi3.3478
C9···C72.957 (4)C10···H9i3.5628
C10···C162.793 (5)C10···H10i3.0491
C11···C82.789 (4)C11···H1xi3.2864
C12···C152.746 (5)C11···H4vi3.5395
C16···C142.738 (4)C12···H2v3.3776
C15···C83.584 (4)C12···H3vi3.2196
C6···C32.782 (4)C16···H5vi3.4957
C5···C22.794 (4)C16···H2biii3.1593
C4···C12.847 (4)C16···H3vi3.3870
Br2···Br1i3.5758 (6)C13···H1xi3.4564
Br1···Br2ii3.5758 (6)C13···H2vi3.4377
O2···O2iii2.981 (4)C13···H3vi3.2974
O2···O12.802 (4)C14···H6ii3.1729
O2···N2iii3.317 (4)C14···H2aiv3.1287
O2···C9ii3.513 (4)C14···H2biii3.4607
O2···C14iv3.461 (5)C14···H3vi3.4954
O2···C15iii3.591 (4)C15···H5vi3.5171
O2···C15iv3.441 (4)C15···H6ii2.9843
O2···C7ii3.235 (4)C15···H2aiv3.2156
O1···O22.802 (4)C15···H2biii2.6491
O1···C9v3.573 (4)C15···H10iv2.9333
O1···C10v3.599 (4)C8···H3v3.5002
O1···C14iv3.245 (4)C7···H2bi3.5859
O1···C15iv3.407 (4)C6···H7vi3.4036
N1···C9vi3.543 (4)C5···H8vi3.3410
N1···C10vi3.579 (4)C4···H1vii3.5635
N1···C11vi3.584 (4)C4···H7v3.2202
N1···C12vi3.548 (4)C3···H7ix3.2679
N1···C16vi3.501 (4)C3···H7v3.1868
N1···C8vi3.504 (4)C3···H8ix3.5317
N2···O2iii3.317 (4)C2···H6v3.2008
N2···C9vi3.433 (4)C2···H7v3.5484
N2···C15iv3.549 (4)C2···H9iv3.5608
C9···O2i3.513 (4)C2···H2a3.4792
C9···O1v3.573 (4)C1···H6v3.2005
C9···N1vi3.543 (4)C1···H7vi3.5052
C9···N2vi3.433 (4)C1···H9iv3.2966
C9···C16vi3.566 (5)C1···H2a2.8785
C9···C7v3.531 (4)H1···Br2viii3.3259
C9···C6v3.494 (5)H1···C11ix3.2864
C9···C1v3.500 (5)H1···C13ix3.4564
C10···O1v3.599 (4)H1···C4vii3.5635
C10···N1vi3.579 (4)H1···H1viii3.4915
C10···C6v3.435 (4)H1···H7ix2.4008
C10···C2v3.417 (5)H1···H7v3.4186
C10···C1v3.216 (4)H1···H8ix2.6504
C11···N1vi3.584 (4)H2···Br1i3.0863
C11···C7vi3.438 (5)H2···O2i2.9874
C11···C6v3.577 (4)H2···C12v3.3776
C11···C6vi3.455 (4)H2···C13vi3.4377
C11···C5v3.430 (5)H2···H8vi3.2389
C11···C4v3.386 (5)H2···H2ai3.2590
C11···C3v3.503 (5)H2···H2bi3.0600
C12···N1vi3.548 (4)H4···C9v3.5576
C12···C7vi3.204 (4)H4···C9vi3.4525
C12···C6vi3.570 (4)H4···C10vi3.3478
C12···C5v3.395 (4)H4···C11vi3.5395
C16···N1vi3.501 (4)H4···H5v3.3911
C16···C9vi3.566 (5)H4···H2a3.1151
C16···C8vi3.504 (4)H4···H2biii3.4361
C16···C7vi3.512 (4)H4···H10iv3.1944
C13···C7vi3.545 (5)H5···O2i2.5933
C14···O2iv3.461 (5)H5···O2v3.4645
C14···O1iv3.245 (4)H5···O1v3.4254
C15···O2iii3.591 (4)H5···N1v3.5727
C15···O2iv3.441 (4)H5···N2vi3.1676
C15···O1iv3.407 (4)H5···C16vi3.4957
C15···N2iv3.549 (4)H5···C15vi3.5171
C15···C15iv3.553 (5)H5···H4v3.3911
C8···N1vi3.504 (4)H5···H2ai3.3155
C8···C16vi3.504 (4)H5···H2av3.1946
C8···C8vi3.251 (4)H5···H2bi3.1505
C8···C7v3.382 (4)H5···H2bv3.0498
C7···O2i3.235 (4)H5···H10i2.9431
C7···C9v3.531 (4)H6···Br1v3.5893
C7···C11vi3.438 (5)H6···O1v3.4300
C7···C12vi3.204 (4)H6···O1vi3.5961
C7···C16vi3.512 (4)H6···C14i3.1729
C7···C13vi3.545 (5)H6···C15i2.9843
C7···C8v3.382 (4)H6···C2v3.2008
C6···C9v3.494 (5)H6···C1v3.2005
C6···C10v3.435 (4)H6···H9i2.8425
C6···C11v3.577 (4)H6···H2av3.2544
C6···C11vi3.455 (4)H6···H2bv3.0578
C6···C12vi3.570 (4)H6···H10i2.5189
C5···C11v3.430 (5)H7···Br2xi3.1930
C5···C12v3.395 (4)H7···C6vi3.4036
C4···C11v3.386 (5)H7···C4v3.2202
C3···C11v3.503 (5)H7···C3xi3.2679
C3···C3vii3.553 (5)H7···C3v3.1868
C2···C10v3.417 (5)H7···C2v3.5484
C1···C9v3.500 (5)H7···C1vi3.5052
C1···C10v3.216 (4)H7···H1xi2.4008
Br2···H12.9246H7···H1v3.4186
Br2···H22.9386H8···Br2v3.3349
Br1···H12.8453H8···Br1xi3.3429
O1···H41.9019H8···C5vi3.3410
N1···H52.6838H8···C3xi3.5317
N2···H42.3054H8···H1xi2.6504
N2···H93.2262H8···H2vi3.2389
C9···H43.1744H9···Br2xii3.1799
C9···H73.2758H9···Br1iv3.1411
C9···H32.6758H9···O2iv3.4986
C11···H53.2439H9···O1iv2.6114
C11···H82.7263H9···C10ii3.5628
C12···H63.2712H9···C2iv3.5608
C12···H93.2986H9···C1iv3.2966
C16···H42.4811H9···H6ii2.8425
C16···H53.2915H9···H2aiv2.9358
C16···H73.2635H2a···Br13.2207
C16···H83.3035H2a···O2iii3.2332
C16···H103.1514H2a···O11.8607
C13···H72.6451H2a···C14iv3.1287
C13···H103.2352H2a···C15iv3.2156
C15···H43.5810H2a···C23.4792
C15···H83.2635H2a···C12.8785
C8···H63.2335H2a···H2ii3.2590
C8···H32.6218H2a···H43.1151
C7···H22.5738H2a···H5ii3.3155
C7···H52.7450H2a···H5v3.1946
C6···H42.4512H2a···H6v3.2544
C5···H13.2960H2a···H9iv2.9358
C5···H32.5606H2a···H2biii3.0958
C3···H23.2649H2a···H10iv3.0931
C1···H13.3264H2a···H3ii3.0138
C1···H23.3407H2b···O2iii2.9125
C1···H42.4574H2b···O13.2329
C1···H33.3243H2b···N2iii2.4795
H2···H32.3548H2b···C16iii3.1593
H4···H53.4942H2b···C14iii3.4607
H4···H32.6355H2b···C15iii2.6491
H5···H62.2800H2b···C7ii3.5859
H5···H32.1835H2b···H2ii3.0600
H6···H72.3672H2b···H4iii3.4361
H7···H82.5302H2b···H5ii3.1505
H8···H92.3801H2b···H5v3.0498
H9···H102.2819H2b···H6v3.0578
Br2···H1viii3.3259H2b···H2aiii3.0958
Br2···H7ix3.1930H2b···H2biii3.1439
Br2···H8v3.3349H2b···H10iii2.7953
Br2···H9x3.1799H2b···H3ii2.7509
Br1···H2ii3.0863H10···O2iv3.4704
Br1···H6v3.5893H10···O1iv2.9448
Br1···H8ix3.3429H10···N2iv2.7204
Br1···H9iv3.1411H10···C9ii3.2816
Br1···H2a3.2207H10···C10ii3.0491
O2···H2ii2.9874H10···C15iv2.9333
O2···H5ii2.5933H10···H4iv3.1944
O2···H5v3.4645H10···H5ii2.9431
O2···H9iv3.4986H10···H6ii2.5189
O2···H2aiii3.2332H10···H2aiv3.0931
O2···H2biii2.9125H10···H2biii2.7953
O2···H10iv3.4704H10···H10iv2.5278
O2···H3ii2.3043H3···O2i2.3043
O1···H5v3.4254H3···C12vi3.2196
O1···H6v3.4300H3···C16vi3.3870
O1···H6vi3.5961H3···C13vi3.2974
O1···H9iv2.6114H3···C14vi3.4954
O1···H2a1.8607H3···C8v3.5002
O1···H2b3.2329H3···H2ai3.0138
O1···H10iv2.9448H3···H2bi2.7509
C8—N1—C7126.9 (3)Br1—C2—C1118.04 (19)
C16—N2—C15117.5 (3)C3—C2—C1122.9 (3)
C10—C9—C8119.6 (3)O1—C1—C6122.4 (3)
C9—C10—C11120.9 (3)O1—C1—C2123.1 (3)
C10—C11—C12120.9 (3)C6—C1—C2114.5 (3)
C11—C12—C16119.0 (3)H2a—O2—H2b104.997
C11—C12—C13124.0 (3)C8—N1—H4118.703
C16—C12—C13117.0 (3)C7—N1—H4114.421
N2—C16—C12123.1 (3)C10—C9—H5118.165
N2—C16—C8117.8 (3)C8—C9—H5122.173
C12—C16—C8119.1 (3)C9—C10—H6117.050
C12—C13—C14119.8 (3)C11—C10—H6122.057
C13—C14—C15118.6 (3)C10—C11—H7122.229
N2—C15—C14123.9 (3)C12—C11—H7116.883
N1—C8—C9123.8 (3)C12—C13—H8121.326
N1—C8—C16115.6 (3)C14—C13—H8118.840
C9—C8—C16120.5 (3)C13—C14—H9125.339
N1—C7—C6122.7 (3)C15—C14—H9116.025
C7—C6—C5117.7 (3)N2—C15—H10118.045
C7—C6—C1120.1 (3)C14—C15—H10118.053
C5—C6—C1122.0 (3)N1—C7—H3118.643
C6—C5—C4119.2 (3)C6—C7—H3118.650
Br2—C4—C5120.9 (2)C6—C5—H2119.587
Br2—C4—C3117.73 (19)C4—C5—H2120.964
C5—C4—C3121.2 (3)C4—C3—H1121.379
C4—C3—C2120.2 (3)C2—C3—H1118.393
Br1—C2—C3119.0 (2)
C8—N1—C7—C6178.3 (3)C12—C16—C8—C90.6 (4)
C7—N1—C8—C93.4 (5)C12—C13—C14—C150.6 (5)
C7—N1—C8—C16176.7 (3)C13—C14—C15—N21.0 (5)
C16—N2—C15—C141.3 (5)N1—C7—C6—C5178.0 (3)
C15—N2—C16—C120.1 (4)N1—C7—C6—C12.1 (5)
C15—N2—C16—C8178.2 (3)C7—C6—C5—C4176.6 (3)
C10—C9—C8—N1179.5 (3)C7—C6—C1—O12.5 (5)
C10—C9—C8—C160.4 (4)C7—C6—C1—C2176.5 (3)
C8—C9—C10—C110.0 (5)C5—C6—C1—O1178.2 (3)
C9—C10—C11—C120.3 (5)C5—C6—C1—C20.7 (4)
C10—C11—C12—C160.1 (5)C1—C6—C5—C40.8 (5)
C10—C11—C12—C13179.3 (3)C6—C5—C4—Br2175.0 (3)
C11—C12—C16—N2177.8 (3)C6—C5—C4—C30.1 (5)
C11—C12—C16—C80.3 (4)Br2—C4—C3—C2174.29 (19)
C11—C12—C13—C14177.5 (3)C5—C4—C3—C21.0 (5)
C16—C12—C13—C141.8 (4)C4—C3—C2—Br1175.4 (3)
C13—C12—C16—N21.6 (4)C4—C3—C2—C11.0 (5)
C13—C12—C16—C8179.7 (3)Br1—C2—C1—O12.7 (4)
N2—C16—C8—N12.5 (4)Br1—C2—C1—C6176.26 (16)
N2—C16—C8—C9177.6 (3)C3—C2—C1—O1179.2 (3)
C12—C16—C8—N1179.3 (3)C3—C2—C1—C60.2 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1, z+2; (iv) x+1, y+1, z+2; (v) x, y, z+2; (vi) x+1, y, z+2; (vii) x, y, z+1; (viii) x1, y, z+1; (ix) x1, y, z1; (x) x1, y1, z1; (xi) x+1, y, z+1; (xii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2a···O10.951.862.802 (4)171
N1—H4···O10.831.902.592 (4)140
N1—H4···N20.832.312.668 (3)107
C7—H3···O2i0.952.313.234 (4)166
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H10Br2N2O·H2O
Mr424.09
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)7.0027 (8), 8.2782 (11), 12.9164 (19)
α, β, γ (°)94.953 (9), 102.010 (5), 94.551 (6)
V3)725.99 (17)
Z2
Radiation typeMo Kα
µ (mm1)5.61
Crystal size (mm)0.64 × 0.58 × 0.18
Data collection
DiffractometerRigaku Mercury70
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.145, 0.364
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
6768, 3281, 3070
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.00
No. of reflections3281
No. of parameters239
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 1.49

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2a···O10.9501.8612.802 (4)170.6
N1—H4···O10.8271.9022.592 (4)140.2
N1—H4···N20.8272.3052.668 (3)107.1
C7—H3···O2i0.9502.3053.234 (4)166.07
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank Mr Yuta Komine for the preparation of the title compound and the Japan Private School Promotion Foundation for financial support.

References

First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibahara, T., Takahashi, M., Maekawa, A. & Takagi, H. (2010). Acta Cryst. E66, o429.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds