organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2,4-Di­chloro­phen­­oxy)-1,3-di­methyl-1H-pyrazole-4-carbaldehyde

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China, and bDepartment of Chemistry and Environmental Science, Cangzhou Normal University, Cangzhou 061001, People's Republic of China
*Correspondence e-mail: gaofz2005@yahoo.com.cn

(Received 28 October 2011; accepted 31 October 2011; online 5 November 2011)

In the title mol­ecule, C12H10Cl2N2O2, the benzene and pyrazole rings form a dihedral angle of 72.8 (3)°. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains along [01[\overline{1}]].

Related literature

For the crystal structure of a related pyrazole derivative studied recently by our group, see: Shen et al. (2011[Shen, Y.-J., Xu, M. & Fan, C.-G. (2011). Acta Cryst. E67, o2936.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10Cl2N2O2

  • Mr = 285.12

  • Triclinic, [P \overline 1]

  • a = 8.018 (3) Å

  • b = 8.505 (3) Å

  • c = 10.365 (5) Å

  • α = 74.56 (2)°

  • β = 83.96 (3)°

  • γ = 67.30 (2)°

  • V = 628.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 113 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]) Tmin = 0.887, Tmax = 0.905

  • 6391 measured reflections

  • 2948 independent reflections

  • 2766 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.146

  • S = 1.06

  • 2948 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.45 3.284 (3) 147
C10—H10C⋯O2ii 0.98 2.46 3.391 (3) 158
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z+2.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a continuation of our structural study of pyrazole derivatives (Shen et al., 2011), we present here the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compound (Shen et al., 2011). The dihedral angle between the substituted benzene ring and pyrazole ring is 72.8 (3) °. The crystal packing exhibits weak intermolecular C—H···O interactions (Table 1), which link molecules into chains along [01-1].

Related literature top

For the crystal structure of a related pyrazole derivative studied recently by our group, see: Shen et al. (2011).

Experimental top

To a stirred solution of 1-methyl-3-methyl-5-chloro-1H-pyrazole- 4-carbaldehyde(30 mmol) and 2,4-dichlorophenol(48 mmol) in DMF(30 ml) was added potassium hydroxide(60 mmol) at room temperature. The resulting mixture was heated to 388 k for 6 h. Then the reaction solution was poured into cold water(100 ml) and extracted with ethyl acetate (3 * 60 ml). The organic layer was dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was recrystallized from ethyl acetate/petroleum ether to give colourless crystals.

Refinement top

All H atoms were placed in calculated positions, with C–H = 0.95 - 0.98 ° A, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2-1.5 Ueq(C).

Structure description top

As a continuation of our structural study of pyrazole derivatives (Shen et al., 2011), we present here the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compound (Shen et al., 2011). The dihedral angle between the substituted benzene ring and pyrazole ring is 72.8 (3) °. The crystal packing exhibits weak intermolecular C—H···O interactions (Table 1), which link molecules into chains along [01-1].

For the crystal structure of a related pyrazole derivative studied recently by our group, see: Shen et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
5-(2,4-Dichlorophenoxy)-1,3-dimethyl-1H-pyrazole-4-carbaldehyde top
Crystal data top
C12H10Cl2N2O2Z = 2
Mr = 285.12F(000) = 292
Triclinic, P1Dx = 1.507 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.018 (3) ÅCell parameters from 2204 reflections
b = 8.505 (3) Åθ = 2.0–27.9°
c = 10.365 (5) ŵ = 0.51 mm1
α = 74.56 (2)°T = 113 K
β = 83.96 (3)°Prism, colourless
γ = 67.30 (2)°0.24 × 0.22 × 0.20 mm
V = 628.5 (5) Å3
Data collection top
Rigaku Saturn724 CCD
diffractometer
2948 independent reflections
Radiation source: rotating anode2766 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.059
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 2.0°
ω and φ scansh = 109
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1111
Tmin = 0.887, Tmax = 0.905l = 1313
6391 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0863P)2 + 0.4717P]
where P = (Fo2 + 2Fc2)/3
2948 reflections(Δ/σ)max = 0.002
165 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C12H10Cl2N2O2γ = 67.30 (2)°
Mr = 285.12V = 628.5 (5) Å3
Triclinic, P1Z = 2
a = 8.018 (3) ÅMo Kα radiation
b = 8.505 (3) ŵ = 0.51 mm1
c = 10.365 (5) ÅT = 113 K
α = 74.56 (2)°0.24 × 0.22 × 0.20 mm
β = 83.96 (3)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
2948 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2766 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.905Rint = 0.059
6391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
2948 reflectionsΔρmin = 0.59 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32121 (7)0.81388 (7)0.29679 (5)0.03004 (17)
Cl20.90839 (7)0.84252 (7)0.48228 (5)0.02853 (17)
O10.7986 (2)0.68007 (19)0.73949 (13)0.0229 (3)
O21.1787 (2)0.15447 (19)0.88478 (15)0.0268 (3)
N10.6770 (2)0.6174 (2)0.95613 (15)0.0200 (3)
N20.7105 (2)0.4841 (2)1.07097 (15)0.0203 (3)
C10.5338 (3)0.6535 (3)0.66259 (18)0.0220 (4)
H10.50900.59630.75020.026*
C20.4222 (3)0.6874 (3)0.55656 (19)0.0233 (4)
H20.32030.65400.57110.028*
C30.4611 (3)0.7702 (3)0.42976 (19)0.0225 (4)
C40.6096 (3)0.8200 (2)0.40452 (19)0.0220 (4)
H40.63470.87620.31670.026*
C50.7201 (3)0.7854 (2)0.51096 (18)0.0201 (4)
C60.6823 (3)0.7040 (2)0.63958 (18)0.0194 (4)
C70.7948 (3)0.5673 (2)0.85978 (17)0.0186 (4)
C80.9135 (3)0.3965 (2)0.90937 (18)0.0194 (4)
C90.8528 (3)0.3516 (2)1.04350 (18)0.0188 (4)
C100.9292 (3)0.1822 (3)1.1457 (2)0.0249 (4)
H10A0.86260.19121.23000.037*
H10B1.05690.15631.16020.037*
H10C0.91850.08751.11430.037*
C110.5330 (3)0.7878 (3)0.9522 (2)0.0245 (4)
H11A0.55640.87740.87940.037*
H11B0.52860.81821.03760.037*
H11C0.41700.78220.93690.037*
C121.0679 (3)0.3008 (3)0.8386 (2)0.0226 (4)
H121.08480.35660.74850.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0258 (3)0.0415 (3)0.0194 (3)0.0095 (2)0.00688 (19)0.0039 (2)
Cl20.0265 (3)0.0386 (3)0.0221 (3)0.0183 (2)0.00085 (19)0.0012 (2)
O10.0273 (7)0.0298 (7)0.0143 (6)0.0164 (6)0.0027 (5)0.0001 (5)
O20.0248 (7)0.0256 (7)0.0293 (7)0.0064 (6)0.0004 (6)0.0104 (6)
N10.0201 (8)0.0219 (8)0.0159 (7)0.0060 (6)0.0012 (6)0.0034 (6)
N20.0240 (8)0.0236 (8)0.0142 (7)0.0107 (7)0.0025 (6)0.0022 (6)
C10.0255 (10)0.0260 (9)0.0141 (8)0.0108 (8)0.0007 (7)0.0030 (7)
C20.0218 (9)0.0284 (10)0.0206 (9)0.0108 (8)0.0001 (7)0.0051 (7)
C30.0226 (9)0.0262 (9)0.0149 (8)0.0045 (8)0.0027 (7)0.0049 (7)
C40.0207 (9)0.0216 (9)0.0175 (8)0.0027 (7)0.0014 (7)0.0032 (7)
C50.0199 (9)0.0215 (9)0.0169 (8)0.0069 (7)0.0029 (7)0.0039 (7)
C60.0207 (9)0.0202 (8)0.0151 (8)0.0048 (7)0.0024 (7)0.0041 (6)
C70.0218 (9)0.0231 (9)0.0131 (7)0.0110 (7)0.0026 (6)0.0030 (6)
C80.0204 (9)0.0232 (9)0.0165 (8)0.0100 (7)0.0016 (7)0.0049 (7)
C90.0207 (9)0.0210 (8)0.0165 (8)0.0094 (7)0.0026 (6)0.0041 (6)
C100.0272 (10)0.0230 (9)0.0216 (9)0.0087 (8)0.0062 (7)0.0005 (7)
C110.0232 (10)0.0215 (9)0.0254 (9)0.0038 (8)0.0032 (7)0.0061 (7)
C120.0235 (9)0.0251 (9)0.0222 (9)0.0101 (8)0.0001 (7)0.0092 (7)
Geometric parameters (Å, º) top
Cl1—C31.740 (2)C4—C51.386 (3)
Cl2—C51.731 (2)C4—H40.9500
O1—C71.361 (2)C5—C61.391 (3)
O1—C61.388 (2)C7—C81.385 (3)
O2—C121.219 (3)C8—C91.426 (3)
N1—C71.338 (2)C8—C121.443 (3)
N1—N21.374 (2)C9—C101.489 (3)
N1—C111.456 (3)C10—H10A0.9800
N2—C91.328 (3)C10—H10B0.9800
C1—C21.390 (3)C10—H10C0.9800
C1—C61.392 (3)C11—H11A0.9800
C1—H10.9500C11—H11B0.9800
C2—C31.382 (3)C11—H11C0.9800
C2—H20.9500C12—H120.9500
C3—C41.389 (3)
C7—O1—C6118.55 (15)N1—C7—C8108.81 (16)
C7—N1—N2110.80 (16)O1—C7—C8128.76 (17)
C7—N1—C11128.50 (17)C7—C8—C9103.53 (16)
N2—N1—C11120.66 (16)C7—C8—C12125.35 (17)
C9—N2—N1105.68 (15)C9—C8—C12130.95 (18)
C2—C1—C6119.56 (17)N2—C9—C8111.17 (17)
C2—C1—H1120.2N2—C9—C10121.08 (17)
C6—C1—H1120.2C8—C9—C10127.74 (18)
C3—C2—C1119.33 (19)C9—C10—H10A109.5
C3—C2—H2120.3C9—C10—H10B109.5
C1—C2—H2120.3H10A—C10—H10B109.5
C2—C3—C4121.98 (18)C9—C10—H10C109.5
C2—C3—Cl1119.51 (16)H10A—C10—H10C109.5
C4—C3—Cl1118.50 (15)H10B—C10—H10C109.5
C5—C4—C3118.21 (17)N1—C11—H11A109.5
C5—C4—H4120.9N1—C11—H11B109.5
C3—C4—H4120.9H11A—C11—H11B109.5
C4—C5—C6120.74 (18)N1—C11—H11C109.5
C4—C5—Cl2119.32 (14)H11A—C11—H11C109.5
C6—C5—Cl2119.94 (15)H11B—C11—H11C109.5
O1—C6—C5116.08 (17)O2—C12—C8125.49 (19)
O1—C6—C1123.75 (16)O2—C12—H12117.3
C5—C6—C1120.17 (17)C8—C12—H12117.3
N1—C7—O1122.15 (17)
C7—N1—N2—C90.7 (2)C11—N1—C7—O12.7 (3)
C11—N1—N2—C9177.30 (16)N2—N1—C7—C80.6 (2)
C6—C1—C2—C30.2 (3)C11—N1—C7—C8177.13 (18)
C1—C2—C3—C40.4 (3)C6—O1—C7—N185.0 (2)
C1—C2—C3—Cl1179.69 (15)C6—O1—C7—C8101.7 (2)
C2—C3—C4—C50.3 (3)N1—C7—C8—C90.3 (2)
Cl1—C3—C4—C5179.75 (14)O1—C7—C8—C9174.29 (17)
C3—C4—C5—C60.4 (3)N1—C7—C8—C12175.30 (17)
C3—C4—C5—Cl2178.92 (14)O1—C7—C8—C121.3 (3)
C7—O1—C6—C5165.15 (17)N1—N2—C9—C80.4 (2)
C7—O1—C6—C115.6 (3)N1—N2—C9—C10179.92 (16)
C4—C5—C6—O1178.22 (16)C7—C8—C9—N20.1 (2)
Cl2—C5—C6—O12.5 (2)C12—C8—C9—N2175.37 (19)
C4—C5—C6—C11.0 (3)C7—C8—C9—C10179.69 (18)
Cl2—C5—C6—C1178.27 (15)C12—C8—C9—C105.0 (3)
C2—C1—C6—O1178.23 (17)C7—C8—C12—O2175.37 (19)
C2—C1—C6—C50.9 (3)C9—C8—C12—O21.0 (3)
N2—N1—C7—O1175.06 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.453.284 (3)147
C10—H10C···O2ii0.982.463.391 (3)158
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC12H10Cl2N2O2
Mr285.12
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)8.018 (3), 8.505 (3), 10.365 (5)
α, β, γ (°)74.56 (2), 83.96 (3), 67.30 (2)
V3)628.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerRigaku Saturn724 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.887, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
6391, 2948, 2766
Rint0.059
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.146, 1.06
No. of reflections2948
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.59

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.453.284 (3)147
C10—H10C···O2ii0.982.463.391 (3)158
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+2.
 

Acknowledgements

This work was supported by the Scientific Research Foundation for Talent Introduction of Nantong University (grant No. 03080226).

References

First citationRigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y.-J., Xu, M. & Fan, C.-G. (2011). Acta Cryst. E67, o2936.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds