organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 3-(1H-indol-3-yl)acrylate

aSchool of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: lidongfeng@mail.ccut.edu.cn

(Received 30 October 2011; accepted 5 November 2011; online 12 November 2011)

In the title compound, C12H11NO2, the indole and methyl acrylate mean planes are inclined at an angle of 10.6 (1)°. In the crystal, N—H⋯π inter­actions link mol­ecules into chains along [010] and weak inter­molecular C—H⋯O hydrogen bonds further consolidate the crystal packing.

Related literature

For general background to the synthesis of 3-substituted indole derivatives as precursors of potent anti-inflammatory and analgesic agents, see Radwan et al. (1997[Radwan, M. A. A., Ragab, E. A., Sabry, N. M. & Shenawy, S. M. E. (1997). Bioorg. Med. Chem. 15, 3832-3841.]). For details of the synthesis, see García-Rubia et al. (2010[García-Rubia, A., Urones, B., Arrayás, R. G. & Carretero, J. C. (2010). Chem. Eur. J. 16, 9676-9685.]). For related structures, see: Bhella et al. (2009[Bhella, S. S., Pannu, A. P. S., Elango, M., Kapoor, A., Hundal, M. S. S. & Ishar, M. P. (2009). Tetrahedron, 65, 5928-5935.]); Hou & Li (2011[Hou, R.-B. & Li, D.-F. (2011). Acta Cryst. E67, o2197.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11NO2

  • Mr = 201.22

  • Monoclinic, P 21 /c

  • a = 5.884 (3) Å

  • b = 7.923 (5) Å

  • c = 21.898 (13) Å

  • β = 93.54 (3)°

  • V = 1018.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 288 K

  • 0.43 × 0.26 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.963, Tmax = 0.980

  • 9616 measured reflections

  • 2333 independent reflections

  • 1730 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.136

  • S = 1.08

  • 2333 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.65 3.558 (2) 165
C12—H12B⋯O1ii 0.96 2.63 3.540 (3) 159
N1—H1ACgiii 0.86 2.52 3.189 (3) 135
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indole skeleton is a key component of many biologically active compounds. Radwan et al. (1997) have synthesized and evaluated of 3-substituted indole derivatives as precursors of potent anti-inflammatory and analgesic agents. Recently, Bhella et al. (2009) reported a series of compounds with the similar structures. In this paper, we report the crystal structure of the title compound.

In the tiltle compound (Fig. 1), all bond lengths and angles are normal and comparable with those reported for close structures (Bhella et al., 2009; Hou & Li, 2011). The dihedral angle between the indole and methyl acrylate mean planes is 10.6 (1)°. In the crystal structure, N—H···π interactions (Table 1) link molecules into chians along [010], and weak intermolecular C—H···O hydrogen bonds (Table 1) consolidate further the crystal packing.

Related literature top

For general background to the synthesis of 3-substituted indole derivatives as precursors of potent anti-inflammatory and analgesic agents, see Radwan et al. (1997). For details of the synthesis, see García-Rubia et al. (2010). For related structures, see: Bhella et al. (2009); Hou & Li (2011).

Experimental top

The title compound was prepared according to the literature (García-Rubia et al., 2010). Single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60–90 °C) at room temperature.

Refinement top

C-bound H atoms were placed in calculated positions (C—H 0.93 and 0.96 Å) and were included in the refinement in the riding model with Uiso(H) = 1.2 and 1.5 Ueq(C). The N-bound H atom was placed in calculated position with N—H = 0.86 Å and refined with Uiso(H) = 1.2 Ueq(N).

Structure description top

Indole skeleton is a key component of many biologically active compounds. Radwan et al. (1997) have synthesized and evaluated of 3-substituted indole derivatives as precursors of potent anti-inflammatory and analgesic agents. Recently, Bhella et al. (2009) reported a series of compounds with the similar structures. In this paper, we report the crystal structure of the title compound.

In the tiltle compound (Fig. 1), all bond lengths and angles are normal and comparable with those reported for close structures (Bhella et al., 2009; Hou & Li, 2011). The dihedral angle between the indole and methyl acrylate mean planes is 10.6 (1)°. In the crystal structure, N—H···π interactions (Table 1) link molecules into chians along [010], and weak intermolecular C—H···O hydrogen bonds (Table 1) consolidate further the crystal packing.

For general background to the synthesis of 3-substituted indole derivatives as precursors of potent anti-inflammatory and analgesic agents, see Radwan et al. (1997). For details of the synthesis, see García-Rubia et al. (2010). For related structures, see: Bhella et al. (2009); Hou & Li (2011).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacemnet ellipsoids.
(E)-Methyl 3-(1H-indol-3-yl)acrylate top
Crystal data top
C12H11NO2F(000) = 424
Mr = 201.22Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6974 reflections
a = 5.884 (3) Åθ = 3.2–27.5°
b = 7.923 (5) ŵ = 0.09 mm1
c = 21.898 (13) ÅT = 288 K
β = 93.54 (3)°Block, colourless
V = 1018.9 (10) Å30.43 × 0.26 × 0.22 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2333 independent reflections
Radiation source: fine-focus sealed tube1730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 67
Tmin = 0.963, Tmax = 0.980k = 1010
9616 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0781P)2 + 0.0624P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2333 reflectionsΔρmax = 0.20 e Å3
138 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (5)
Crystal data top
C12H11NO2V = 1018.9 (10) Å3
Mr = 201.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.884 (3) ŵ = 0.09 mm1
b = 7.923 (5) ÅT = 288 K
c = 21.898 (13) Å0.43 × 0.26 × 0.22 mm
β = 93.54 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2333 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1730 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.980Rint = 0.031
9616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.08Δρmax = 0.20 e Å3
2333 reflectionsΔρmin = 0.18 e Å3
138 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9472 (2)0.64568 (18)0.23712 (6)0.0434 (3)
H11.05280.70100.21430.052*
C20.9795 (3)0.63514 (19)0.30016 (7)0.0502 (4)
H21.10920.68290.31950.060*
C30.8210 (3)0.55410 (19)0.33566 (7)0.0534 (4)
H30.84610.55100.37800.064*
C40.6291 (3)0.47926 (19)0.30863 (7)0.0524 (4)
H40.52450.42440.33190.063*
C50.5973 (2)0.48890 (17)0.24505 (7)0.0434 (3)
C60.7520 (2)0.57135 (16)0.20809 (6)0.0379 (3)
C70.6584 (2)0.55697 (17)0.14540 (6)0.0428 (3)
C80.4580 (2)0.46741 (19)0.14818 (7)0.0503 (4)
H80.36160.43870.11450.060*
C90.7440 (3)0.61468 (18)0.08871 (7)0.0461 (4)
H90.64730.60000.05390.055*
C100.9444 (3)0.68641 (19)0.07991 (6)0.0474 (4)
H101.04610.70670.11330.057*
C111.0071 (3)0.73389 (19)0.01826 (6)0.0462 (4)
C121.3035 (3)0.8419 (3)0.03879 (8)0.0621 (5)
H12A1.25040.76380.07000.093*
H12B1.46690.84300.03590.093*
H12C1.24770.95280.04900.093*
N10.4222 (2)0.42746 (16)0.20675 (6)0.0520 (4)
H1A0.30710.37190.21840.062*
O10.8851 (2)0.72446 (18)0.02800 (5)0.0711 (4)
O21.22147 (19)0.79075 (16)0.01910 (5)0.0607 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (7)0.0419 (7)0.0452 (8)0.0007 (6)0.0015 (6)0.0008 (6)
C20.0524 (8)0.0507 (8)0.0463 (8)0.0032 (7)0.0077 (7)0.0025 (6)
C30.0702 (10)0.0491 (8)0.0404 (7)0.0101 (7)0.0006 (7)0.0023 (6)
C40.0644 (10)0.0426 (7)0.0517 (8)0.0047 (7)0.0149 (7)0.0057 (6)
C50.0441 (7)0.0340 (7)0.0521 (8)0.0027 (6)0.0037 (6)0.0018 (6)
C60.0396 (7)0.0316 (6)0.0426 (7)0.0043 (5)0.0018 (6)0.0013 (5)
C70.0439 (7)0.0387 (7)0.0452 (7)0.0032 (6)0.0012 (6)0.0043 (6)
C80.0449 (8)0.0497 (8)0.0553 (9)0.0006 (6)0.0049 (7)0.0077 (7)
C90.0496 (8)0.0454 (8)0.0423 (7)0.0048 (6)0.0055 (6)0.0036 (6)
C100.0535 (8)0.0499 (8)0.0379 (7)0.0033 (7)0.0037 (6)0.0035 (6)
C110.0471 (8)0.0499 (8)0.0412 (7)0.0063 (6)0.0001 (6)0.0032 (6)
C120.0568 (9)0.0772 (11)0.0535 (9)0.0000 (9)0.0116 (8)0.0016 (8)
N10.0453 (7)0.0484 (7)0.0625 (8)0.0086 (5)0.0057 (6)0.0025 (6)
O10.0614 (8)0.1069 (10)0.0435 (6)0.0047 (7)0.0078 (5)0.0081 (6)
O20.0550 (7)0.0826 (8)0.0444 (6)0.0088 (6)0.0013 (5)0.0001 (5)
Geometric parameters (Å, º) top
C1—C21.384 (2)C8—N11.350 (2)
C1—C61.407 (2)C8—H80.9300
C1—H10.9300C9—C101.334 (2)
C2—C31.406 (2)C9—H90.9300
C2—H20.9300C10—C111.470 (2)
C3—C41.376 (2)C10—H100.9300
C3—H30.9300C11—O11.2075 (18)
C4—C51.396 (2)C11—O21.338 (2)
C4—H40.9300C12—O21.442 (2)
C5—N11.377 (2)C12—H12A0.9600
C5—C61.415 (2)C12—H12B0.9600
C6—C71.452 (2)C12—H12C0.9600
C7—C81.380 (2)N1—H1A0.8600
C7—C91.443 (2)
C2—C1—C6118.88 (14)N1—C8—H8124.9
C2—C1—H1120.6C7—C8—H8124.9
C6—C1—H1120.6C10—C9—C7128.21 (14)
C1—C2—C3121.62 (14)C10—C9—H9115.9
C1—C2—H2119.2C7—C9—H9115.9
C3—C2—H2119.2C9—C10—C11121.07 (13)
C4—C3—C2120.92 (15)C9—C10—H10119.5
C4—C3—H3119.5C11—C10—H10119.5
C2—C3—H3119.5O1—C11—O2122.92 (15)
C3—C4—C5117.46 (15)O1—C11—C10125.77 (16)
C3—C4—H4121.3O2—C11—C10111.31 (12)
C5—C4—H4121.3O2—C12—H12A109.5
N1—C5—C4129.60 (14)O2—C12—H12B109.5
N1—C5—C6107.38 (14)H12A—C12—H12B109.5
C4—C5—C6123.02 (14)O2—C12—H12C109.5
C1—C6—C5118.10 (13)H12A—C12—H12C109.5
C1—C6—C7135.37 (13)H12B—C12—H12C109.5
C5—C6—C7106.53 (12)C8—N1—C5109.94 (13)
C8—C7—C9123.06 (13)C8—N1—H1A125.0
C8—C7—C6105.90 (13)C5—N1—H1A125.0
C9—C7—C6131.02 (13)C11—O2—C12116.66 (12)
N1—C8—C7110.25 (13)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.653.558 (2)165
C12—H12B···O1ii0.962.633.540 (3)159
N1—H1A···Cgiii0.862.523.189 (3)135
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H11NO2
Mr201.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)288
a, b, c (Å)5.884 (3), 7.923 (5), 21.898 (13)
β (°) 93.54 (3)
V3)1018.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.26 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.963, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
9616, 2333, 1730
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.136, 1.08
No. of reflections2333
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.653.558 (2)165.0
C12—H12B···O1ii0.962.633.540 (3)158.5
N1—H1A···Cgiii0.862.523.189 (3)134.6
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of Jilin Province (grant No. 20101548).

References

First citationBhella, S. S., Pannu, A. P. S., Elango, M., Kapoor, A., Hundal, M. S. S. & Ishar, M. P. (2009). Tetrahedron, 65, 5928–5935.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarcía-Rubia, A., Urones, B., Arrayás, R. G. & Carretero, J. C. (2010). Chem. Eur. J. 16, 9676–9685.  Web of Science PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, R.-B. & Li, D.-F. (2011). Acta Cryst. E67, o2197.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRadwan, M. A. A., Ragab, E. A., Sabry, N. M. & Shenawy, S. M. E. (1997). Bioorg. Med. Chem. 15, 3832–3841.  Web of Science CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds