organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Chloro­phen­­oxy)-1-methyl-3-tri­fluoro­methyl-1H-pyrazole-4-carbaldehyde O-[(2-chloro­pyridin-5-yl)meth­yl]oxime

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China, and bState Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: nankaidx228@yahoo.com.cn

(Received 30 October 2011; accepted 3 November 2011; online 9 November 2011)

In the title mol­ecule, C18H13Cl2F3N4O2, the intra­molecular distance between the centroids of the benzene and pyridine rings is 3.953 (3) Å, and the trifluoro­methyl group is rotationally disordered over two orientations in a 0.678 (19):0.322 (19) ratio. The crystal packing exhibits weak inter­molecular C—H⋯F inter­actions.

Related literature

For the crystal structure of a related pyrazole oxime studied recently by our group, see: Dai et al. (2011[Dai, H., Miao, W.-K., Wu, S.-S., Qin, X. & Fang, J.-X. (2011). Acta Cryst. E67, o775.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13Cl2F3N4O2

  • Mr = 445.22

  • Monoclinic, P 21 /c

  • a = 12.269 (3) Å

  • b = 10.443 (2) Å

  • c = 15.702 (3) Å

  • β = 108.93 (3)°

  • V = 1902.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 113 K

  • 0.14 × 0.10 × 0.08 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]) Tmin = 0.947, Tmax = 0.969

  • 10759 measured reflections

  • 3356 independent reflections

  • 2845 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.07

  • 3356 reflections

  • 291 parameters

  • 66 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5C⋯F3i 0.96 2.55 3.488 (7) 165
C11—H11⋯F3′ii 0.93 2.56 3.358 (14) 144
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]); cell refinement: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]); data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a continuation of our structural study of pyrazole oximes (Dai et al., 2011), we report here the crystal structure of the title compound (I).

In (I) (Fig. 1), all bonds lengths and angles are similar to those observed in the related compound (Dai et al., 2011). The dihedral angles between the planes of the pyridyl and pyrazole rings, and between the benzene and the pyrazole rings are 91.0 (3)° and 95.8 (3)°, respectively. The crystal packing displays weak intermolecular C—H···F interactions (Table 1).

Related literature top

For the crystal structure of a related pyrazole oxime studied recently by our group, see: Dai et al. (2011).

Experimental top

To a well stirred solution of 1-methyl-3-trifluoromethyl-5-(4-chlorophenoxy)- 1H-pyrazole-4-carbaldehyde oxime (3 mmol) and 2-chloro-5-chloromethylpyridine (3.6 mmol) in 40 ml of anhydrous DMF, was added powdered potassium carbonate (7.5 mmol). The resulting solution was heated to 363 K for 10 h and cooled to room temperature. The mixture was poured into water (180 ml) and extracted with dichloromethane (4 * 50 ml). The organic layer was washed with saturated brine (3 * 30 ml) and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, the residue was separated by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1 v/v) as eluent, and then recrystallized from ethyl acetate to give a colourless crystal.

Refinement top

H atoms were placed in calculated positions, with C–H = 0.93 - 0.97 ° A, and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C). The trifluoromethyl was treated as disordered over two orientations. The displacement parameters of atoms F1, F2, F3, F1', F2' and F3' were restrained to behave approximately isotropic.

Structure description top

As a continuation of our structural study of pyrazole oximes (Dai et al., 2011), we report here the crystal structure of the title compound (I).

In (I) (Fig. 1), all bonds lengths and angles are similar to those observed in the related compound (Dai et al., 2011). The dihedral angles between the planes of the pyridyl and pyrazole rings, and between the benzene and the pyrazole rings are 91.0 (3)° and 95.8 (3)°, respectively. The crystal packing displays weak intermolecular C—H···F interactions (Table 1).

For the crystal structure of a related pyrazole oxime studied recently by our group, see: Dai et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probabilty displacement ellipsoids.
5-(4-Chlorophenoxy)-1-methyl-3-trifluoromethyl-1H- pyrazole-4-carbaldehyde O-[(2-chloropyridin-5-yl)methyl]oxime top
Crystal data top
C18H13Cl2F3N4O2F(000) = 904
Mr = 445.22Dx = 1.554 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4362 reflections
a = 12.269 (3) Åθ = 1.8–27.9°
b = 10.443 (2) ŵ = 0.39 mm1
c = 15.702 (3) ÅT = 113 K
β = 108.93 (3)°Monoclinic, colourless
V = 1902.9 (7) Å30.14 × 0.10 × 0.08 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
3356 independent reflections
Radiation source: rotating anode2845 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.041
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 1414
Tmin = 0.947, Tmax = 0.969k = 1212
10759 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0531P)2]
where P = (Fo2 + 2Fc2)/3
3356 reflections(Δ/σ)max = 0.003
291 parametersΔρmax = 0.29 e Å3
66 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H13Cl2F3N4O2V = 1902.9 (7) Å3
Mr = 445.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.269 (3) ŵ = 0.39 mm1
b = 10.443 (2) ÅT = 113 K
c = 15.702 (3) Å0.14 × 0.10 × 0.08 mm
β = 108.93 (3)°
Data collection top
Rigaku Saturn
diffractometer
3356 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2845 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.969Rint = 0.041
10759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03566 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
3356 reflectionsΔρmin = 0.26 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.42312 (4)0.81673 (5)1.05301 (4)0.03177 (16)
Cl20.24719 (4)0.78497 (5)0.81487 (3)0.02958 (16)
F11.0291 (4)0.1147 (5)1.0472 (5)0.0485 (14)0.678 (19)
F20.8486 (6)0.0969 (7)1.0153 (6)0.0436 (15)0.678 (19)
F30.9173 (8)0.1880 (6)0.9233 (3)0.0509 (13)0.678 (19)
F1'0.8773 (14)0.0850 (14)1.0406 (10)0.040 (3)0.322 (19)
F2'0.8654 (15)0.1804 (12)0.9205 (6)0.052 (3)0.322 (19)
F3'1.0278 (9)0.1329 (11)1.0091 (13)0.054 (3)0.322 (19)
O10.89000 (10)0.62356 (11)1.10140 (8)0.0181 (3)
O20.76286 (11)0.60323 (12)0.81549 (8)0.0197 (3)
N10.97610 (13)0.30373 (14)1.14348 (10)0.0184 (3)
N20.96106 (13)0.42594 (15)1.16558 (10)0.0177 (3)
N30.80499 (12)0.57770 (15)0.90895 (9)0.0180 (3)
N40.43641 (14)0.66049 (15)0.83015 (11)0.0229 (4)
C10.92933 (16)0.17597 (18)1.00931 (12)0.0217 (4)
C20.92895 (15)0.30085 (17)1.05422 (12)0.0173 (4)
C30.88375 (15)0.41957 (17)1.01704 (12)0.0163 (4)
C40.90697 (14)0.49692 (17)1.09258 (11)0.0159 (4)
C51.00381 (17)0.4675 (2)1.25933 (11)0.0254 (5)
H5A0.98110.55461.26350.038*
H5B1.08630.46151.28120.038*
H5C0.97210.41371.29500.038*
C60.77559 (15)0.66348 (17)1.08527 (11)0.0171 (4)
C70.69070 (16)0.58030 (18)1.09125 (11)0.0189 (4)
H70.70650.49371.10290.023*
C80.58119 (17)0.62885 (18)1.07952 (12)0.0206 (4)
H80.52260.57441.08270.025*
C90.55957 (17)0.75740 (18)1.06322 (12)0.0204 (4)
C100.64499 (16)0.84005 (18)1.05618 (12)0.0220 (4)
H100.62930.92661.04440.026*
C110.75420 (17)0.79174 (17)1.06702 (12)0.0193 (4)
H110.81230.84551.06200.023*
C120.83287 (15)0.46034 (18)0.92371 (12)0.0177 (4)
H120.82120.40260.87650.021*
C130.72665 (16)0.73399 (18)0.80495 (12)0.0203 (4)
H13A0.72630.76430.74650.024*
H13B0.78170.78530.85050.024*
C140.60834 (16)0.75256 (17)0.81277 (11)0.0173 (4)
C150.55696 (17)0.87257 (19)0.80193 (13)0.0232 (4)
H150.59710.94410.79290.028*
C160.44578 (17)0.88534 (19)0.80457 (13)0.0250 (5)
H160.40990.96490.79840.030*
C170.39031 (16)0.77536 (19)0.81674 (12)0.0211 (4)
C180.54451 (16)0.65150 (18)0.82871 (12)0.0211 (4)
H180.57940.57140.83920.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0236 (3)0.0318 (3)0.0403 (3)0.0106 (2)0.0108 (2)0.0023 (2)
Cl20.0196 (3)0.0357 (3)0.0373 (3)0.0061 (2)0.0147 (2)0.0090 (2)
F10.0318 (16)0.0334 (17)0.065 (3)0.0189 (13)0.0060 (15)0.0266 (18)
F20.038 (2)0.030 (2)0.076 (4)0.0155 (17)0.036 (2)0.021 (2)
F30.108 (4)0.0256 (13)0.0330 (16)0.004 (3)0.042 (2)0.0057 (12)
F1'0.076 (7)0.014 (3)0.043 (5)0.016 (4)0.037 (5)0.007 (3)
F2'0.092 (7)0.026 (3)0.030 (3)0.013 (5)0.005 (4)0.008 (2)
F3'0.029 (3)0.047 (4)0.103 (7)0.010 (3)0.044 (4)0.041 (5)
O10.0169 (7)0.0131 (6)0.0238 (7)0.0001 (5)0.0061 (5)0.0023 (5)
O20.0201 (7)0.0238 (7)0.0148 (6)0.0045 (6)0.0051 (5)0.0026 (5)
N10.0178 (8)0.0160 (8)0.0231 (8)0.0020 (7)0.0087 (7)0.0020 (6)
N20.0188 (8)0.0169 (8)0.0191 (8)0.0020 (7)0.0087 (7)0.0009 (6)
N30.0167 (8)0.0237 (9)0.0135 (7)0.0028 (7)0.0049 (6)0.0032 (7)
N40.0208 (9)0.0206 (9)0.0295 (9)0.0007 (7)0.0115 (7)0.0026 (7)
C10.0201 (11)0.0190 (10)0.0277 (10)0.0003 (9)0.0100 (9)0.0008 (8)
C20.0151 (9)0.0172 (10)0.0229 (9)0.0008 (8)0.0107 (8)0.0005 (8)
C30.0144 (9)0.0161 (9)0.0204 (9)0.0002 (8)0.0083 (8)0.0001 (7)
C40.0132 (9)0.0149 (9)0.0210 (9)0.0006 (7)0.0074 (8)0.0004 (7)
C50.0309 (12)0.0278 (11)0.0167 (9)0.0003 (9)0.0065 (9)0.0000 (8)
C60.0175 (10)0.0197 (10)0.0144 (9)0.0025 (8)0.0055 (8)0.0018 (7)
C70.0238 (10)0.0138 (9)0.0204 (9)0.0007 (8)0.0090 (8)0.0010 (8)
C80.0212 (10)0.0208 (10)0.0216 (9)0.0034 (8)0.0094 (8)0.0014 (8)
C90.0198 (11)0.0232 (10)0.0179 (9)0.0048 (8)0.0058 (8)0.0020 (8)
C100.0288 (11)0.0149 (9)0.0221 (9)0.0026 (8)0.0079 (9)0.0014 (8)
C110.0239 (10)0.0151 (9)0.0200 (9)0.0030 (8)0.0086 (8)0.0012 (7)
C120.0155 (9)0.0202 (10)0.0178 (9)0.0014 (8)0.0057 (8)0.0029 (8)
C130.0200 (11)0.0200 (10)0.0211 (9)0.0015 (8)0.0069 (8)0.0051 (8)
C140.0189 (10)0.0193 (10)0.0135 (8)0.0018 (8)0.0048 (8)0.0012 (7)
C150.0242 (11)0.0198 (10)0.0277 (10)0.0022 (9)0.0114 (9)0.0028 (8)
C160.0280 (11)0.0188 (10)0.0311 (11)0.0058 (9)0.0136 (9)0.0060 (8)
C170.0169 (10)0.0275 (11)0.0199 (9)0.0022 (9)0.0075 (8)0.0023 (8)
C180.0208 (10)0.0187 (10)0.0248 (10)0.0022 (8)0.0090 (8)0.0016 (8)
Geometric parameters (Å, º) top
Cl1—C91.743 (2)C5—H5B0.9600
Cl2—C171.7496 (19)C5—H5C0.9600
F1—C11.338 (4)C6—C111.377 (3)
F2—C11.316 (5)C6—C71.383 (3)
F3—C11.317 (4)C7—C81.391 (3)
F1'—C11.324 (9)C7—H70.9300
F2'—C11.362 (8)C8—C91.376 (3)
F3'—C11.291 (7)C8—H80.9300
O1—C41.353 (2)C9—C101.389 (3)
O1—C61.406 (2)C10—C111.390 (3)
O2—N31.4141 (18)C10—H100.9300
O2—C131.429 (2)C11—H110.9300
N1—C21.332 (2)C12—H120.9300
N1—N21.351 (2)C13—C141.509 (2)
N2—C41.345 (2)C13—H13A0.9700
N2—C51.459 (2)C13—H13B0.9700
N3—C121.273 (2)C14—C181.384 (3)
N4—C171.314 (2)C14—C151.388 (3)
N4—C181.337 (2)C15—C161.384 (3)
C1—C21.483 (3)C15—H150.9300
C2—C31.405 (3)C16—C171.380 (3)
C3—C41.386 (2)C16—H160.9300
C3—C121.458 (2)C18—H180.9300
C5—H5A0.9600
C4—O1—C6116.69 (14)H5B—C5—H5C109.5
N3—O2—C13107.19 (13)C11—C6—C7121.89 (17)
C2—N1—N2104.05 (14)C11—C6—O1115.95 (16)
C4—N2—N1111.86 (14)C7—C6—O1122.10 (16)
C4—N2—C5127.74 (16)C6—C7—C8118.58 (17)
N1—N2—C5120.38 (15)C6—C7—H7120.7
C12—N3—O2110.88 (14)C8—C7—H7120.7
C17—N4—C18116.05 (16)C9—C8—C7119.98 (18)
F3'—C1—F2120.6 (6)C9—C8—H8120.0
F3'—C1—F379.8 (6)C7—C8—H8120.0
F2—C1—F3107.2 (4)C8—C9—C10121.05 (18)
F3'—C1—F1'108.4 (9)C8—C9—Cl1119.03 (15)
F2—C1—F1'19.8 (7)C10—C9—Cl1119.91 (15)
F3—C1—F1'122.8 (7)C9—C10—C11119.14 (18)
F3'—C1—F127.4 (6)C9—C10—H10120.4
F2—C1—F1105.6 (4)C11—C10—H10120.4
F3—C1—F1106.5 (3)C6—C11—C10119.32 (17)
F1'—C1—F188.5 (7)C6—C11—H11120.3
F3'—C1—F2'103.7 (5)C10—C11—H11120.3
F2—C1—F2'84.1 (6)N3—C12—C3117.79 (16)
F3—C1—F2'27.1 (6)N3—C12—H12121.1
F1'—C1—F2'102.5 (8)C3—C12—H12121.1
F1—C1—F2'127.7 (6)O2—C13—C14112.62 (15)
F3'—C1—C2117.1 (5)O2—C13—H13A109.1
F2—C1—C2113.5 (4)C14—C13—H13A109.1
F3—C1—C2112.8 (3)O2—C13—H13B109.1
F1'—C1—C2112.2 (8)C14—C13—H13B109.1
F1—C1—C2110.6 (2)H13A—C13—H13B107.8
F2'—C1—C2111.6 (5)C18—C14—C15116.70 (17)
N1—C2—C3113.29 (16)C18—C14—C13122.17 (17)
N1—C2—C1116.93 (16)C15—C14—C13121.11 (17)
C3—C2—C1129.77 (17)C16—C15—C14119.73 (18)
C4—C3—C2102.40 (15)C16—C15—H15120.1
C4—C3—C12126.31 (17)C14—C15—H15120.1
C2—C3—C12131.13 (16)C17—C16—C15117.33 (18)
N2—C4—O1120.07 (15)C17—C16—H16121.3
N2—C4—C3108.40 (15)C15—C16—H16121.3
O1—C4—C3131.42 (16)N4—C17—C16125.19 (17)
N2—C5—H5A109.5N4—C17—Cl2115.64 (14)
N2—C5—H5B109.5C16—C17—Cl2119.18 (15)
H5A—C5—H5B109.5N4—C18—C14124.88 (18)
N2—C5—H5C109.5N4—C18—H18117.6
H5A—C5—H5C109.5C14—C18—H18117.6
C2—N1—N2—C40.33 (19)C12—C3—C4—O10.4 (3)
C2—N1—N2—C5179.09 (15)C4—O1—C6—C11160.71 (15)
C13—O2—N3—C12176.22 (14)C4—O1—C6—C722.0 (2)
N2—N1—C2—C30.4 (2)C11—C6—C7—C80.8 (3)
N2—N1—C2—C1178.44 (14)O1—C6—C7—C8176.26 (15)
F3'—C1—C2—N169.1 (10)C6—C7—C8—C90.6 (3)
F2—C1—C2—N178.6 (5)C7—C8—C9—C101.5 (3)
F3—C1—C2—N1159.1 (5)C7—C8—C9—Cl1177.60 (14)
F1'—C1—C2—N157.1 (8)C8—C9—C10—C110.9 (3)
F1—C1—C2—N140.0 (5)Cl1—C9—C10—C11178.20 (13)
F2'—C1—C2—N1171.6 (10)C7—C6—C11—C101.4 (3)
F3'—C1—C2—C3112.2 (10)O1—C6—C11—C10175.83 (15)
F2—C1—C2—C3100.0 (5)C9—C10—C11—C60.6 (3)
F3—C1—C2—C322.2 (5)O2—N3—C12—C3176.84 (14)
F1'—C1—C2—C3121.5 (8)C4—C3—C12—N31.1 (3)
F1—C1—C2—C3141.4 (5)C2—C3—C12—N3175.70 (18)
F2'—C1—C2—C37.1 (10)N3—O2—C13—C1481.09 (17)
N1—C2—C3—C40.4 (2)O2—C13—C14—C180.2 (2)
C1—C2—C3—C4178.33 (17)O2—C13—C14—C15178.18 (16)
N1—C2—C3—C12175.19 (17)C18—C14—C15—C162.0 (3)
C1—C2—C3—C126.1 (3)C13—C14—C15—C16176.44 (17)
N1—N2—C4—O1176.49 (14)C14—C15—C16—C171.0 (3)
C5—N2—C4—O12.2 (3)C18—N4—C17—C162.2 (3)
N1—N2—C4—C30.12 (19)C18—N4—C17—Cl2177.86 (13)
C5—N2—C4—C3178.76 (16)C15—C16—C17—N43.3 (3)
C6—O1—C4—N2111.17 (17)C15—C16—C17—Cl2176.79 (14)
C6—O1—C4—C373.1 (2)C17—N4—C18—C141.2 (3)
C2—C3—C4—N20.13 (18)C15—C14—C18—N43.3 (3)
C12—C3—C4—N2175.71 (16)C13—C14—C18—N4175.16 (17)
C2—C3—C4—O1176.22 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5C···F3i0.962.553.488 (7)165
C11—H11···F3ii0.932.563.358 (14)144
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC18H13Cl2F3N4O2
Mr445.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)12.269 (3), 10.443 (2), 15.702 (3)
β (°) 108.93 (3)
V3)1902.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.14 × 0.10 × 0.08
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.947, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
10759, 3356, 2845
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.07
No. of reflections3356
No. of parameters291
No. of restraints66
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5C···F3i0.962.553.488 (7)165
C11—H11···F3'ii0.932.563.358 (14)144
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20772068), the Science and Technology Projects Fund of Nantong City (grant No. K2010016, AS2010005), the Science Foundation of Nantong University (grant No. 09Z010, 09C001) and the Scientific Research Foundation for Talent Introduction of Nantong University.

References

First citationDai, H., Miao, W.-K., Wu, S.-S., Qin, X. & Fang, J.-X. (2011). Acta Cryst. E67, o775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds