organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)acetamide

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 1 November 2011; accepted 7 November 2011; online 12 November 2011)

In the title compound, C8H8ClNO, the acetamide group is twisted out the benzene plane with a dihedral angle of 83.08 (1)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming layers parallel to the ab plane.

Related literature

For details of the nitrile hydrolysis of the same substrate (4-chlorobenzonitrile) by another method, see: Moorthy & Singhal (2005[Moorthy, J. N. & Singhal, N. (2005). J. Org. Chem. 70, 1926-1929.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8ClNO

  • Mr = 169.60

  • Orthorhombic, P 21 21 21

  • a = 4.917 (2) Å

  • b = 6.033 (4) Å

  • c = 26.680 (12) Å

  • V = 791.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 K

  • 0.29 × 0.22 × 0.07 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.887, Tmax = 0.970

  • 7733 measured reflections

  • 1807 independent reflections

  • 1451 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.083

  • S = 1.05

  • 1807 reflections

  • 108 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 704 Friedel pairs

  • Flack parameter: −0.12 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O1i 0.88 (1) 2.05 (1) 2.911 (2) 165 (2)
N1—H12⋯O1ii 0.89 (1) 2.22 (1) 3.064 (3) 157 (2)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is formed by hydrolysis of appropriate nitriles (Moorthy et al., 2005), while the final product of hydrolysis of nitriles should be carboxylic acid. In this paper, we report the synthesis and the crystal structure of the title compound prepared from 4-cyanobenzylchloride under solvothermal condition.

In the title molecule (Fig.1), the acetamide group is twisted out the benzene plane with a dihedral angle of 83.08 (1) °. In the crystal packing, the molecules are linked by N—H···O hydrogen bonds to form layers parallel to ab plane (Fig. 2, Table 1).

Related literature top

For details of the related nitrile hydrolysis, see: Moorthy & Singhal (2005).

Experimental top

A mixture of NaN3 (0.39 g, 6 mmol), CuCl2.2H2O (0.684 g, 4 mmol), and 4-cyanobenzylchloride (0.606 g, 4 mmol) was sealed in a 15 ml teflon-lined reactor and heated in an oven at 150 ° C for 72 hrs and slowly cooled to room temperature. The resulting mixture was washed with water, and pale yellow blocklike crystals were collected (yeild 31%).

Refinement top

N-bound H atoms were located in a differece Fourier map and refined with restraint of N—H = 0.89 (1) Å. C-bound H atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound is formed by hydrolysis of appropriate nitriles (Moorthy et al., 2005), while the final product of hydrolysis of nitriles should be carboxylic acid. In this paper, we report the synthesis and the crystal structure of the title compound prepared from 4-cyanobenzylchloride under solvothermal condition.

In the title molecule (Fig.1), the acetamide group is twisted out the benzene plane with a dihedral angle of 83.08 (1) °. In the crystal packing, the molecules are linked by N—H···O hydrogen bonds to form layers parallel to ab plane (Fig. 2, Table 1).

For details of the related nitrile hydrolysis, see: Moorthy & Singhal (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing, showing a two-dimensional structure formed by N—H···O hydrogen bonds (dashed lines).
2-(4-Chlorophenyl)acetamide top
Crystal data top
C8H8ClNOF(000) = 352
Mr = 169.60Dx = 1.423 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5994 reflections
a = 4.917 (2) Åθ = 3.1–27.4°
b = 6.033 (4) ŵ = 0.42 mm1
c = 26.680 (12) ÅT = 293 K
V = 791.5 (7) Å3Block, colorless
Z = 40.29 × 0.22 × 0.07 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1807 independent reflections
Radiation source: fine-focus sealed tube1451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scanθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 66
Tmin = 0.887, Tmax = 0.970k = 77
7733 measured reflectionsl = 3433
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.036P)2 + 0.1017P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1807 reflectionsΔρmax = 0.17 e Å3
108 parametersΔρmin = 0.17 e Å3
2 restraintsAbsolute structure: Flack (1983), 704 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (8)
Crystal data top
C8H8ClNOV = 791.5 (7) Å3
Mr = 169.60Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.917 (2) ŵ = 0.42 mm1
b = 6.033 (4) ÅT = 293 K
c = 26.680 (12) Å0.29 × 0.22 × 0.07 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1807 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1451 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.970Rint = 0.041
7733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083Δρmax = 0.17 e Å3
S = 1.05Δρmin = 0.17 e Å3
1807 reflectionsAbsolute structure: Flack (1983), 704 Friedel pairs
108 parametersAbsolute structure parameter: 0.12 (8)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3632 (4)0.5073 (3)0.79843 (7)0.0335 (4)
C20.2527 (4)0.3677 (5)0.84087 (10)0.0603 (7)
H2A0.15600.46380.86390.072*
H2B0.12220.26330.82720.072*
C30.4640 (4)0.2408 (4)0.86973 (8)0.0429 (5)
C40.5575 (5)0.0374 (4)0.85279 (8)0.0487 (6)
H40.49070.01950.82280.058*
C50.7475 (5)0.0822 (3)0.87944 (8)0.0451 (5)
H50.80790.21850.86760.054*
C60.8470 (4)0.0017 (4)0.92375 (8)0.0410 (5)
C70.7620 (5)0.2049 (4)0.94146 (8)0.0472 (6)
H70.83240.26220.97110.057*
C80.5697 (5)0.3221 (4)0.91430 (8)0.0487 (5)
H80.51000.45860.92620.058*
Cl11.08553 (13)0.14906 (11)0.95804 (2)0.0605 (2)
N10.1788 (3)0.6234 (4)0.77353 (7)0.0441 (4)
H110.004 (2)0.613 (4)0.7811 (8)0.046 (6)*
H120.225 (5)0.714 (4)0.7485 (7)0.064 (8)*
O10.6073 (3)0.5149 (3)0.78808 (5)0.0435 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0263 (9)0.0376 (11)0.0367 (10)0.0005 (9)0.0007 (8)0.0027 (8)
C20.0291 (11)0.0819 (19)0.0699 (15)0.0050 (12)0.0050 (11)0.0347 (15)
C30.0310 (11)0.0528 (13)0.0449 (11)0.0000 (9)0.0035 (9)0.0145 (9)
C40.0493 (13)0.0554 (14)0.0416 (11)0.0093 (12)0.0077 (11)0.0001 (10)
C50.0511 (13)0.0368 (12)0.0475 (12)0.0016 (9)0.0072 (11)0.0041 (9)
C60.0381 (11)0.0444 (12)0.0406 (10)0.0018 (10)0.0046 (9)0.0071 (9)
C70.0514 (13)0.0514 (14)0.0387 (11)0.0009 (10)0.0027 (10)0.0056 (10)
C80.0503 (13)0.0433 (13)0.0525 (12)0.0118 (12)0.0069 (12)0.0003 (10)
Cl10.0520 (3)0.0695 (4)0.0598 (3)0.0147 (3)0.0015 (3)0.0194 (3)
N10.0243 (8)0.0587 (12)0.0494 (10)0.0006 (8)0.0013 (8)0.0149 (10)
O10.0237 (6)0.0529 (9)0.0538 (8)0.0038 (7)0.0051 (7)0.0046 (7)
Geometric parameters (Å, º) top
C1—O11.232 (2)C5—C61.376 (3)
C1—N11.324 (3)C5—H50.9300
C1—C21.512 (3)C6—C71.379 (3)
C2—C31.503 (3)C6—Cl11.744 (2)
C2—H2A0.9700C7—C81.386 (3)
C2—H2B0.9700C7—H70.9300
C3—C41.386 (3)C8—H80.9300
C3—C81.387 (3)N1—H110.883 (10)
C4—C51.378 (3)N1—H120.892 (10)
C4—H40.9300
O1—C1—N1122.34 (19)C6—C5—C4119.5 (2)
O1—C1—C2122.57 (18)C6—C5—H5120.3
N1—C1—C2115.08 (17)C4—C5—H5120.3
C3—C2—C1114.78 (17)C5—C6—C7120.9 (2)
C3—C2—H2A108.6C5—C6—Cl1119.88 (18)
C1—C2—H2A108.6C7—C6—Cl1119.21 (17)
C3—C2—H2B108.6C6—C7—C8118.8 (2)
C1—C2—H2B108.6C6—C7—H7120.6
H2A—C2—H2B107.5C8—C7—H7120.6
C4—C3—C8117.9 (2)C7—C8—C3121.6 (2)
C4—C3—C2120.9 (2)C7—C8—H8119.2
C8—C3—C2121.2 (2)C3—C8—H8119.2
C5—C4—C3121.3 (2)C1—N1—H11120.9 (16)
C5—C4—H4119.3C1—N1—H12121.7 (18)
C3—C4—H4119.3H11—N1—H12117 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O1i0.88 (1)2.05 (1)2.911 (2)165 (2)
N1—H12···O1ii0.89 (1)2.22 (1)3.064 (3)157 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H8ClNO
Mr169.60
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)4.917 (2), 6.033 (4), 26.680 (12)
V3)791.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.29 × 0.22 × 0.07
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.887, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
7733, 1807, 1451
Rint0.041
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.083, 1.05
No. of reflections1807
No. of parameters108
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.17
Absolute structureFlack (1983), 704 Friedel pairs
Absolute structure parameter0.12 (8)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O1i0.883 (10)2.049 (11)2.911 (2)165 (2)
N1—H12···O1ii0.892 (10)2.221 (14)3.064 (3)157 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Heilongjiang University for supporting this work.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMoorthy, J. N. & Singhal, N. (2005). J. Org. Chem. 70, 1926–1929.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds