organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-3-tri­fluoro­methyl-5-[(3-chloro­phen­yl)sulfanyl]-1H-pyrazole-4-carbaldehyde O-(4-chloro­benzo­yl)oxime

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
*Correspondence e-mail: nankaidx228@yahoo.com.cn

(Received 4 November 2011; accepted 11 November 2011; online 19 November 2011)

In the title compound, C19H12Cl2F3N3O2S, the 3-chloro­phenyl and 4-chloro­phenyl rings form dihedral angles 89.5 (2) and 11.4 (2)°, respectively, with the pyrazole ring. In the crystal, mol­ecules related by translation along the a axis are linked into chains via C—H⋯N hydrogen bonds.

Related literature

For the crystal structure of a related pyrazole oxime studied recently by our group, see: Dai et al. (2011[Dai, H., Shen, Y.-F., Chen, J., Chen, H.-L. & Shen, Y.-J. (2011). Acta Cryst. E67, o726.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12Cl2F3N3O2S

  • Mr = 474.28

  • Monoclinic, P 21 /n

  • a = 8.1405 (16) Å

  • b = 18.680 (4) Å

  • c = 13.737 (3) Å

  • β = 96.10 (3)°

  • V = 2077.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 113 K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]) Tmin = 0.922, Tmax = 0.947

  • 11802 measured reflections

  • 3654 independent reflections

  • 2794 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.137

  • S = 1.10

  • 3654 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2i 0.93 2.49 3.365 (4) 156
Symmetry code: (i) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a continuation of our structural investigation of pyrazole oxime esters (Dai et al., 2011), we report here the structure of the title compound (I).

In (I) (Fig. 1), all bonds lengths and angles are comparable with those observed in the related compound (Dai et al., 2011). The mean planes p1 (C7/C8/C9/N2/N1), p2 (C1/C2/C3/C4/C5/C6) and p3 (C13/C14/C15/C16/C17/C18) form the following dihedral angles - p2/p1 89.5 (2)°, p3/p1 11.4 (3)°. The crystal packing shows weak intermolecular C—H···N interactions (Table 1), which link molecules into chains along the a axis.

Related literature top

For the crystal structure of a related pyrazole oxime studied recently by our group, see: Dai et al. (2011).

Experimental top

To a well stirred solution of 1-methyl-3-trifluoromethyl-5-(3-chlorophenthio)- 1H-pyrazole-4-carbaldehyde oxime (4 mmol), and pyridine (5 ml) in 40 ml of dichloromethane, was added dropwise 4-chlorobenzoyl chloride (5 mmol) at room temperature. The resulting solution was heated to reflux for 7 h and cooled to room temperature. The mixture was washed with saturated brine (3 * 30 ml) and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, the residue was separated by column chromatography on silica gel with petroleum ether/ethyl acetate (12:1 v/v) as eluent, and then recrystallized from petroleum ether/ethyl acetate acetate to give a colourless crystal.

Refinement top

All H atoms were placed in calculated positions, with C–H = 0.93 - 0.96 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2-1.5 Ueq(C).

Structure description top

As a continuation of our structural investigation of pyrazole oxime esters (Dai et al., 2011), we report here the structure of the title compound (I).

In (I) (Fig. 1), all bonds lengths and angles are comparable with those observed in the related compound (Dai et al., 2011). The mean planes p1 (C7/C8/C9/N2/N1), p2 (C1/C2/C3/C4/C5/C6) and p3 (C13/C14/C15/C16/C17/C18) form the following dihedral angles - p2/p1 89.5 (2)°, p3/p1 11.4 (3)°. The crystal packing shows weak intermolecular C—H···N interactions (Table 1), which link molecules into chains along the a axis.

For the crystal structure of a related pyrazole oxime studied recently by our group, see: Dai et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probabilty displacement ellipsoids.
1-Methyl-3-trifluoromethyl-5-[(3-chlorophenyl)sulfanyl]-1H-pyrazole-4- carbaldehyde O-(4-chlorobenzoyl)oxime top
Crystal data top
C19H12Cl2F3N3O2SF(000) = 960
Mr = 474.28Dx = 1.517 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4368 reflections
a = 8.1405 (16) Åθ = 2.2–27.9°
b = 18.680 (4) ŵ = 0.46 mm1
c = 13.737 (3) ÅT = 113 K
β = 96.10 (3)°Monoclinic, colourless
V = 2077.0 (7) Å30.18 × 0.16 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn CCD area detector
diffractometer
3654 independent reflections
Radiation source: rotating anode2794 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.039
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω and φ scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 2222
Tmin = 0.922, Tmax = 0.947l = 1416
11802 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.2323P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3654 reflectionsΔρmax = 0.39 e Å3
273 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (3)
Crystal data top
C19H12Cl2F3N3O2SV = 2077.0 (7) Å3
Mr = 474.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1405 (16) ŵ = 0.46 mm1
b = 18.680 (4) ÅT = 113 K
c = 13.737 (3) Å0.18 × 0.16 × 0.12 mm
β = 96.10 (3)°
Data collection top
Rigaku Saturn CCD area detector
diffractometer
3654 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2794 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.947Rint = 0.039
11802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.10Δρmax = 0.39 e Å3
3654 reflectionsΔρmin = 0.38 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.09484 (13)0.84104 (6)0.56388 (10)0.1131 (4)
Cl21.29709 (11)0.74602 (6)1.34884 (7)0.0961 (4)
S10.64859 (10)1.00969 (4)0.71200 (6)0.0663 (3)
F10.1729 (2)0.85215 (8)0.92153 (14)0.0775 (5)
F20.0064 (2)0.93357 (11)0.88380 (14)0.0867 (6)
F30.1826 (2)0.94978 (10)1.00144 (12)0.0778 (5)
O10.6832 (2)0.87708 (10)1.04766 (12)0.0532 (5)
O20.5304 (3)0.84250 (12)1.16752 (17)0.0833 (7)
N10.3126 (3)1.00802 (11)0.71276 (16)0.0566 (6)
N20.1875 (3)0.98695 (11)0.76284 (16)0.0543 (6)
N30.5309 (3)0.89838 (12)0.99338 (15)0.0538 (6)
C10.5668 (4)0.88041 (15)0.6144 (2)0.0607 (7)
H10.45690.88860.62380.073*
C20.6110 (4)0.81988 (17)0.5655 (2)0.0688 (8)
H20.52970.78730.54230.083*
C30.7709 (4)0.80690 (17)0.5504 (2)0.0715 (8)
H30.79930.76570.51800.086*
C40.8894 (4)0.85576 (16)0.5841 (2)0.0654 (8)
C50.8510 (3)0.91618 (15)0.63472 (18)0.0584 (7)
H50.93360.94790.65870.070*
C60.6885 (3)0.92892 (14)0.64942 (16)0.0508 (6)
C70.4631 (3)0.98935 (13)0.75808 (18)0.0492 (6)
C80.4342 (3)0.95423 (12)0.84390 (16)0.0434 (6)
C90.2602 (3)0.95408 (12)0.84192 (16)0.0433 (6)
C100.1528 (3)0.92283 (13)0.91187 (19)0.0518 (6)
C110.5643 (3)0.92724 (12)0.91488 (18)0.0468 (6)
H110.67390.93130.90230.056*
C120.6607 (3)0.84774 (13)1.13649 (19)0.0513 (6)
C130.8222 (3)0.82499 (13)1.18756 (18)0.0473 (6)
C140.8200 (4)0.77728 (14)1.2655 (2)0.0584 (7)
H140.71970.76111.28380.070*
C150.9663 (4)0.75393 (14)1.3154 (2)0.0629 (8)
H150.96510.72201.36730.076*
C161.1137 (3)0.77827 (15)1.2879 (2)0.0582 (7)
C171.1198 (3)0.82612 (14)1.2119 (2)0.0555 (7)
H171.22060.84251.19460.067*
C180.9727 (3)0.84924 (13)1.16177 (19)0.0517 (6)
H180.97490.88141.11020.062*
C190.2742 (5)1.0461 (2)0.6195 (2)0.0884 (11)
H19A0.27621.01300.56620.133*
H19B0.35491.08300.61390.133*
H19C0.16651.06730.61760.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0650 (6)0.1302 (9)0.1451 (10)0.0138 (5)0.0163 (6)0.0332 (7)
Cl20.0651 (6)0.1262 (8)0.0921 (6)0.0249 (5)0.0154 (5)0.0214 (5)
S10.0663 (5)0.0631 (5)0.0734 (5)0.0207 (3)0.0257 (4)0.0077 (3)
F10.0803 (13)0.0574 (10)0.0992 (13)0.0039 (8)0.0302 (10)0.0083 (8)
F20.0379 (9)0.1262 (16)0.0967 (13)0.0030 (9)0.0103 (9)0.0184 (11)
F30.0809 (13)0.0988 (13)0.0579 (10)0.0146 (10)0.0263 (9)0.0142 (9)
O10.0370 (10)0.0717 (11)0.0500 (9)0.0044 (8)0.0002 (8)0.0088 (8)
O20.0458 (13)0.1175 (18)0.0892 (15)0.0122 (11)0.0195 (12)0.0396 (13)
N10.0603 (15)0.0591 (13)0.0498 (12)0.0021 (11)0.0025 (11)0.0099 (10)
N20.0485 (13)0.0582 (12)0.0553 (13)0.0069 (10)0.0016 (11)0.0036 (10)
N30.0374 (12)0.0684 (14)0.0536 (12)0.0051 (10)0.0040 (10)0.0042 (10)
C10.0530 (17)0.0707 (17)0.0595 (16)0.0153 (13)0.0109 (13)0.0025 (13)
C20.072 (2)0.0704 (18)0.0629 (17)0.0216 (16)0.0033 (16)0.0037 (14)
C30.080 (2)0.0724 (19)0.0627 (18)0.0051 (17)0.0113 (16)0.0053 (15)
C40.0582 (19)0.079 (2)0.0587 (16)0.0060 (15)0.0049 (14)0.0002 (14)
C50.0490 (17)0.0761 (18)0.0486 (14)0.0088 (13)0.0013 (12)0.0014 (13)
C60.0522 (16)0.0591 (15)0.0413 (13)0.0098 (12)0.0052 (12)0.0070 (11)
C70.0483 (16)0.0499 (13)0.0498 (14)0.0037 (11)0.0070 (12)0.0012 (11)
C80.0411 (14)0.0457 (12)0.0432 (12)0.0016 (10)0.0038 (10)0.0044 (10)
C90.0401 (14)0.0469 (12)0.0424 (12)0.0035 (10)0.0017 (10)0.0022 (10)
C100.0383 (15)0.0564 (15)0.0611 (16)0.0019 (11)0.0067 (12)0.0012 (12)
C110.0360 (13)0.0532 (14)0.0509 (14)0.0006 (10)0.0026 (11)0.0028 (11)
C120.0453 (16)0.0537 (14)0.0549 (15)0.0002 (11)0.0050 (13)0.0065 (11)
C130.0425 (15)0.0488 (13)0.0505 (13)0.0023 (11)0.0048 (11)0.0007 (11)
C140.0511 (16)0.0626 (16)0.0623 (16)0.0010 (13)0.0105 (13)0.0150 (13)
C150.062 (2)0.0667 (17)0.0598 (17)0.0091 (14)0.0049 (14)0.0170 (13)
C160.0517 (17)0.0651 (16)0.0554 (15)0.0111 (13)0.0057 (13)0.0009 (13)
C170.0418 (15)0.0617 (16)0.0627 (16)0.0018 (12)0.0036 (13)0.0007 (13)
C180.0469 (16)0.0531 (14)0.0547 (14)0.0015 (11)0.0032 (12)0.0072 (11)
C190.103 (3)0.096 (2)0.0642 (19)0.011 (2)0.0001 (18)0.0349 (18)
Geometric parameters (Å, º) top
Cl1—C41.746 (3)C4—C51.379 (4)
Cl2—C161.740 (3)C5—C61.380 (4)
S1—C71.740 (3)C5—H50.9300
S1—C61.783 (3)C7—C81.391 (3)
F1—C101.335 (3)C8—C91.414 (3)
F2—C101.327 (3)C8—C111.451 (3)
F3—C101.328 (3)C9—C101.486 (4)
O1—C121.368 (3)C11—H110.9300
O1—N31.434 (2)C12—C131.485 (3)
O2—C121.189 (3)C13—C181.387 (4)
N1—N21.347 (3)C13—C141.394 (4)
N1—C71.359 (3)C14—C151.381 (4)
N1—C191.469 (3)C14—H140.9300
N2—C91.331 (3)C15—C161.373 (4)
N3—C111.261 (3)C15—H150.9300
C1—C21.382 (4)C16—C171.380 (4)
C1—C61.390 (4)C17—C181.385 (4)
C1—H10.9300C17—H170.9300
C2—C31.361 (4)C18—H180.9300
C2—H20.9300C19—H19A0.9600
C3—C41.372 (4)C19—H19B0.9600
C3—H30.9300C19—H19C0.9600
C7—S1—C6101.54 (12)F2—C10—F1106.5 (2)
C12—O1—N3112.63 (19)F3—C10—F1105.9 (2)
N2—N1—C7112.6 (2)F2—C10—C9112.1 (2)
N2—N1—C19119.0 (3)F3—C10—C9112.8 (2)
C7—N1—C19128.4 (3)F1—C10—C9112.2 (2)
C9—N2—N1104.9 (2)N3—C11—C8121.0 (2)
C11—N3—O1108.1 (2)N3—C11—H11119.5
C2—C1—C6119.3 (3)C8—C11—H11119.5
C2—C1—H1120.4O2—C12—O1124.2 (2)
C6—C1—H1120.4O2—C12—C13125.9 (2)
C3—C2—C1121.5 (3)O1—C12—C13109.9 (2)
C3—C2—H2119.3C18—C13—C14119.2 (2)
C1—C2—H2119.3C18—C13—C12123.2 (2)
C2—C3—C4118.7 (3)C14—C13—C12117.6 (2)
C2—C3—H3120.7C15—C14—C13120.2 (3)
C4—C3—H3120.7C15—C14—H14119.9
C3—C4—C5121.7 (3)C13—C14—H14119.9
C3—C4—Cl1119.5 (3)C16—C15—C14119.4 (3)
C5—C4—Cl1118.8 (2)C16—C15—H15120.3
C4—C5—C6119.1 (3)C14—C15—H15120.3
C4—C5—H5120.4C15—C16—C17121.7 (2)
C6—C5—H5120.4C15—C16—Cl2118.9 (2)
C5—C6—C1119.7 (3)C17—C16—Cl2119.4 (2)
C5—C6—S1116.3 (2)C16—C17—C18118.6 (3)
C1—C6—S1124.0 (2)C16—C17—H17120.7
N1—C7—C8106.5 (2)C18—C17—H17120.7
N1—C7—S1123.51 (19)C17—C18—C13120.8 (2)
C8—C7—S1130.0 (2)C17—C18—H18119.6
C7—C8—C9104.1 (2)C13—C18—H18119.6
C7—C8—C11123.8 (2)N1—C19—H19A109.5
C9—C8—C11132.1 (2)N1—C19—H19B109.5
N2—C9—C8111.9 (2)H19A—C19—H19B109.5
N2—C9—C10117.9 (2)N1—C19—H19C109.5
C8—C9—C10130.2 (2)H19A—C19—H19C109.5
F2—C10—F3106.8 (2)H19B—C19—H19C109.5
C7—N1—N2—C90.0 (3)C11—C8—C9—N2178.2 (2)
C19—N1—N2—C9179.5 (2)C7—C8—C9—C10178.2 (2)
C12—O1—N3—C11177.4 (2)C11—C8—C9—C102.8 (4)
C6—C1—C2—C30.3 (4)N2—C9—C10—F20.6 (3)
C1—C2—C3—C40.7 (5)C8—C9—C10—F2179.5 (2)
C2—C3—C4—C51.8 (5)N2—C9—C10—F3121.2 (2)
C2—C3—C4—Cl1179.0 (2)C8—C9—C10—F359.9 (3)
C3—C4—C5—C62.0 (4)N2—C9—C10—F1119.2 (2)
Cl1—C4—C5—C6178.8 (2)C8—C9—C10—F159.7 (3)
C4—C5—C6—C10.9 (4)O1—N3—C11—C8179.75 (19)
C4—C5—C6—S1178.0 (2)C7—C8—C11—N3177.1 (2)
C2—C1—C6—C50.2 (4)C9—C8—C11—N31.7 (4)
C2—C1—C6—S1179.0 (2)N3—O1—C12—O22.5 (4)
C7—S1—C6—C5157.1 (2)N3—O1—C12—C13178.37 (19)
C7—S1—C6—C124.0 (2)O2—C12—C13—C18161.7 (3)
N2—N1—C7—C80.5 (3)O1—C12—C13—C1817.4 (3)
C19—N1—C7—C8179.9 (3)O2—C12—C13—C1417.8 (4)
N2—N1—C7—S1179.46 (17)O1—C12—C13—C14163.0 (2)
C19—N1—C7—S11.1 (4)C18—C13—C14—C150.8 (4)
C6—S1—C7—N196.1 (2)C12—C13—C14—C15179.7 (3)
C6—S1—C7—C885.2 (2)C13—C14—C15—C160.2 (4)
N1—C7—C8—C90.7 (2)C14—C15—C16—C170.5 (4)
S1—C7—C8—C9179.61 (19)C14—C15—C16—Cl2177.8 (2)
N1—C7—C8—C11178.3 (2)C15—C16—C17—C180.7 (4)
S1—C7—C8—C110.6 (4)Cl2—C16—C17—C18177.6 (2)
N1—N2—C9—C80.5 (3)C16—C17—C18—C130.2 (4)
N1—N2—C9—C10178.6 (2)C14—C13—C18—C170.6 (4)
C7—C8—C9—N20.8 (3)C12—C13—C18—C17179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.493.365 (4)156
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H12Cl2F3N3O2S
Mr474.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)8.1405 (16), 18.680 (4), 13.737 (3)
β (°) 96.10 (3)
V3)2077.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.922, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
11802, 3654, 2794
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.137, 1.10
No. of reflections3654
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.38

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.493.365 (4)156
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20772068), the Science and Technology Projects Fund of Nantong City (grant Nos. K2010016 and AS2010005), the Science Foundation of Nantong University (grant Nos. 09Z010 and 09C001) and the Scientific Research Foundation for Talent Introduction of Nantong University.

References

First citationDai, H., Shen, Y.-F., Chen, J., Chen, H.-L. & Shen, Y.-J. (2011). Acta Cryst. E67, o726.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds