organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(benzyl­­idene­amino)­phen­yl] di­sulfide

aDepartment of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China, bLiaocheng Labor Technical Schools, Liaocheng 252059, People's Republic of China, and cShandong Donge Experimental High School, Donge, Shandong Province 252200, People's Republic of China
*Correspondence e-mail: yongwang@lcu.edu.cn

(Received 5 November 2011; accepted 14 November 2011; online 19 November 2011)

In the title mol­ecule, C26H20N2S2, the two benzene rings connected by a disulfide chain form a dihedral angle of 84.9 (1)°, and the two benzene rings in the two benzyl­idene­amino­phenyl fragments form dihedral angles of 34.4 (1) and 32.8 (1)°. The crystal structure exhibits weak inter­molecular C—H⋯S hydrogen bonds, which link the mol­ecules into chains along [101].

Related literature

For general background to Schiff bases and their synthesis, see: Wang et al. (1998[Wang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927-1929.]); Bai et al. (2005[Bai, Y., Dang, D.-B., Duan, C.-Y., Song, Y. & Meng, Q.-J. (2005). Inorg. Chem. 44, 5972-5974.]). For a related structure, see: He et al. (2011[He, Q.-P., Dai, L. & Tan, B. (2011). Acta Cryst. E67, o3240.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20N2S2

  • Mr = 424.56

  • Monoclinic, P 21 /n

  • a = 10.2421 (11) Å

  • b = 19.672 (2) Å

  • c = 11.4739 (13) Å

  • β = 97.198 (1)°

  • V = 2293.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.43 × 0.35 × 0.31 mm

Data collection
  • Bruker SMART APEX CCD area-etector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.901, Tmax = 0.927

  • 11618 measured reflections

  • 4043 independent reflections

  • 1764 reflections with I > 2σ(I)

  • Rint = 0.125

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.197

  • S = 1.05

  • 4043 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯S1i 0.93 2.86 3.604 (5) 137
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have received considerable attention during the last decades, mainly due to their coordinative and electronic properties (Wang et al., 1998). For this reason, much effort has been devoted to develop effcient routes for the synthesis of these classes of compounds (Bai et al., 2005). In this paper, we report the crystal structure of the title compound, (I), obtained by the reaction of benzaldehyde and 2,2'-diaminodiphenyl disulfide.

In (I) (Fig. 1), the molecule has a trans configuration about the S—S bond. The bond lengths an angles are normal and are comparable to the values observed in N,N'-bis(4-(dimethylamino)benzylidene)-2,2'-diaminodiphenyl disulfide (He et al., 2011). Two benzene rings connected through disulfide chain form a dihedral angle of 84.9 (1)°, and two benzene rings in two benzylideneaniline fragments form the dihedral angles of 34.4 (1) and 32.8 (1)°, respectively.

The crystal packing of the title compound exhibits weak intermolecular C—H···S hydrogen bonds (Table 1), which link molecules into chains along [101].

Related literature top

For general background to Schiff bases and their synthesis, see: Wang et al. (1998); Bai et al. (2005). For a related structure, see: He et al. (2011).

Experimental top

A mixture of benzaldehyde (10 mol), 2,2'-diaminodiphenyl disulfide (5 mol) was refluxed in 20 mL of ethanol for 3.0 hrs. The reaction completion was monitored through thin layer chromatography and the reaction mixture was cooled to room tempertature . The precipitate obtained was filtered, dried and crystallized from ethanol to obtain the title compound.

Refinement top

All H atoms were placed in geometrically idealized positions (C-H 0.93 Å ) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Schiff bases have received considerable attention during the last decades, mainly due to their coordinative and electronic properties (Wang et al., 1998). For this reason, much effort has been devoted to develop effcient routes for the synthesis of these classes of compounds (Bai et al., 2005). In this paper, we report the crystal structure of the title compound, (I), obtained by the reaction of benzaldehyde and 2,2'-diaminodiphenyl disulfide.

In (I) (Fig. 1), the molecule has a trans configuration about the S—S bond. The bond lengths an angles are normal and are comparable to the values observed in N,N'-bis(4-(dimethylamino)benzylidene)-2,2'-diaminodiphenyl disulfide (He et al., 2011). Two benzene rings connected through disulfide chain form a dihedral angle of 84.9 (1)°, and two benzene rings in two benzylideneaniline fragments form the dihedral angles of 34.4 (1) and 32.8 (1)°, respectively.

The crystal packing of the title compound exhibits weak intermolecular C—H···S hydrogen bonds (Table 1), which link molecules into chains along [101].

For general background to Schiff bases and their synthesis, see: Wang et al. (1998); Bai et al. (2005). For a related structure, see: He et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 30% probability level.
Bis[2-(benzylideneamino)phenyl] disulfide top
Crystal data top
C26H20N2S2F(000) = 888
Mr = 424.56Dx = 1.230 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2421 (11) ÅCell parameters from 2078 reflections
b = 19.672 (2) Åθ = 2.7–20.1°
c = 11.4739 (13) ŵ = 0.25 mm1
β = 97.198 (1)°T = 298 K
V = 2293.5 (4) Å3Block, yellow
Z = 40.43 × 0.35 × 0.31 mm
Data collection top
Bruker SMART APEX CCD area-etector
diffractometer
4043 independent reflections
Radiation source: fine-focus sealed tube1764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
φ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.901, Tmax = 0.927k = 2023
11618 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.9182P]
where P = (Fo2 + 2Fc2)/3
4043 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C26H20N2S2V = 2293.5 (4) Å3
Mr = 424.56Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2421 (11) ŵ = 0.25 mm1
b = 19.672 (2) ÅT = 298 K
c = 11.4739 (13) Å0.43 × 0.35 × 0.31 mm
β = 97.198 (1)°
Data collection top
Bruker SMART APEX CCD area-etector
diffractometer
4043 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1764 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.927Rint = 0.125
11618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
4043 reflectionsΔρmin = 0.24 e Å3
271 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3113 (4)0.0052 (2)0.2975 (3)0.0710 (11)
N20.1878 (4)0.2777 (2)0.1398 (3)0.0691 (11)
S10.03931 (13)0.20245 (7)0.22438 (11)0.0799 (5)
S20.13336 (13)0.11360 (7)0.27203 (11)0.0730 (5)
C10.0581 (4)0.1836 (2)0.0887 (4)0.0634 (13)
C20.0300 (5)0.1322 (3)0.0121 (4)0.0793 (15)
H20.04380.10490.03100.095*
C30.1116 (6)0.1215 (3)0.0918 (5)0.0934 (18)
H30.09240.08710.14270.112*
C40.2203 (6)0.1613 (3)0.1198 (5)0.1015 (19)
H40.27590.15340.18900.122*
C50.2480 (5)0.2136 (3)0.0457 (4)0.0833 (16)
H50.32150.24090.06590.100*
C60.1665 (5)0.2255 (3)0.0588 (4)0.0660 (13)
C70.2390 (5)0.3338 (3)0.1026 (4)0.0725 (14)
H70.26120.33920.02200.087*
C80.2650 (5)0.3901 (3)0.1794 (5)0.0715 (14)
C90.3206 (5)0.4488 (3)0.1287 (6)0.0952 (18)
H90.34080.45200.04760.114*
C100.3455 (6)0.5022 (4)0.1994 (8)0.120 (2)
H100.38230.54180.16540.144*
C110.3178 (7)0.4986 (3)0.3175 (8)0.111 (2)
H110.33840.53490.36390.133*
C120.2592 (6)0.4413 (3)0.3693 (6)0.1038 (19)
H120.23720.43910.45030.125*
C130.2333 (6)0.3868 (3)0.2991 (5)0.0928 (17)
H130.19420.34780.33330.111*
C140.2829 (5)0.1152 (2)0.2100 (4)0.0651 (13)
C150.3270 (6)0.1690 (3)0.1459 (5)0.0845 (16)
H150.27610.20820.13440.101*
C160.4451 (7)0.1652 (3)0.0993 (6)0.115 (2)
H160.47320.20150.05690.138*
C170.5212 (6)0.1068 (4)0.1163 (7)0.128 (3)
H170.60010.10350.08430.153*
C180.4787 (6)0.0531 (3)0.1814 (6)0.108 (2)
H180.52960.01390.19240.130*
C190.3620 (5)0.0573 (3)0.2299 (4)0.0732 (14)
C200.3876 (5)0.0331 (3)0.3620 (5)0.0722 (14)
H200.47790.02660.36460.087*
C210.3406 (6)0.0872 (2)0.4330 (4)0.0667 (13)
C220.2066 (6)0.1007 (3)0.4311 (5)0.0795 (15)
H220.14530.07570.38190.095*
C230.1646 (6)0.1507 (3)0.5016 (6)0.0992 (18)
H230.07520.15980.49900.119*
C240.2532 (9)0.1871 (3)0.5753 (6)0.104 (2)
H240.22370.21980.62430.125*
C250.3835 (9)0.1760 (3)0.5775 (6)0.111 (2)
H250.44360.20190.62630.134*
C260.4280 (6)0.1253 (3)0.5061 (5)0.0976 (18)
H260.51780.11750.50830.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.088 (3)0.058 (3)0.067 (3)0.001 (2)0.009 (2)0.006 (2)
N20.087 (3)0.063 (3)0.056 (2)0.008 (2)0.001 (2)0.007 (2)
S10.0979 (10)0.0781 (10)0.0572 (8)0.0153 (7)0.0157 (7)0.0105 (7)
S20.0825 (9)0.0791 (9)0.0549 (7)0.0065 (7)0.0016 (6)0.0091 (7)
C10.074 (3)0.065 (3)0.048 (3)0.000 (3)0.005 (2)0.005 (3)
C20.097 (4)0.081 (4)0.058 (3)0.014 (3)0.000 (3)0.006 (3)
C30.128 (5)0.089 (4)0.057 (3)0.015 (4)0.011 (3)0.017 (3)
C40.128 (5)0.105 (5)0.061 (3)0.013 (4)0.028 (3)0.016 (4)
C50.096 (4)0.086 (4)0.061 (3)0.013 (3)0.017 (3)0.005 (3)
C60.081 (3)0.069 (3)0.046 (3)0.001 (3)0.001 (2)0.000 (3)
C70.083 (3)0.076 (4)0.057 (3)0.001 (3)0.005 (3)0.011 (3)
C80.083 (3)0.061 (3)0.071 (4)0.005 (3)0.013 (3)0.008 (3)
C90.109 (4)0.078 (4)0.096 (4)0.022 (3)0.006 (4)0.009 (4)
C100.133 (6)0.087 (5)0.139 (7)0.033 (4)0.020 (5)0.005 (5)
C110.131 (5)0.073 (5)0.137 (7)0.008 (4)0.052 (5)0.013 (5)
C120.153 (6)0.079 (4)0.082 (4)0.015 (4)0.026 (4)0.002 (4)
C130.140 (5)0.059 (4)0.083 (4)0.007 (3)0.028 (4)0.009 (3)
C140.071 (3)0.062 (3)0.060 (3)0.000 (3)0.002 (2)0.004 (3)
C150.091 (4)0.072 (4)0.089 (4)0.004 (3)0.004 (3)0.022 (3)
C160.109 (5)0.103 (5)0.136 (6)0.004 (4)0.027 (5)0.057 (5)
C170.104 (5)0.135 (6)0.155 (7)0.014 (5)0.053 (5)0.059 (6)
C180.104 (5)0.093 (5)0.132 (6)0.020 (4)0.038 (4)0.038 (4)
C190.071 (3)0.075 (4)0.072 (3)0.000 (3)0.003 (3)0.008 (3)
C200.080 (3)0.063 (3)0.074 (3)0.006 (3)0.011 (3)0.001 (3)
C210.090 (4)0.053 (3)0.057 (3)0.008 (3)0.008 (3)0.003 (3)
C220.099 (4)0.058 (3)0.082 (4)0.003 (3)0.013 (3)0.006 (3)
C230.118 (5)0.076 (4)0.104 (5)0.013 (4)0.019 (4)0.005 (4)
C240.171 (7)0.054 (4)0.089 (5)0.002 (4)0.021 (5)0.008 (3)
C250.157 (7)0.075 (4)0.101 (5)0.042 (5)0.008 (5)0.020 (4)
C260.115 (5)0.082 (4)0.095 (4)0.024 (4)0.011 (4)0.019 (4)
Geometric parameters (Å, º) top
N1—C201.258 (6)C12—C131.386 (7)
N1—C191.423 (6)C12—H120.9300
N2—C71.272 (5)C13—H130.9300
N2—C61.420 (6)C14—C151.395 (7)
S1—C11.779 (4)C14—C191.400 (6)
S1—S22.0371 (18)C15—C161.385 (7)
S2—C141.768 (5)C15—H150.9300
C1—C61.391 (6)C16—C171.389 (8)
C1—C21.394 (6)C16—H160.9300
C2—C31.383 (7)C17—C181.394 (8)
C2—H20.9300C17—H170.9300
C3—C41.367 (7)C18—C191.383 (7)
C3—H30.9300C18—H180.9300
C4—C51.386 (7)C20—C211.458 (7)
C4—H40.9300C20—H200.9300
C5—C61.393 (6)C21—C261.371 (7)
C5—H50.9300C21—C221.395 (7)
C7—C81.461 (7)C22—C231.377 (7)
C7—H70.9300C22—H220.9300
C8—C131.372 (7)C23—C241.363 (8)
C8—C91.383 (7)C23—H230.9300
C9—C101.370 (8)C24—C251.349 (8)
C9—H90.9300C24—H240.9300
C10—C111.351 (9)C25—C261.402 (8)
C10—H100.9300C25—H250.9300
C11—C121.377 (8)C26—H260.9300
C11—H110.9300
C20—N1—C19120.7 (5)C8—C13—H13119.8
C7—N2—C6119.9 (4)C12—C13—H13119.8
C1—S1—S2104.50 (17)C15—C14—C19119.0 (5)
C14—S2—S1106.31 (17)C15—C14—S2125.4 (4)
C6—C1—C2119.7 (4)C19—C14—S2115.6 (4)
C6—C1—S1115.8 (4)C16—C15—C14121.2 (5)
C2—C1—S1124.5 (4)C16—C15—H15119.4
C3—C2—C1120.3 (5)C14—C15—H15119.4
C3—C2—H2119.9C15—C16—C17119.6 (6)
C1—C2—H2119.9C15—C16—H16120.2
C4—C3—C2120.1 (5)C17—C16—H16120.2
C4—C3—H3119.9C16—C17—C18119.6 (6)
C2—C3—H3119.9C16—C17—H17120.2
C3—C4—C5120.3 (5)C18—C17—H17120.2
C3—C4—H4119.8C19—C18—C17120.9 (6)
C5—C4—H4119.8C19—C18—H18119.5
C4—C5—C6120.4 (5)C17—C18—H18119.5
C4—C5—H5119.8C18—C19—C14119.7 (5)
C6—C5—H5119.8C18—C19—N1124.7 (5)
C1—C6—C5119.1 (5)C14—C19—N1115.6 (5)
C1—C6—N2116.8 (4)N1—C20—C21122.8 (5)
C5—C6—N2124.1 (5)N1—C20—H20118.6
N2—C7—C8123.6 (5)C21—C20—H20118.6
N2—C7—H7118.2C26—C21—C22118.1 (5)
C8—C7—H7118.2C26—C21—C20120.3 (5)
C13—C8—C9119.6 (5)C22—C21—C20121.6 (5)
C13—C8—C7122.0 (5)C23—C22—C21120.4 (5)
C9—C8—C7118.4 (5)C23—C22—H22119.8
C10—C9—C8119.2 (6)C21—C22—H22119.8
C10—C9—H9120.4C24—C23—C22120.5 (6)
C8—C9—H9120.4C24—C23—H23119.8
C11—C10—C9121.6 (7)C22—C23—H23119.8
C11—C10—H10119.2C25—C24—C23120.4 (6)
C9—C10—H10119.2C25—C24—H24119.8
C10—C11—C12120.0 (6)C23—C24—H24119.8
C10—C11—H11120.0C24—C25—C26119.8 (6)
C12—C11—H11120.0C24—C25—H25120.1
C11—C12—C13119.2 (6)C26—C25—H25120.1
C11—C12—H12120.4C21—C26—C25120.7 (6)
C13—C12—H12120.4C21—C26—H26119.6
C8—C13—C12120.4 (5)C25—C26—H26119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S1i0.932.863.604 (5)137
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H20N2S2
Mr424.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.2421 (11), 19.672 (2), 11.4739 (13)
β (°) 97.198 (1)
V3)2293.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.43 × 0.35 × 0.31
Data collection
DiffractometerBruker SMART APEX CCD area-etector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.901, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
11618, 4043, 1764
Rint0.125
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.197, 1.05
No. of reflections4043
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S1i0.932.863.604 (5)137.4
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support by the University Student Science and Technology Culture Foundation of Liaocheng University (grant No. SRT11056HX2) and Liaocheng University (grant No. X09012).

References

First citationBai, Y., Dang, D.-B., Duan, C.-Y., Song, Y. & Meng, Q.-J. (2005). Inorg. Chem. 44, 5972–5974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, Q.-P., Dai, L. & Tan, B. (2011). Acta Cryst. E67, o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927–1929.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds