organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-[(E)-3,3-Di­phenyl­prop-2-ene-1,1-di­yl]bis­­(3-hy­dr­oxy­cyclo­hex-2-en-1-one)

aCenter for Neuro-Medicine, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, bAdvanced Analysis Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, and cApplication Laboratory, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
*Correspondence e-mail: jhcha@kist.re.kr

(Received 5 November 2011; accepted 14 November 2011; online 23 November 2011)

In the title compound, C27H26O4, each of the cyclo­hexenone rings adopts a half-chair conformation. The dihedral angle between the two phenyl rings is 89.53 (5)°. The hy­droxy and carbonyl O atoms face each other and are orientated to allow the formation of two intra­molecular O—H⋯O hydrogen bonds, which are typical of xanthene derivatives.

Related literature

For the crystal structures of xanthenes derivatives studied recently by our group, see: Cha et al. (2011a[Cha, J. H., Kim, Y. H., Min, S.-J., Cho, Y. S. & Lee, J. K. (2011a). Acta Cryst. E67, o3153.],b[Cha, J. H., Son, M. H., Min, S.-J., Cho, Y. S. & Lee, J. K. (2011b). Acta Cryst. E67, o2739.]).

[Scheme 1]

Experimental

Crystal data
  • C27H26O4

  • Mr = 414.50

  • Orthorhombic, P b c a

  • a = 9.7329 (5) Å

  • b = 18.6106 (9) Å

  • c = 24.6522 (12) Å

  • V = 4465.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.793, Tmax = 0.984

  • 39377 measured reflections

  • 5084 independent reflections

  • 2954 reflections with F2 > 2σ(F2)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.231

  • S = 1.11

  • 5084 reflections

  • 280 parameters

  • 256 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O4 0.82 1.82 2.616 (4) 164
O3—H3A⋯O1 0.82 1.77 2.572 (4) 164

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

As a part of our ongoing study of the substituent effect on the solid state structures of Xanthene derivatives (Cha et al., (2011a,b), we present here the crystal structure of the title compound (I).

In (I) (Fig. 1), the dihedral angle between the two phenyl rings (C1–C6 and C7–C12) is 89.53 (5)°, and the mean planes of two cyclohexenone rings form a dihedral angle of 46.85 (4)°. Both cyclohexenone rings (Fig.1) display half-chair conformation. The hydroxy and carbonyl O atoms face each other and are orientated to allow for the formation of two intramolecular O—H···O hydrogen bonds (Table 1), which are typical for xanthene derivatives.

Related literature top

For the crystal structures of xanthenes derivatives studied recently by our group, see: Cha et al. (2011a,b).

Experimental top

To a solution of 1,3-cyclohexanedione (4.61 mmol), 2-phenylcinnamaldehyde (1.84 mmol) and 4Å MS was added catalytic amounts of L-proline (0.47 mmol) in under nitrogen atmosphere. After stirring for 5 h, The anhydrous ethyl acetate (0.5 ml) was added to a reaction mixture and the solution was stirred for 3 days. The reaction mixture was filtered through pad of celite to remove MS and concentrated. The residue oil was purified by flash column chromatography to afford product which was recrystallized from ethanol to give crystals suitable for X-ray analysis.

Refinement top

C-bound hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). Rotating group model was applied for the methyl groups. The hydroxy H-atom was located in a difference Fourier map, and was isotropically refined with a distance restraint of O—H of 0.82 (1) Å.

Structure description top

As a part of our ongoing study of the substituent effect on the solid state structures of Xanthene derivatives (Cha et al., (2011a,b), we present here the crystal structure of the title compound (I).

In (I) (Fig. 1), the dihedral angle between the two phenyl rings (C1–C6 and C7–C12) is 89.53 (5)°, and the mean planes of two cyclohexenone rings form a dihedral angle of 46.85 (4)°. Both cyclohexenone rings (Fig.1) display half-chair conformation. The hydroxy and carbonyl O atoms face each other and are orientated to allow for the formation of two intramolecular O—H···O hydrogen bonds (Table 1), which are typical for xanthene derivatives.

For the crystal structures of xanthenes derivatives studied recently by our group, see: Cha et al. (2011a,b).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoid.
2,2-[(E)-3,3-Diphenylprop-2-ene-1,1-diyl]bis(3-hydroxycyclohex-2- en-1-one) top
Crystal data top
C27H26O4F(000) = 1760.00
Mr = 414.50Dx = 1.233 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ac 2abCell parameters from 22114 reflections
a = 9.7329 (5) Åθ = 3.0–27.4°
b = 18.6106 (9) ŵ = 0.08 mm1
c = 24.6522 (12) ÅT = 296 K
V = 4465.4 (4) Å3Chunk, colorless
Z = 80.40 × 0.30 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2954 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.037
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1212
Tmin = 0.793, Tmax = 0.984k = 2324
39377 measured reflectionsl = 3131
5084 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1198P)2 + 0.5762P]
where P = (Fo2 + 2Fc2)/3
5084 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.32 e Å3
256 restraintsΔρmin = 0.42 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C27H26O4V = 4465.4 (4) Å3
Mr = 414.50Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.7329 (5) ŵ = 0.08 mm1
b = 18.6106 (9) ÅT = 296 K
c = 24.6522 (12) Å0.40 × 0.30 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5084 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
2954 reflections with F2 > 2σ(F2)
Tmin = 0.793, Tmax = 0.984Rint = 0.037
39377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065256 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 1.11Δρmax = 0.32 e Å3
5084 reflectionsΔρmin = 0.42 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3447 (3)0.12993 (17)0.59891 (10)0.1037 (9)
O20.4623 (4)0.03776 (13)0.73273 (12)0.1042 (9)
O30.4111 (3)0.23227 (14)0.66394 (11)0.1008 (9)
O40.5611 (3)0.06587 (16)0.79289 (10)0.1021 (9)
C10.7090 (3)0.00329 (14)0.59987 (10)0.0554 (7)
C20.6468 (4)0.03816 (17)0.56032 (14)0.0722 (8)
C30.6552 (4)0.1130 (2)0.56267 (18)0.0927 (10)
C40.7271 (5)0.1457 (2)0.60269 (18)0.0990 (11)
C50.7898 (5)0.1058 (3)0.64118 (17)0.0999 (11)
C60.7814 (4)0.03125 (18)0.64031 (13)0.0779 (9)
C70.7742 (3)0.11899 (14)0.55144 (11)0.0585 (7)
C80.7184 (4)0.17727 (15)0.52409 (12)0.0734 (8)
C90.7915 (5)0.21151 (18)0.48286 (14)0.0883 (10)
C100.9201 (5)0.1874 (2)0.46851 (15)0.0948 (11)
C110.9762 (4)0.1296 (3)0.49499 (16)0.0968 (11)
C120.9032 (4)0.0949 (2)0.53547 (13)0.0812 (9)
C130.4274 (3)0.04562 (15)0.66258 (11)0.0623 (7)
C140.3404 (4)0.0670 (3)0.61918 (14)0.0844 (9)
C150.2377 (5)0.0162 (4)0.59619 (18)0.1210 (13)
C160.2609 (7)0.0579 (4)0.6106 (3)0.1514 (17)
C170.2893 (5)0.0685 (3)0.6689 (3)0.1237 (13)
C180.3990 (4)0.01717 (17)0.68890 (17)0.0847 (9)
C190.5128 (3)0.14829 (15)0.72344 (11)0.0585 (7)
C200.4536 (4)0.21398 (16)0.71147 (14)0.0757 (8)
C210.4332 (5)0.2703 (2)0.75493 (19)0.1023 (11)
C220.5221 (5)0.2585 (3)0.8042 (2)0.1110 (12)
C230.5133 (5)0.1835 (3)0.82282 (15)0.0975 (11)
C240.5313 (4)0.13004 (19)0.77861 (13)0.0748 (8)
C250.5481 (3)0.09241 (13)0.68042 (10)0.0556 (6)
C260.6300 (3)0.12232 (14)0.63315 (11)0.0588 (7)
C270.7002 (3)0.08350 (14)0.59723 (10)0.0533 (6)
H20.59930.01620.53210.0867*
H2A0.50160.00330.74650.1251*
H30.61110.14060.53650.1112*
H3A0.40450.19640.64480.1210*
H40.73340.19550.60370.1188*
H50.83910.12840.66860.1198*
H60.82490.00450.66720.0934*
H80.63130.19370.53330.0881*
H90.75330.25070.46500.1060*
H100.96880.21020.44100.1138*
H111.06360.11370.48570.1162*
H120.94110.05480.55220.0975*
H15A0.14690.03020.60860.1452*
H15B0.23870.02040.55700.1452*
H16A0.33800.07600.58980.1817*
H16B0.18050.08580.60080.1817*
H17A0.31930.11760.67490.1485*
H17B0.20550.06110.68950.1485*
H21A0.45360.31720.73980.1228*
H21B0.33760.27030.76600.1228*
H22A0.61680.26990.79540.1332*
H22B0.49280.29040.83310.1332*
H23A0.42440.17600.83970.1170*
H23B0.58310.17550.85020.1170*
H250.61120.05920.69860.0667*
H260.63130.17200.62890.0705*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0898 (18)0.144 (3)0.0776 (16)0.0116 (16)0.0078 (13)0.0304 (15)
O20.128 (3)0.0688 (14)0.116 (2)0.0128 (14)0.0350 (17)0.0296 (13)
O30.121 (2)0.0856 (16)0.0962 (17)0.0352 (14)0.0053 (15)0.0228 (13)
O40.124 (2)0.1130 (19)0.0692 (14)0.0320 (16)0.0050 (14)0.0242 (13)
C10.0512 (14)0.0608 (14)0.0543 (13)0.0046 (11)0.0098 (11)0.0040 (11)
C20.0661 (17)0.0759 (17)0.0747 (17)0.0026 (14)0.0053 (14)0.0115 (14)
C30.091 (3)0.0774 (19)0.109 (3)0.0065 (17)0.0249 (19)0.0282 (18)
C40.115 (3)0.0672 (19)0.114 (3)0.0118 (18)0.050 (3)0.0060 (17)
C50.122 (3)0.085 (2)0.093 (3)0.035 (2)0.020 (2)0.0243 (18)
C60.089 (2)0.0776 (18)0.0669 (17)0.0216 (16)0.0011 (15)0.0072 (14)
C70.0601 (15)0.0628 (14)0.0527 (14)0.0097 (12)0.0039 (12)0.0023 (11)
C80.095 (2)0.0590 (15)0.0663 (17)0.0012 (14)0.0127 (15)0.0050 (13)
C90.127 (3)0.0663 (17)0.0715 (18)0.0156 (18)0.0096 (19)0.0097 (15)
C100.109 (3)0.098 (3)0.078 (2)0.0418 (19)0.0207 (19)0.0051 (17)
C110.073 (2)0.130 (3)0.087 (3)0.0221 (19)0.0222 (17)0.015 (2)
C120.0604 (17)0.108 (3)0.0753 (19)0.0035 (16)0.0106 (15)0.0189 (17)
C130.0622 (15)0.0632 (14)0.0616 (14)0.0007 (12)0.0159 (12)0.0061 (12)
C140.0632 (17)0.125 (3)0.0653 (17)0.0046 (17)0.0066 (14)0.0188 (17)
C150.089 (3)0.172 (3)0.102 (3)0.021 (3)0.003 (2)0.049 (3)
C160.115 (3)0.156 (3)0.183 (4)0.032 (3)0.016 (3)0.080 (4)
C170.102 (3)0.077 (2)0.192 (4)0.0203 (19)0.038 (3)0.022 (3)
C180.088 (2)0.0587 (15)0.107 (3)0.0004 (14)0.0357 (17)0.0062 (15)
C190.0543 (14)0.0617 (14)0.0595 (14)0.0039 (11)0.0040 (11)0.0001 (11)
C200.0781 (18)0.0635 (15)0.0855 (18)0.0118 (14)0.0137 (16)0.0040 (14)
C210.104 (3)0.0751 (19)0.127 (3)0.0137 (19)0.021 (2)0.0224 (19)
C220.096 (3)0.119 (3)0.118 (3)0.011 (3)0.022 (2)0.048 (3)
C230.087 (3)0.128 (3)0.078 (2)0.002 (2)0.0019 (18)0.0303 (19)
C240.0682 (17)0.0945 (19)0.0617 (15)0.0056 (15)0.0025 (14)0.0035 (14)
C250.0572 (14)0.0559 (13)0.0536 (13)0.0053 (11)0.0061 (11)0.0041 (11)
C260.0618 (15)0.0537 (13)0.0609 (15)0.0004 (12)0.0064 (13)0.0056 (12)
C270.0470 (13)0.0602 (15)0.0527 (14)0.0012 (11)0.0017 (11)0.0039 (12)
Geometric parameters (Å, º) top
O1—C141.274 (6)C22—C231.471 (7)
O2—C181.301 (5)C23—C241.487 (6)
O3—C201.289 (5)C25—C261.518 (4)
O4—C241.278 (5)C26—C271.332 (4)
C1—C21.383 (5)O2—H2A0.820
C1—C61.380 (5)O3—H3A0.820
C1—C271.497 (4)C2—H20.930
C2—C31.396 (5)C3—H30.930
C3—C41.354 (6)C4—H40.930
C4—C51.350 (6)C5—H50.930
C5—C61.389 (6)C6—H60.930
C7—C81.388 (4)C8—H80.930
C7—C121.389 (5)C9—H90.930
C7—C271.493 (4)C10—H100.930
C8—C91.395 (5)C11—H110.930
C9—C101.375 (6)C12—H120.930
C10—C111.371 (6)C15—H15A0.970
C11—C121.385 (6)C15—H15B0.970
C13—C141.421 (5)C16—H16A0.970
C13—C181.365 (5)C16—H16B0.970
C13—C251.527 (4)C17—H17A0.970
C14—C151.488 (7)C17—H17B0.970
C15—C161.442 (9)C21—H21A0.970
C16—C171.476 (10)C21—H21B0.970
C17—C181.516 (6)C22—H22A0.970
C19—C201.383 (5)C22—H22B0.970
C19—C241.413 (5)C23—H23A0.970
C19—C251.525 (4)C23—H23B0.970
C20—C211.512 (6)C25—H250.980
C21—C221.507 (7)C26—H260.930
O1···O32.572 (4)O4···H17Biii2.7827
O1···C183.563 (5)C2···H2v3.4576
O1···C193.495 (4)C2···H11ix3.3475
O1···C203.357 (5)C2···H15Bv3.1161
O1···C252.906 (4)C3···H11ix2.9851
O1···C262.906 (4)C3···H15Bv3.5681
O1···C273.567 (4)C3···H22Bvi3.4522
O2···O42.616 (4)C4···H10ix3.3705
O2···C193.505 (4)C4···H11ix3.0416
O2···C243.389 (5)C4···H22Bvi2.9167
O2···C252.869 (4)C5···H11ix3.4416
O3···C133.477 (4)C5···H21Bvi3.4779
O3···C143.340 (5)C5···H22Bvi3.4210
O3···C252.953 (4)C6···H2Aiii3.5575
O3···C263.050 (4)C7···H23Aiii3.2349
O4···C133.487 (4)C8···H4vii3.1103
O4···C183.384 (5)C8···H10ii3.3210
O4···C203.567 (5)C8···H16Av3.4258
O4···C252.819 (4)C9···H3vii3.1973
C1···C42.779 (5)C9···H4vii3.4531
C1···C122.999 (5)C9···H16Av3.3402
C1···C133.244 (4)C9···H16Bv3.1302
C1···C253.024 (4)C10···H3Aiv3.5357
C2···C52.737 (6)C10···H8iv3.0203
C2···C73.184 (4)C10···H16Av3.5602
C2···C123.568 (5)C10···H16Bv2.7300
C2···C263.489 (5)C11···H16Bv2.9261
C3···C62.736 (6)C12···H15Ax3.2138
C6···C73.553 (5)C12···H15Bx3.5876
C6···C253.381 (5)C12···H15Bv3.4213
C6···C263.220 (5)C12···H16Bv3.4596
C7···C102.796 (5)C12···H23Aiii3.4340
C8···C112.755 (6)C14···H23Bi3.3039
C8···C263.002 (4)C15···H2v3.5388
C9···C122.752 (5)C15···H12xi3.1655
C13···C162.824 (7)C15···H23Bi3.5767
C13···C203.367 (5)C17···H22Avi3.2641
C13···C243.417 (5)C17···H22Bvi3.3764
C13···C273.185 (4)C20···H22Ai3.4440
C14···C172.848 (7)C21···H22Ai3.3203
C14···C193.422 (5)C22···H4xii3.4753
C14···C263.021 (5)C22···H17Axii2.8229
C14···C273.557 (5)C22···H21Biii3.5308
C15···C182.842 (6)C23···H15Aiii3.5630
C18···C193.381 (5)C24···H6i3.4777
C19···C222.859 (6)C24···H15Aiii3.5282
C20···C232.862 (5)C26···H23Aiii3.1072
C20···C263.096 (5)C27···H23Aiii3.1847
C21···C242.841 (6)H2···C2v3.4576
O2···C6i3.593 (5)H2···C15v3.5388
O3···C10ii3.592 (5)H2···H2v2.5705
O4···C14iii3.477 (5)H2···H15Bv2.7044
O4···C15iii3.359 (6)H2···H16Av3.5143
O4···C17iii3.475 (6)H2A···C6i3.5575
C6···O2iii3.593 (5)H2A···H5i3.5083
C10···O3iv3.592 (5)H2A···H6i2.7375
C10···C16v3.567 (8)H2A···H17Biii2.7549
C14···O4i3.477 (5)H2A···H21Avi3.3852
C15···O4i3.359 (6)H3···O1v3.3721
C16···C10v3.567 (8)H3···C9xiii3.1973
C17···O4i3.475 (6)H3···H8v3.0832
O1···H3A1.7743H3···H9xiii2.9899
O1···H83.4351H3···H11ix3.2522
O1···H15A2.6845H3···H15Bv3.5288
O1···H15B2.5074H3A···C10ii3.5357
O1···H262.9899H3A···H9ii3.2346
O2···H17A2.4854H3A···H10ii2.8081
O2···H17B2.7518H3A···H22Ai3.4478
O2···H252.4622H3A···H23Bi3.1539
O3···H21A2.4836H4···C8xiii3.1103
O3···H21B2.7095H4···C9xiii3.4531
O3···H262.5690H4···C22vi3.4753
O4···H2A1.8174H4···H8xiii2.9986
O4···H23A2.7028H4···H9xiii3.5640
O4···H23B2.4906H4···H10ix3.1126
O4···H252.3782H4···H11ix3.3286
C1···H33.2435H4···H21Bvi3.3474
C1···H53.2374H4···H22Bvi2.7103
C1···H122.7198H4···H23Avi3.1659
C1···H252.8128H4···H26xiii2.8640
C1···H263.3075H5···O2iii3.1939
C2···H43.2294H5···O3xiii3.5566
C2···H63.2144H5···H2Aiii3.5083
C2···H123.3514H5···H21Axiii2.8593
C2···H16A3.1720H5···H21Bvi3.0184
C3···H53.1787H5···H22Bvi3.5664
C3···H16A3.2335H6···O2iii2.8745
C4···H23.2224H6···O4iii2.8235
C4···H63.2147H6···C24iii3.4777
C5···H33.1786H6···H2Aiii2.7375
C6···H23.2145H6···H15Ax3.5109
C6···H43.2218H6···H23Aiii3.5004
C6···H123.1131H8···C10ii3.0203
C6···H252.7642H8···H3v3.0832
C7···H23.0743H8···H4vii2.9986
C7···H93.2545H8···H10ii2.4697
C7···H113.2507H9···O1iv2.8650
C7···H262.5603H9···O3iv3.5448
C8···H103.2420H9···H3vii2.9899
C8···H123.2211H9···H3Aiv3.2346
C8···H262.7215H9···H4vii3.5640
C9···H113.2142H9···H11ii3.3539
C10···H83.2358H9···H16Bv3.5312
C10···H123.2245H9···H23Bxiv3.5553
C11···H93.2140H10···O1iv3.3580
C12···H83.2226H10···O3iv2.8553
C12···H103.2311H10···C4ix3.3705
C13···H2A2.3721H10···C8iv3.3210
C13···H3A2.8489H10···H3Aiv2.8081
C13···H15A3.0501H10···H4ix3.1126
C13···H15B3.2200H10···H8iv2.4697
C13···H16A3.0166H10···H16Bv2.9215
C13···H17A3.2289H10···H26iv3.2059
C13···H17B3.0071H11···C2ix3.3475
C13···H263.1871H11···C3ix2.9851
C14···H3A2.5669H11···C4ix3.0416
C14···H16A2.7581H11···C5ix3.4416
C14···H16B3.2724H11···H3ix3.2522
C14···H17B3.2252H11···H4ix3.3286
C14···H253.2866H11···H9iv3.3539
C14···H263.4486H11···H12ix3.2720
C15···H17A3.2556H11···H15Ax3.4997
C15···H17B2.7298H11···H15Bx3.0007
C17···H2A3.0662H11···H16Bv3.2342
C17···H15A2.7398H12···C15x3.1655
C17···H15B3.2551H12···H11ix3.2720
C18···H15A3.2736H12···H12ix3.4791
C18···H16A2.7422H12···H15Ax2.4806
C18···H16B3.2978H12···H15Bx2.9692
C18···H252.5179H12···H15Bv3.5027
C19···H2A2.8798H12···H23Aiii3.4951
C19···H3A2.3816H12···H23Biii3.5698
C19···H21A3.2220H15A···O4i2.6524
C19···H21B3.0271H15A···C12xi3.2138
C19···H22A3.0478H15A···C23i3.5630
C19···H23A3.0366H15A···C24i3.5282
C19···H23B3.2388H15A···H6xi3.5109
C19···H262.6372H15A···H11xi3.4997
C20···H22A2.8074H15A···H12xi2.4806
C20···H22B3.3394H15A···H23Bi2.9540
C20···H23A3.2516H15B···C2v3.1161
C20···H253.2792H15B···C3v3.5681
C20···H262.7828H15B···C12xi3.5876
C21···H3A3.0564H15B···C12v3.4213
C21···H23A2.7303H15B···H2v2.7044
C21···H23B3.2804H15B···H3v3.5288
C23···H21A3.2738H15B···H11xi3.0007
C23···H21B2.7372H15B···H12xi2.9692
C24···H2A2.6211H15B···H12v3.5027
C24···H21B3.2351H16A···C8v3.4258
C24···H22A2.7633H16A···C9v3.3402
C24···H22B3.2931H16A···C10v3.5602
C24···H252.4968H16A···H2v3.5143
C25···H2A2.4552H16A···H22Bvi3.5374
C25···H3A2.5440H16B···C9v3.1302
C25···H63.2579H16B···C10v2.7300
C26···H23.5965H16B···C11v2.9261
C26···H3A2.6084H16B···C12v3.4596
C26···H63.1414H16B···H9v3.5312
C26···H82.7960H16B···H10v2.9215
C27···H22.6422H16B···H11v3.2342
C27···H62.6692H17A···O3xv3.5925
C27···H82.6713H17A···C22vi2.8229
C27···H122.6478H17A···H21Axv3.3290
C27···H252.6835H17A···H21Avi3.2834
H2···H32.3214H17A···H21Bxv3.4245
H2···H16A3.1199H17A···H22Avi2.3041
H2A···H17A3.2842H17A···H22Bvi2.5139
H2A···H17B3.3817H17B···O2i3.0777
H2A···H251.9701H17B···O4i2.7827
H3···H42.2811H17B···H2Ai2.7549
H3···H16A3.1993H17B···H21Axv3.0113
H3A···H83.5249H21A···O2xii2.9003
H3A···H21A3.2817H21A···H2Axii3.3852
H3A···H21B3.3526H21A···H5vii2.8593
H3A···H253.5114H21A···H17Aviii3.3290
H3A···H262.2879H21A···H17Axii3.2834
H4···H52.2758H21A···H17Bviii3.0113
H5···H62.3106H21A···H22Ai3.5035
H6···H123.2436H21B···C5xii3.4779
H6···H252.5159H21B···C22i3.5308
H8···H92.3182H21B···H4xii3.3474
H8···H262.3902H21B···H5xii3.0184
H9···H102.3064H21B···H17Aviii3.4245
H10···H112.3011H21B···H22Ai2.6281
H11···H122.3053H22A···O3iii3.1148
H15A···H16A2.7532H22A···C17xii3.2641
H15A···H16B2.1916H22A···C20iii3.4440
H15A···H17B2.6799H22A···C21iii3.3203
H15B···H16A2.1929H22A···H3Aiii3.4478
H15B···H16B2.3219H22A···H17Axii2.3041
H16A···H17A2.2432H22A···H21Aiii3.5035
H16A···H17B2.7881H22A···H21Biii2.6281
H16B···H17A2.3488H22B···C3xii3.4522
H16B···H17B2.2477H22B···C4xii2.9167
H21A···H22A2.2751H22B···C5xii3.4210
H21A···H22B2.3841H22B···C17xii3.3764
H21B···H22A2.8122H22B···H4xii2.7103
H21B···H22B2.2707H22B···H5xii3.5664
H21B···H23A2.6634H22B···H16Axii3.5374
H22A···H23A2.7841H22B···H17Axii2.5139
H22A···H23B2.2408H23A···C7i3.2349
H22B···H23A2.2353H23A···C12i3.4340
H22B···H23B2.3500H23A···C26i3.1072
H25···H262.7197H23A···C27i3.1847
O1···H3v3.3721H23A···H4xii3.1659
O1···H9ii2.8650H23A···H6i3.5004
O1···H10ii3.3580H23A···H12i3.4951
O1···H23Bi2.9620H23A···H26i2.9568
O2···H5i3.1939H23B···O1iii2.9620
O2···H6i2.8745H23B···O3iii3.3802
O2···H17Biii3.0777H23B···C14iii3.3039
O2···H21Avi2.9003H23B···C15iii3.5767
O3···H5vii3.5566H23B···H3Aiii3.1539
O3···H9ii3.5448H23B···H9xvi3.5553
O3···H10ii2.8553H23B···H12i3.5698
O3···H17Aviii3.5925H23B···H15Aiii2.9540
O3···H22Ai3.1148H26···H4vii2.8640
O3···H23Bi3.3802H26···H10ii3.2059
O4···H6i2.8235H26···H23Aiii2.9568
O4···H15Aiii2.6524
C2—C1—C6118.2 (3)C4—C3—H3119.711
C2—C1—C27120.1 (3)C3—C4—H4120.074
C6—C1—C27121.7 (3)C5—C4—H4120.054
C1—C2—C3120.1 (4)C4—C5—H5119.609
C2—C3—C4120.6 (4)C6—C5—H5119.607
C3—C4—C5119.9 (4)C1—C6—H6119.803
C4—C5—C6120.8 (4)C5—C6—H6119.787
C1—C6—C5120.4 (4)C7—C8—H8119.634
C8—C7—C12117.9 (3)C9—C8—H8119.606
C8—C7—C27121.6 (3)C8—C9—H9119.923
C12—C7—C27120.5 (3)C10—C9—H9119.904
C7—C8—C9120.8 (4)C9—C10—H10120.164
C8—C9—C10120.2 (4)C11—C10—H10120.158
C9—C10—C11119.7 (4)C10—C11—H11119.834
C10—C11—C12120.3 (4)C12—C11—H11119.832
C7—C12—C11121.1 (4)C7—C12—H12119.449
C14—C13—C18118.5 (3)C11—C12—H12119.447
C14—C13—C25121.0 (3)C14—C15—H15A108.733
C18—C13—C25120.4 (3)C14—C15—H15B108.738
O1—C14—C13122.2 (4)C16—C15—H15A108.748
O1—C14—C15117.2 (4)C16—C15—H15B108.746
C13—C14—C15120.6 (4)H15A—C15—H15B107.626
C14—C15—C16114.1 (5)C15—C16—H16A108.872
C15—C16—C17113.5 (5)C15—C16—H16B108.870
C16—C17—C18111.3 (5)C17—C16—H16A108.872
O2—C18—C13123.5 (4)C17—C16—H16B108.877
O2—C18—C17114.7 (4)H16A—C16—H16B107.718
C13—C18—C17121.9 (4)C16—C17—H17A109.355
C20—C19—C24118.1 (3)C16—C17—H17B109.364
C20—C19—C25123.3 (3)C18—C17—H17A109.367
C24—C19—C25118.5 (3)C18—C17—H17B109.380
O3—C20—C19124.1 (3)H17A—C17—H17B107.993
O3—C20—C21114.8 (3)C20—C21—H21A108.948
C19—C20—C21121.1 (3)C20—C21—H21B108.946
C20—C21—C22113.2 (4)C22—C21—H21A108.929
C21—C22—C23110.9 (4)C22—C21—H21B108.933
C22—C23—C24113.5 (4)H21A—C21—H21B107.750
O4—C24—C19121.2 (3)C21—C22—H22A109.454
O4—C24—C23116.8 (3)C21—C22—H22B109.456
C19—C24—C23122.0 (3)C23—C22—H22A109.464
C13—C25—C19114.6 (3)C23—C22—H22B109.452
C13—C25—C26113.1 (3)H22A—C22—H22B108.047
C19—C25—C26113.7 (2)C22—C23—H23A108.861
C25—C26—C27125.5 (3)C22—C23—H23B108.865
C1—C27—C7116.5 (3)C24—C23—H23A108.863
C1—C27—C26122.8 (3)C24—C23—H23B108.867
C7—C27—C26120.7 (3)H23A—C23—H23B107.718
C18—O2—H2A109.468C13—C25—H25104.699
C20—O3—H3A109.476C19—C25—H25104.698
C1—C2—H2119.945C26—C25—H25104.697
C3—C2—H2119.954C25—C26—H26117.235
C2—C3—H3119.715C27—C26—H26117.232
C2—C1—C6—C50.6 (5)C18—C13—C25—C1989.8 (4)
C6—C1—C2—C31.6 (5)C18—C13—C25—C26137.7 (3)
C2—C1—C27—C767.3 (4)C25—C13—C18—O26.5 (5)
C2—C1—C27—C26112.3 (3)C25—C13—C18—C17173.8 (3)
C27—C1—C2—C3179.8 (3)O1—C14—C15—C16165.0 (3)
C6—C1—C27—C7110.9 (3)C13—C14—C15—C1616.2 (5)
C6—C1—C27—C2669.5 (4)C14—C15—C16—C1746.8 (6)
C27—C1—C6—C5178.9 (3)C15—C16—C17—C1849.3 (6)
C1—C2—C3—C41.8 (6)C16—C17—C18—O2157.9 (4)
C2—C3—C4—C51.0 (7)C16—C17—C18—C1322.4 (6)
C3—C4—C5—C60.0 (7)C20—C19—C24—O4166.9 (3)
C4—C5—C6—C10.2 (7)C20—C19—C24—C2311.3 (5)
C8—C7—C12—C112.5 (5)C24—C19—C20—O3168.4 (3)
C12—C7—C8—C91.6 (5)C24—C19—C20—C2111.1 (5)
C8—C7—C27—C1140.6 (3)C20—C19—C25—C1382.0 (4)
C8—C7—C27—C2639.0 (4)C20—C19—C25—C2650.2 (4)
C27—C7—C8—C9177.4 (3)C25—C19—C20—O36.5 (5)
C12—C7—C27—C140.4 (4)C25—C19—C20—C21174.0 (3)
C12—C7—C27—C26140.0 (3)C24—C19—C25—C1392.9 (3)
C27—C7—C12—C11176.5 (3)C24—C19—C25—C26134.9 (3)
C7—C8—C9—C100.5 (5)C25—C19—C24—O48.3 (5)
C8—C9—C10—C110.1 (6)C25—C19—C24—C23173.6 (3)
C9—C10—C11—C121.0 (6)O3—C20—C21—C22161.3 (3)
C10—C11—C12—C72.2 (6)C19—C20—C21—C2219.1 (5)
C14—C13—C18—O2172.1 (3)C20—C21—C22—C2348.5 (5)
C14—C13—C18—C177.6 (5)C21—C22—C23—C2448.6 (5)
C18—C13—C14—O1167.5 (3)C22—C23—C24—O4162.1 (3)
C18—C13—C14—C1511.3 (5)C22—C23—C24—C1919.7 (5)
C14—C13—C25—C1988.8 (3)C13—C25—C26—C2763.5 (4)
C14—C13—C25—C2643.7 (4)C19—C25—C26—C27163.6 (3)
C25—C13—C14—O111.2 (5)C25—C26—C27—C11.2 (4)
C25—C13—C14—C15170.0 (3)C25—C26—C27—C7178.4 (3)
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y, z+3/2; (iv) x+1/2, y+1/2, z+1; (v) x+1, y, z+1; (vi) x+1, y1/2, z+3/2; (vii) x+3/2, y+1/2, z; (viii) x+1/2, y+1/2, z; (ix) x+2, y, z+1; (x) x+1, y, z; (xi) x1, y, z; (xii) x+1, y+1/2, z+3/2; (xiii) x+3/2, y1/2, z; (xiv) x, y+1/2, z1/2; (xv) x+1/2, y1/2, z; (xvi) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O40.821.822.616 (4)164
O3—H3A···O10.821.772.572 (4)164

Experimental details

Crystal data
Chemical formulaC27H26O4
Mr414.50
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)9.7329 (5), 18.6106 (9), 24.6522 (12)
V3)4465.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.793, 0.984
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
39377, 5084, 2954
Rint0.037
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.231, 1.11
No. of reflections5084
No. of parameters280
No. of restraints256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.42

Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O40.8201.8172.616 (4)164.3
O3—H3A···O10.8201.7742.572 (4)163.8
 

Acknowledgements

Fiancial support from the Korea Institute of Science and Technology (KIST) is gratefully acknowledged.

References

First citationCha, J. H., Kim, Y. H., Min, S.-J., Cho, Y. S. & Lee, J. K. (2011a). Acta Cryst. E67, o3153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCha, J. H., Son, M. H., Min, S.-J., Cho, Y. S. & Lee, J. K. (2011b). Acta Cryst. E67, o2739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds