organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(4-bromo­phen­yl)-1-sec-butyl-1H-benzimidazole-5-carboxyl­ate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bKulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
*Correspondence e-mail: aisyah@usm.my

(Received 11 November 2011; accepted 17 November 2011; online 30 November 2011)

In the title compound, C20H21BrN2O2, the bromo­phenyl ring is twisted by 40.13 (8)° from the benzimidazole mean plane and the Br atom deviates by 0.753 (1) Å from that plane. The sec-butyl group is disordered over two conformations in a 0.898 (5):0.102 (5) ratio. In the crystal, mol­ecules related by translation along [[\overline{1}]10] are linked into chains via weak C—H⋯Br hydrogen bonds.

Related literature

For the synthesis and closely related structures, see: Arumugam et al. (2010[Arumugam, N., Abdul Rahim, A. S., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o2412-o2413.], 2011[Arumugam, N., Ngah, N., Abd Hamid, S. & Abdul Rahim, A. S. (2011). Acta Cryst. E67, o2938.]); Navarrete-Vazquez et al. (2006[Navarrete-Vazquez, G., Moreno-Diaz, H., Aguirre-Crespo, F., Leon-Rivera, I., Villalobos-Molina, R., Munoz-Muniz, O. & Estrada-Soto, S. (2006). Bioorg. Med. Chem. Lett. 16, 4169-4173.]). For therapeutic properties of benzimidazole derivatives, see: Vitale et al. (2008[Vitale, G., Carta, A., Loriga, M., Paglietti, G., La Colla, P., Busonera, B., Collu, D. & Loddo, R. (2008). Med. Chem. 4, 605-615.], 2009[Vitale, G., Corona, P., Loriga, M., Carta, A., Paglietti, G., La Colla, P., Busonera, B., Marongiu, E., Collu, D. & Loddo, R. (2009). Med. Chem. 5, 507-516.]); Arienti et al. (2005[Arienti, K., Brunmark, A., Axe, F., McClure, K., Lee, A., Blevitt, J., Neff, D., Huang, L., Crawford, S., Pandit, C., Karlson, L. & Breitenbucher, J. (2005). J. Med. Chem. 48, 1873-1885.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the low-temperature device used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21BrN2O2

  • Mr = 401.30

  • Monoclinic, P 21 /c

  • a = 10.5187 (2) Å

  • b = 12.7525 (2) Å

  • c = 13.7444 (2) Å

  • β = 98.101 (1)°

  • V = 1825.27 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 100 K

  • 0.39 × 0.39 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.471, Tmax = 0.666

  • 24453 measured reflections

  • 3221 independent reflections

  • 3073 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.08

  • 3221 reflections

  • 248 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯Br1i 0.98 2.79 3.533 (2) 133
Symmetry code: (i) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Accelerated condensation of substituted phenylenediamines with adducts of aldehydes under microwave conditions provides access into 2-arylbenzimidazoles (Navarrete-Vazquez et al., 2006; Arumugam et al., 2010; 2011). These 2-substituted benzimidazoles have recently gained attention due to their antiviral and antiproliferative activities (Vitale et al., 2008; 2009). Not only that, a series of novel 2-arylbenzimidazoles was found to exhibit highly selective inhibition on chk2 kinase, which helps to control DNA damage and could prove useful as an adjuvant to radiotherapy (Arienti et al., 2005). In continuation with our work in 2-arylbenzimidazoles (Arumugam et al., 2010; 2011), we present herein the X-ray crystal structure determination of the title compound.

The title compound, (Fig. 1), is similar to those previously reported, ethyl 1-sec-butyl-2-(4-chlorophenyl)-1H-benzimidazole-5- carboxylate (Arumugam et al., 2010) and ethyl 1-sec-butyl-2- (4-fluorophenyl)-1H-benzimidazole-5-carboxylate (Arumugam et al., 2011), except the bromine atom is attached at the para position of benzene ring.The bond lengths and angles are in normal ranges (Allen et al., 1987) and in agreement with those reported by Arumugam et al. (2010) and Arumugam et al. (2011). The sec-butyl group (C17/C18/C19/C20) is disordered over two conformations in a ratio 0.898 (5):0.102 (5). The bromophenyl ring (C1—C6/Br1) is twisted at 40.13 (8)° from the benzimidazole mean plane (C8/C9/C10/C11/C12/C13/N1/N2/C7) and Br atom deviates at 0.753 (1)Å from that plane.

In the crystal structure (Fig. 2), the molecules related by translation along [-110] are linked into chains via weak intermolecular C16—H16A···Br1 hydrogen bonds (Table 1).

Related literature top

For the synthesis and closely related structures, see: Arumugam et al. (2010, 2011); Navarrete-Vazquez et al. (2006). For therapeutic properties of benzimidazole derivatives, see: Vitale et al. (2008, 2009); Arienti et al. (2005). For standard bond lengths, see: Allen et al. (1987). For the low-temperature device used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Preparation of the title compound was performed using the previous procedure described by Arumugam et al. (2010) and Arumugam et al. (2011). Recrystallization of the crude product from ethyl acetate furnished colourless crystals suitable for X-ray analysis.

Refinement top

X-ray data were collected at low temperature (Cosier & Glazer, 1986). All H atoms were positioned geometrically and refined using riding model with C—H = 0.95–1.00Å and Uiso(H)=1.2 or 1.5Ueq(C). A sec- butyl group (C17/C18/C19/C20) is disordered over two conformations in a ratio 0.898 (5):0.102 (5). A minor component of disorder (C17B/C18B/C19B/C20B) was refined isotropically. A rotating group model was applied for methyl group.

Structure description top

Accelerated condensation of substituted phenylenediamines with adducts of aldehydes under microwave conditions provides access into 2-arylbenzimidazoles (Navarrete-Vazquez et al., 2006; Arumugam et al., 2010; 2011). These 2-substituted benzimidazoles have recently gained attention due to their antiviral and antiproliferative activities (Vitale et al., 2008; 2009). Not only that, a series of novel 2-arylbenzimidazoles was found to exhibit highly selective inhibition on chk2 kinase, which helps to control DNA damage and could prove useful as an adjuvant to radiotherapy (Arienti et al., 2005). In continuation with our work in 2-arylbenzimidazoles (Arumugam et al., 2010; 2011), we present herein the X-ray crystal structure determination of the title compound.

The title compound, (Fig. 1), is similar to those previously reported, ethyl 1-sec-butyl-2-(4-chlorophenyl)-1H-benzimidazole-5- carboxylate (Arumugam et al., 2010) and ethyl 1-sec-butyl-2- (4-fluorophenyl)-1H-benzimidazole-5-carboxylate (Arumugam et al., 2011), except the bromine atom is attached at the para position of benzene ring.The bond lengths and angles are in normal ranges (Allen et al., 1987) and in agreement with those reported by Arumugam et al. (2010) and Arumugam et al. (2011). The sec-butyl group (C17/C18/C19/C20) is disordered over two conformations in a ratio 0.898 (5):0.102 (5). The bromophenyl ring (C1—C6/Br1) is twisted at 40.13 (8)° from the benzimidazole mean plane (C8/C9/C10/C11/C12/C13/N1/N2/C7) and Br atom deviates at 0.753 (1)Å from that plane.

In the crystal structure (Fig. 2), the molecules related by translation along [-110] are linked into chains via weak intermolecular C16—H16A···Br1 hydrogen bonds (Table 1).

For the synthesis and closely related structures, see: Arumugam et al. (2010, 2011); Navarrete-Vazquez et al. (2006). For therapeutic properties of benzimidazole derivatives, see: Vitale et al. (2008, 2009); Arienti et al. (2005). For standard bond lengths, see: Allen et al. (1987). For the low-temperature device used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsods drawn at the 50% probability level. The minor component of disordered fragment has been omitted.
[Figure 2] Fig. 2. The molecular packing of (I) viewed down the a axis. The minor component of disorder has been omitted for clarity.
Ethyl 2-(4-bromophenyl)-1-sec-butyl-1H-benzimidazole-5-carboxylate top
Crystal data top
C20H21BrN2O2F(000) = 824
Mr = 401.30Dx = 1.460 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15956 reflections
a = 10.5187 (2) Åθ = 1.9–25.0°
b = 12.7525 (2) ŵ = 2.27 mm1
c = 13.7444 (2) ÅT = 100 K
β = 98.101 (1)°Block, colourless
V = 1825.27 (5) Å30.39 × 0.39 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3221 independent reflections
Radiation source: fine-focus sealed tube3073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 1.9°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1515
Tmin = 0.471, Tmax = 0.666l = 1616
24453 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0253P)2 + 1.2079P]
where P = (Fo2 + 2Fc2)/3
3221 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.30 e Å3
12 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H21BrN2O2V = 1825.27 (5) Å3
Mr = 401.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5187 (2) ŵ = 2.27 mm1
b = 12.7525 (2) ÅT = 100 K
c = 13.7444 (2) Å0.39 × 0.39 × 0.20 mm
β = 98.101 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3221 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3073 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 0.666Rint = 0.024
24453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02212 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.08Δρmax = 0.30 e Å3
3221 reflectionsΔρmin = 0.24 e Å3
248 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open=flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br11.437653 (17)0.132336 (14)0.052952 (13)0.02810 (7)
O10.49686 (12)0.48183 (10)0.16898 (9)0.0271 (3)
O20.66303 (12)0.53232 (9)0.09400 (9)0.0257 (3)
N10.97007 (13)0.22220 (11)0.12388 (10)0.0189 (3)
N20.87714 (13)0.08790 (11)0.19561 (10)0.0196 (3)
C11.21317 (17)0.10333 (14)0.14588 (12)0.0216 (4)
H1A1.22490.17370.16800.026*
C21.31726 (17)0.04696 (14)0.12213 (12)0.0224 (4)
H2A1.40010.07800.12780.027*
C31.29818 (16)0.05549 (14)0.08999 (12)0.0212 (4)
C41.17921 (17)0.10309 (14)0.08218 (12)0.0222 (4)
H4A1.16840.17380.06080.027*
C51.07572 (17)0.04590 (13)0.10604 (12)0.0211 (4)
H5A0.99330.07770.10080.025*
C61.09155 (16)0.05814 (13)0.13774 (11)0.0190 (3)
C70.98140 (16)0.12428 (13)0.15413 (12)0.0187 (3)
C80.79159 (16)0.17113 (13)0.19091 (12)0.0191 (3)
C90.67050 (16)0.18299 (14)0.22094 (12)0.0212 (4)
H9A0.63110.12760.25200.025*
C100.61127 (16)0.27893 (14)0.20317 (12)0.0204 (3)
H10A0.52890.28960.22230.024*
C110.66927 (16)0.36167 (13)0.15738 (12)0.0189 (3)
C120.78936 (16)0.34958 (13)0.12819 (12)0.0185 (3)
H12A0.82830.40510.09700.022*
C130.85105 (16)0.25334 (13)0.14619 (12)0.0178 (3)
C140.59928 (16)0.46288 (13)0.14229 (12)0.0204 (4)
C150.60340 (19)0.63412 (14)0.07495 (14)0.0282 (4)
H15A0.60690.67460.13670.034*
H15B0.51240.62600.04570.034*
C160.6779 (2)0.68923 (16)0.00444 (17)0.0381 (5)
H16A0.64100.75890.01070.057*
H16B0.67360.64820.05630.057*
H16C0.76770.69650.03430.057*
C17A0.8740 (2)0.00625 (16)0.25876 (16)0.0213 (5)0.898 (5)
H17A0.95730.04390.25830.026*0.898 (5)
C18A0.8681 (3)0.0262 (2)0.36369 (17)0.0287 (6)0.898 (5)
H18A0.87810.03660.40650.034*0.898 (5)
H18B0.78290.05740.36830.034*0.898 (5)
C19A0.9724 (2)0.10532 (19)0.39981 (15)0.0306 (6)0.898 (5)
H19A0.96870.12180.46900.046*0.898 (5)
H19B0.95910.16950.36050.046*0.898 (5)
H19C1.05670.07560.39320.046*0.898 (5)
C20A0.7673 (2)0.08225 (17)0.21800 (19)0.0308 (6)0.898 (5)
H20A0.77360.09740.14890.046*0.898 (5)
H20B0.68360.05050.22300.046*0.898 (5)
H20C0.77620.14750.25590.046*0.898 (5)
C17B0.9167 (17)0.0113 (12)0.2755 (10)0.065 (13)*0.102 (5)
H17B0.99880.02580.26880.077*0.102 (5)
C18B0.9091 (19)0.0503 (16)0.3795 (13)0.017 (5)*0.102 (5)
H18C0.94610.00250.42710.025*0.102 (5)
H18D0.81910.06230.38730.025*0.102 (5)
H18E0.95720.11600.39090.025*0.102 (5)
C19B0.8038 (18)0.0613 (15)0.2757 (13)0.032 (5)*0.102 (5)
H19D0.72560.01990.28140.038*0.102 (5)
H19E0.81940.10900.33290.038*0.102 (5)
C20B0.784 (2)0.1251 (15)0.1810 (12)0.029 (5)*0.102 (5)
H20D0.70840.17030.18060.043*0.102 (5)
H20E0.85990.16850.17710.043*0.102 (5)
H20F0.77040.07760.12450.043*0.102 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02917 (11)0.02848 (11)0.02913 (11)0.01432 (7)0.01271 (8)0.00389 (7)
O10.0221 (6)0.0268 (7)0.0341 (7)0.0081 (5)0.0097 (5)0.0009 (5)
O20.0261 (7)0.0199 (6)0.0332 (7)0.0098 (5)0.0111 (5)0.0060 (5)
N10.0185 (7)0.0185 (7)0.0205 (7)0.0036 (6)0.0059 (6)0.0023 (6)
N20.0205 (7)0.0177 (7)0.0221 (7)0.0038 (6)0.0079 (6)0.0056 (6)
C10.0252 (9)0.0180 (8)0.0225 (8)0.0037 (7)0.0061 (7)0.0018 (7)
C20.0200 (8)0.0245 (9)0.0235 (9)0.0033 (7)0.0056 (7)0.0042 (7)
C30.0230 (9)0.0240 (9)0.0178 (8)0.0111 (7)0.0073 (7)0.0044 (7)
C40.0292 (9)0.0183 (8)0.0193 (8)0.0050 (7)0.0044 (7)0.0015 (7)
C50.0219 (9)0.0207 (8)0.0208 (8)0.0020 (7)0.0038 (7)0.0034 (7)
C60.0210 (8)0.0207 (8)0.0163 (8)0.0050 (7)0.0060 (6)0.0054 (6)
C70.0190 (8)0.0199 (9)0.0177 (8)0.0024 (7)0.0045 (6)0.0017 (6)
C80.0202 (8)0.0193 (8)0.0181 (8)0.0032 (7)0.0039 (6)0.0017 (6)
C90.0211 (9)0.0226 (9)0.0212 (8)0.0008 (7)0.0072 (7)0.0030 (7)
C100.0172 (8)0.0264 (9)0.0184 (8)0.0031 (7)0.0054 (6)0.0002 (7)
C110.0204 (8)0.0198 (8)0.0162 (8)0.0033 (7)0.0017 (6)0.0015 (6)
C120.0200 (8)0.0178 (8)0.0182 (8)0.0013 (6)0.0041 (6)0.0008 (6)
C130.0178 (8)0.0196 (8)0.0164 (8)0.0021 (7)0.0033 (6)0.0002 (6)
C140.0207 (9)0.0225 (9)0.0178 (8)0.0037 (7)0.0018 (7)0.0018 (7)
C150.0311 (10)0.0209 (9)0.0341 (10)0.0121 (7)0.0099 (8)0.0054 (7)
C160.0394 (12)0.0276 (11)0.0508 (13)0.0134 (9)0.0183 (10)0.0105 (9)
C17A0.0196 (12)0.0163 (10)0.0300 (11)0.0046 (9)0.0106 (9)0.0119 (8)
C18A0.0251 (13)0.0367 (14)0.0253 (11)0.0060 (11)0.0067 (10)0.0112 (10)
C19A0.0321 (12)0.0402 (13)0.0197 (10)0.0122 (10)0.0039 (8)0.0018 (9)
C20A0.0260 (11)0.0210 (11)0.0469 (15)0.0032 (9)0.0106 (10)0.0020 (11)
Geometric parameters (Å, º) top
Br1—C31.8927 (16)C15—C161.504 (3)
O1—C141.210 (2)C15—H15A0.9900
O2—C141.342 (2)C15—H15B0.9900
O2—C151.450 (2)C16—H16A0.9800
N1—C71.316 (2)C16—H16B0.9800
N1—C131.388 (2)C16—H16C0.9800
N2—C71.385 (2)C17A—C18A1.510 (3)
N2—C81.387 (2)C17A—C20A1.528 (4)
N2—C17B1.484 (5)C17A—H17A1.0000
N2—C17A1.485 (2)C18A—C19A1.522 (4)
C1—C21.387 (2)C18A—H18A0.9900
C1—C61.393 (2)C18A—H18B0.9900
C1—H1A0.9500C19A—H19A0.9800
C2—C31.385 (3)C19A—H19B0.9800
C2—H2A0.9500C19A—H19C0.9800
C3—C41.381 (3)C20A—H20A0.9800
C4—C51.387 (2)C20A—H20B0.9800
C4—H4A0.9500C20A—H20C0.9800
C5—C61.399 (2)C17B—C19B1.507 (6)
C5—H5A0.9500C17B—C18B1.526 (6)
C6—C71.476 (2)C17B—H17B1.0000
C8—C91.401 (2)C18B—H18C0.9800
C8—C131.406 (2)C18B—H18D0.9800
C9—C101.379 (2)C18B—H18E0.9800
C9—H9A0.9500C19B—C20B1.524 (6)
C10—C111.411 (2)C19B—H19D0.9900
C10—H10A0.9500C19B—H19E0.9900
C11—C121.387 (2)C20B—H20D0.9800
C11—C141.486 (2)C20B—H20E0.9800
C12—C131.394 (2)C20B—H20F0.9800
C12—H12A0.9500
C14—O2—C15116.53 (13)O2—C14—C11111.71 (14)
C7—N1—C13104.23 (14)O2—C15—C16106.46 (14)
C7—N2—C8105.69 (13)O2—C15—H15A110.4
C7—N2—C17B111.6 (7)C16—C15—H15A110.4
C8—N2—C17B130.6 (7)O2—C15—H15B110.4
C7—N2—C17A126.56 (15)C16—C15—H15B110.4
C8—N2—C17A125.33 (14)H15A—C15—H15B108.6
C17B—N2—C17A20.4 (7)C15—C16—H16A109.5
C2—C1—C6120.87 (16)C15—C16—H16B109.5
C2—C1—H1A119.6H16A—C16—H16B109.5
C6—C1—H1A119.6C15—C16—H16C109.5
C3—C2—C1118.72 (16)H16A—C16—H16C109.5
C3—C2—H2A120.6H16B—C16—H16C109.5
C1—C2—H2A120.6N2—C17A—C18A110.12 (18)
C4—C3—C2121.90 (16)N2—C17A—C20A111.97 (19)
C4—C3—Br1118.66 (13)C18A—C17A—C20A113.38 (19)
C2—C3—Br1119.43 (13)N2—C17A—H17A107.0
C3—C4—C5118.88 (16)C18A—C17A—H17A107.0
C3—C4—H4A120.6C20A—C17A—H17A107.0
C5—C4—H4A120.6C17A—C18A—C19A111.61 (19)
C4—C5—C6120.61 (16)C17A—C18A—H18A109.3
C4—C5—H5A119.7C19A—C18A—H18A109.3
C6—C5—H5A119.7C17A—C18A—H18B109.3
C1—C6—C5119.01 (15)C19A—C18A—H18B109.3
C1—C6—C7118.89 (15)H18A—C18A—H18B108.0
C5—C6—C7121.87 (15)N2—C17B—C19B105.4 (13)
N1—C7—N2113.96 (14)N2—C17B—C18B115.6 (14)
N1—C7—C6122.14 (15)C19B—C17B—C18B93.0 (3)
N2—C7—C6123.74 (14)N2—C17B—H17B113.6
N2—C8—C9132.80 (16)C19B—C17B—H17B113.6
N2—C8—C13105.39 (14)C18B—C17B—H17B113.6
C9—C8—C13121.81 (15)C17B—C18B—H18C109.5
C10—C9—C8116.76 (15)C17B—C18B—H18D109.5
C10—C9—H9A121.6H18C—C18B—H18D109.5
C8—C9—H9A121.6C17B—C18B—H18E109.5
C9—C10—C11121.99 (15)H18C—C18B—H18E109.5
C9—C10—H10A119.0H18D—C18B—H18E109.5
C11—C10—H10A119.0C17B—C19B—C20B109.9 (15)
C12—C11—C10120.98 (15)C17B—C19B—H19D109.7
C12—C11—C14120.65 (15)C20B—C19B—H19D109.7
C10—C11—C14118.37 (15)C17B—C19B—H19E109.7
C11—C12—C13117.83 (15)C20B—C19B—H19E109.7
C11—C12—H12A121.1H19D—C19B—H19E108.2
C13—C12—H12A121.1C19B—C20B—H20D109.5
N1—C13—C12128.63 (15)C19B—C20B—H20E109.5
N1—C13—C8110.73 (14)H20D—C20B—H20E109.5
C12—C13—C8120.63 (15)C19B—C20B—H20F109.5
O1—C14—O2123.13 (15)H20D—C20B—H20F109.5
O1—C14—C11125.15 (16)H20E—C20B—H20F109.5
C6—C1—C2—C30.0 (3)C10—C11—C12—C130.4 (2)
C1—C2—C3—C40.8 (3)C14—C11—C12—C13178.76 (15)
C1—C2—C3—Br1177.88 (12)C7—N1—C13—C12178.63 (17)
C2—C3—C4—C50.9 (3)C7—N1—C13—C80.12 (18)
Br1—C3—C4—C5177.81 (12)C11—C12—C13—N1179.76 (16)
C3—C4—C5—C60.2 (2)C11—C12—C13—C81.1 (2)
C2—C1—C6—C50.6 (2)N2—C8—C13—N10.08 (18)
C2—C1—C6—C7173.87 (15)C9—C8—C13—N1179.70 (15)
C4—C5—C6—C10.6 (2)N2—C8—C13—C12178.78 (15)
C4—C5—C6—C7173.78 (15)C9—C8—C13—C121.4 (3)
C13—N1—C7—N20.12 (19)C15—O2—C14—O10.4 (2)
C13—N1—C7—C6175.47 (15)C15—O2—C14—C11179.89 (14)
C8—N2—C7—N10.07 (19)C12—C11—C14—O1176.80 (16)
C17B—N2—C7—N1146.9 (8)C10—C11—C14—O12.4 (3)
C17A—N2—C7—N1162.89 (18)C12—C11—C14—O23.7 (2)
C8—N2—C7—C6175.44 (15)C10—C11—C14—O2177.09 (14)
C17B—N2—C7—C637.6 (8)C14—O2—C15—C16169.26 (16)
C17A—N2—C7—C621.6 (3)C7—N2—C17A—C18A108.4 (2)
C1—C6—C7—N138.2 (2)C8—N2—C17A—C18A51.4 (3)
C5—C6—C7—N1136.19 (17)C17B—N2—C17A—C18A61 (2)
C1—C6—C7—N2146.68 (16)C7—N2—C17A—C20A124.5 (2)
C5—C6—C7—N239.0 (2)C8—N2—C17A—C20A75.7 (2)
C7—N2—C8—C9179.74 (18)C17B—N2—C17A—C20A172 (2)
C17B—N2—C8—C941.6 (10)N2—C17A—C18A—C19A51.2 (2)
C17A—N2—C8—C916.5 (3)C20A—C17A—C18A—C19A177.58 (17)
C7—N2—C8—C130.01 (17)C7—N2—C17B—C19B150.3 (8)
C17B—N2—C8—C13138.2 (10)C8—N2—C17B—C19B73.4 (14)
C17A—N2—C8—C13163.24 (19)C17A—N2—C17B—C19B9.8 (15)
N2—C8—C9—C10179.33 (17)C7—N2—C17B—C18B108.5 (9)
C13—C8—C9—C101.0 (2)C8—N2—C17B—C18B27.8 (16)
C8—C9—C10—C110.2 (2)C17A—N2—C17B—C18B111 (2)
C9—C10—C11—C120.0 (3)N2—C17B—C19B—C20B66.5 (18)
C9—C10—C11—C14179.21 (15)C18B—C17B—C19B—C20B175.9 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···Br1i0.982.793.533 (2)133
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H21BrN2O2
Mr401.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.5187 (2), 12.7525 (2), 13.7444 (2)
β (°) 98.101 (1)
V3)1825.27 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.39 × 0.39 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.471, 0.666
No. of measured, independent and
observed [I > 2σ(I)] reflections
24453, 3221, 3073
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.08
No. of reflections3221
No. of parameters248
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···Br1i0.982.793.533 (2)133
Symmetry code: (i) x1, y+1, z.
 

Acknowledgements

NA, SAH and ASAR acknowledge the Malaysia Ministry of Science, Technology and Innovations (MOSTI) for funding the synthetic chemistry work under the R&D initiative grant No. 09-05-lfn-meb-004 and 304/PFARMASI/650544. NA thanks Universiti Sains Malaysia for the award of a postdoctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArienti, K., Brunmark, A., Axe, F., McClure, K., Lee, A., Blevitt, J., Neff, D., Huang, L., Crawford, S., Pandit, C., Karlson, L. & Breitenbucher, J. (2005). J. Med. Chem. 48, 1873–1885.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArumugam, N., Abdul Rahim, A. S., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o2412–o2413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArumugam, N., Ngah, N., Abd Hamid, S. & Abdul Rahim, A. S. (2011). Acta Cryst. E67, o2938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNavarrete-Vazquez, G., Moreno-Diaz, H., Aguirre-Crespo, F., Leon-Rivera, I., Villalobos-Molina, R., Munoz-Muniz, O. & Estrada-Soto, S. (2006). Bioorg. Med. Chem. Lett. 16, 4169–4173.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVitale, G., Carta, A., Loriga, M., Paglietti, G., La Colla, P., Busonera, B., Collu, D. & Loddo, R. (2008). Med. Chem. 4, 605–615.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVitale, G., Corona, P., Loriga, M., Carta, A., Paglietti, G., La Colla, P., Busonera, B., Marongiu, E., Collu, D. & Loddo, R. (2009). Med. Chem. 5, 507–516.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds