metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(tri­aqua­cadmium)-μ-1,4-phenyl­enedi­acetato-κ4O,O′:O′′,O′′′] dihydrate]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825 USA
*Correspondence e-mail: laduca@msu.edu

(Received 3 November 2011; accepted 10 November 2011; online 16 November 2011)

In the title compound, {[Cd(C10H8O4)(H2O)3]·2H2O}n, penta­gonal–bipyramidally coordinated CdII ions on a twofold rotation axis are linked by tethering 1,4-phenyl­enediacetate (1,4-phda) ligands into [Cd(1,4-phda)(H2O)3]n coordination polymer chains. The chain motifs are oriented parallel to the c-axis direction. Individual chains are connected into a supra­molecular network via O—H⋯O hydrogen bonding involving the aqua ligands.

Related literature

For other cadmium coordination polymers containing 1,4-phda ligands, see: Wang & LaDuca (2010[Wang, C. Y. & LaDuca, R. L. (2010). J. Mol. Struct. 983, 162-168.]); Farnum et al. (2011[Farnum, G. A., Wang, C. Y., Gandolfo, C. M. & LaDuca, R. L. (2011). J. Mol. Struct. 998, 62-68.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H8O4)(H2O)3]·2H2O

  • Mr = 394.64

  • Monoclinic, C 2/c

  • a = 7.6878 (7) Å

  • b = 8.2295 (8) Å

  • c = 22.735 (2) Å

  • β = 95.752 (1)°

  • V = 1431.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 173 K

  • 0.34 × 0.32 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.621, Tmax = 0.659

  • 11122 measured reflections

  • 1307 independent reflections

  • 1296 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.013

  • wR(F2) = 0.031

  • S = 1.19

  • 1307 reflections

  • 107 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.84 (1) 1.96 (1) 2.8029 (15) 178 (2)
O1W—H1WA⋯O2 0.84 (2) 1.86 (2) 2.6934 (17) 172 (2)
O4—H4A⋯O1Wii 0.83 (1) 1.89 (2) 2.7004 (17) 167 (2)
O4—H4B⋯O3i 0.84 (1) 1.84 (2) 2.6706 (16) 175 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Crystal Maker (Palmer, 2007[Palmer, D. (2007). Crystal Maker. CrystalMaker Software Ltd, Bicester, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently we have been investigating conformationally flexible phenylenediacetate ligands, especially 1,4-phenylenediacetate (1,4-phda), towards the construction of cadmium coordination polymers in tandem with dipodal nitrogen-base ligands (Wang & LaDuca, 2010; Farnum, et al., 2011). The title compound was obtained upon an attempt to prepare a cadmium 1,4-phda coordination polymer incorporating 4,4'-trimethylenedipiperidine.

The asymmetric unit of the title compound contains a CdII ion and an aqua ligand on a 2-fold crystallographic rotation axis, an additional aqua ligand, half of a 1,4-phda ligand whose centroid lies on a crystallographic inversion center, and one water molecule of crystallization. The CdII ion is pentagonal bipyramidally coordinated, with its apical positions occupied by aqua ligands. Its equatorial positions contain a third aqua ligand and two chelating carboxylate groups from two 1,4-phda ligands (Fig. 1).

[Cd(H2O)3]2+ fragments are connected by exobidentate 1,4-phda ligands via a bis(chelating) binding mode, generating one-dimensional [Cd(1,4-phda)(H2O)3]n coordination polymer chains (Fig. 2). Within the chain, the Cd···Cd contact distances measure 11.889 (6) Å. The chain motifs are all oriented parallel to the c crystal direction. Each individual [Cd(1,4-phda)(H2O)3]n chain is anchored to four others via O—H···O hydrogen bonding mechanisms between aqua ligands in neighboring chains, and between aqua ligands and ligated 1,4-phda carboxylate oxygen atoms. In this manner, the supramolecular crystal structure of the title compound is constructed (Fig. 3).Water molecules of crystallization are held between coordination polymer chains through additional O—H···O hydrogen bonding interactions.

Related literature top

For other cadmium coordination polymers containing 1,4-phda ligands, see: Wang & LaDuca (2010); Farnum, et al. (2011).

Experimental top

All starting materials were obtained commercially. A mixture of cadmium nitrate tetrahydrate (88 mg, 0.29 mmol), 1,4-phenylenediacetic acid (52 mg, 0.27 mmol), 4,4'-trimethylenedipiperidine (58 mg, 0.28 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 48 h. Colourless blocks of the title compound (57 mg, 0.14 mmol, 53% yield) were isolated after washing with distilled water and acetone, and drying in air.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to the aqua ligand O atom were found in a difference Fourier map, restrained with with O—H = 0.85 Å and refined with Uiso = 1.2Ueq(O).

Structure description top

Recently we have been investigating conformationally flexible phenylenediacetate ligands, especially 1,4-phenylenediacetate (1,4-phda), towards the construction of cadmium coordination polymers in tandem with dipodal nitrogen-base ligands (Wang & LaDuca, 2010; Farnum, et al., 2011). The title compound was obtained upon an attempt to prepare a cadmium 1,4-phda coordination polymer incorporating 4,4'-trimethylenedipiperidine.

The asymmetric unit of the title compound contains a CdII ion and an aqua ligand on a 2-fold crystallographic rotation axis, an additional aqua ligand, half of a 1,4-phda ligand whose centroid lies on a crystallographic inversion center, and one water molecule of crystallization. The CdII ion is pentagonal bipyramidally coordinated, with its apical positions occupied by aqua ligands. Its equatorial positions contain a third aqua ligand and two chelating carboxylate groups from two 1,4-phda ligands (Fig. 1).

[Cd(H2O)3]2+ fragments are connected by exobidentate 1,4-phda ligands via a bis(chelating) binding mode, generating one-dimensional [Cd(1,4-phda)(H2O)3]n coordination polymer chains (Fig. 2). Within the chain, the Cd···Cd contact distances measure 11.889 (6) Å. The chain motifs are all oriented parallel to the c crystal direction. Each individual [Cd(1,4-phda)(H2O)3]n chain is anchored to four others via O—H···O hydrogen bonding mechanisms between aqua ligands in neighboring chains, and between aqua ligands and ligated 1,4-phda carboxylate oxygen atoms. In this manner, the supramolecular crystal structure of the title compound is constructed (Fig. 3).Water molecules of crystallization are held between coordination polymer chains through additional O—H···O hydrogen bonding interactions.

For other cadmium coordination polymers containing 1,4-phda ligands, see: Wang & LaDuca (2010); Farnum, et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the title compound, showing 50% probability ellipsoids and partial atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: violet Cd, red bound O, orange unligated O, black C. Symmetry codes: (i) -x, y, -z + 1/2; (ii) -x, -y, -z.
[Figure 2] Fig. 2. A single [Cd(1,4-phda)(H2O)3]n chain coordination polymer chain.
[Figure 3] Fig. 3. Supramolecular aggregation of [Cd(1,4-phda)(H2O)3]n chains. O—H···O hydrogen bonding is shown as dashed lines.
catena-Poly[[(triaquacadmium)-µ-1,4-phenylenediacetato-κ4O, O':O'',O'''] dihydrate] top
Crystal data top
[Cd(C10H8O4)(H2O)3]·2H2OF(000) = 792
Mr = 394.64Dx = 1.832 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9928 reflections
a = 7.6878 (7) Åθ = 2.7–25.3°
b = 8.2295 (8) ŵ = 1.57 mm1
c = 22.735 (2) ÅT = 173 K
β = 95.752 (1)°Block, colourless
V = 1431.1 (2) Å30.34 × 0.32 × 0.29 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1307 independent reflections
Radiation source: fine-focus sealed tube1296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ωφ scansθmax = 25.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.621, Tmax = 0.659k = 99
11122 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.013Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.031H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0098P)2 + 1.4668P]
where P = (Fo2 + 2Fc2)/3
1307 reflections(Δ/σ)max < 0.001
107 parametersΔρmax = 0.27 e Å3
9 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Cd(C10H8O4)(H2O)3]·2H2OV = 1431.1 (2) Å3
Mr = 394.64Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.6878 (7) ŵ = 1.57 mm1
b = 8.2295 (8) ÅT = 173 K
c = 22.735 (2) Å0.34 × 0.32 × 0.29 mm
β = 95.752 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1307 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1296 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.659Rint = 0.025
11122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0139 restraints
wR(F2) = 0.031H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.27 e Å3
1307 reflectionsΔρmin = 0.20 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.211515 (18)0.25000.01614 (6)
O10.00000.4900 (2)0.25000.0296 (4)
H10.070 (2)0.552 (2)0.2346 (8)0.036*
O1W0.21682 (17)0.51653 (15)0.09931 (5)0.0252 (3)
H1WA0.199 (3)0.430 (2)0.1171 (8)0.030*
H1WB0.307 (2)0.506 (2)0.0844 (8)0.030*
O20.14213 (18)0.25529 (14)0.16357 (5)0.0290 (3)
O30.09896 (14)0.00183 (13)0.18665 (5)0.0208 (2)
O40.27315 (15)0.20049 (14)0.30205 (5)0.0200 (2)
H4A0.273 (2)0.158 (2)0.3350 (7)0.024*
H4B0.318 (2)0.2927 (18)0.3066 (8)0.024*
C10.1256 (2)0.0255 (2)0.04864 (6)0.0195 (3)
C20.2569 (2)0.0525 (2)0.10213 (7)0.0215 (3)
H2A0.34210.13680.09310.026*
H2B0.32170.04940.11210.026*
C30.0777 (2)0.1308 (2)0.03026 (7)0.0216 (3)
H30.13050.22150.05080.026*
C40.0466 (2)0.1567 (2)0.01772 (7)0.0217 (3)
H40.07770.26440.02950.026*
C50.1617 (2)0.10626 (19)0.15438 (6)0.0177 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01982 (9)0.01563 (9)0.01342 (9)0.0000.00393 (6)0.000
O10.0287 (10)0.0159 (8)0.0478 (11)0.0000.0214 (8)0.000
O1W0.0298 (7)0.0207 (6)0.0263 (6)0.0005 (5)0.0085 (5)0.0015 (5)
O20.0469 (8)0.0178 (6)0.0247 (6)0.0008 (5)0.0153 (6)0.0004 (5)
O30.0239 (6)0.0196 (6)0.0198 (6)0.0015 (5)0.0075 (5)0.0010 (4)
O40.0242 (6)0.0161 (6)0.0199 (6)0.0012 (5)0.0025 (5)0.0003 (5)
C10.0212 (8)0.0247 (8)0.0139 (7)0.0016 (7)0.0080 (6)0.0005 (6)
C20.0205 (8)0.0273 (9)0.0174 (8)0.0022 (7)0.0055 (6)0.0010 (6)
C30.0275 (9)0.0207 (8)0.0173 (8)0.0051 (7)0.0059 (7)0.0032 (6)
C40.0284 (9)0.0188 (8)0.0188 (8)0.0002 (7)0.0074 (7)0.0019 (6)
C50.0184 (8)0.0216 (8)0.0127 (7)0.0015 (6)0.0012 (6)0.0005 (6)
Geometric parameters (Å, º) top
Cd1—O12.2917 (17)O4—H4A0.827 (14)
Cd1—O42.3066 (12)O4—H4B0.836 (14)
Cd1—O4i2.3066 (12)C1—C31.391 (2)
Cd1—O22.3695 (12)C1—C4ii1.394 (2)
Cd1—O2i2.3695 (12)C1—C21.517 (2)
Cd1—O32.4187 (11)C2—C51.522 (2)
Cd1—O3i2.4187 (11)C2—H2A0.9900
O1—H10.842 (11)C2—H2B0.9900
O1W—H1WA0.835 (15)C3—C41.392 (2)
O1W—H1WB0.810 (15)C3—H30.9500
O2—C51.256 (2)C4—C1ii1.394 (2)
O3—C51.2571 (19)C4—H40.9500
O1—Cd1—O492.25 (3)Cd1—O4—H4A113.4 (13)
O1—Cd1—O4i92.25 (3)Cd1—O4—H4B111.8 (13)
O4—Cd1—O4i175.49 (6)H4A—O4—H4B108.1 (18)
O1—Cd1—O281.25 (3)C3—C1—C4ii118.40 (15)
O4—Cd1—O287.69 (4)C3—C1—C2120.78 (15)
O4i—Cd1—O293.00 (4)C4ii—C1—C2120.79 (15)
O1—Cd1—O2i81.25 (3)C1—C2—C5109.59 (13)
O4—Cd1—O2i93.00 (4)C1—C2—H2A109.8
O4i—Cd1—O2i87.69 (4)C5—C2—H2A109.8
O2—Cd1—O2i162.51 (6)C1—C2—H2B109.8
O1—Cd1—O3135.51 (3)C5—C2—H2B109.8
O4—Cd1—O387.30 (4)H2A—C2—H2B108.2
O4i—Cd1—O389.48 (4)C1—C3—C4121.14 (15)
O2—Cd1—O354.27 (4)C1—C3—H3119.4
O2i—Cd1—O3143.22 (4)C4—C3—H3119.4
O1—Cd1—O3i135.51 (3)C3—C4—C1ii120.47 (16)
O4—Cd1—O3i89.48 (4)C3—C4—H4119.8
O4i—Cd1—O3i87.30 (4)C1ii—C4—H4119.8
O2—Cd1—O3i143.22 (4)O2—C5—O3120.75 (14)
O2i—Cd1—O3i54.27 (4)O2—C5—C2119.26 (14)
O3—Cd1—O3i88.97 (5)O3—C5—C2119.96 (14)
Cd1—O1—H1127.1 (12)O2—C5—Cd159.31 (8)
H1WA—O1W—H1WB107.7 (19)O3—C5—Cd161.56 (8)
C5—O2—Cd193.58 (9)C2—C5—Cd1177.81 (11)
C5—O3—Cd191.25 (9)
O1—Cd1—O2—C5178.70 (10)Cd1—O2—C5—O34.15 (16)
O4—Cd1—O2—C586.06 (10)Cd1—O2—C5—C2178.08 (12)
O4i—Cd1—O2—C589.48 (10)Cd1—O3—C5—O24.05 (15)
O2i—Cd1—O2—C5178.70 (10)Cd1—O3—C5—C2178.19 (12)
O3—Cd1—O2—C52.28 (9)C1—C2—C5—O292.22 (18)
O3i—Cd1—O2—C50.02 (14)C1—C2—C5—O385.57 (18)
O1—Cd1—O3—C53.65 (11)O1—Cd1—C5—O21.36 (10)
O4—Cd1—O3—C586.82 (9)O4—Cd1—C5—O292.46 (10)
O4i—Cd1—O3—C596.34 (9)O4i—Cd1—C5—O291.83 (10)
O2—Cd1—O3—C52.27 (9)O3—Cd1—C5—O2175.95 (15)
O2i—Cd1—O3—C5178.22 (9)O3i—Cd1—C5—O2179.99 (9)
O3i—Cd1—O3—C5176.35 (11)C5i—Cd1—C5—O2178.64 (10)
C5i—Cd1—O3—C5178.21 (5)O1—Cd1—C5—O3177.31 (8)
C3—C1—C2—C5104.15 (17)O4—Cd1—C5—O391.60 (9)
C4ii—C1—C2—C574.03 (18)O4i—Cd1—C5—O384.12 (9)
C4ii—C1—C3—C40.2 (3)O2—Cd1—C5—O3175.95 (15)
C2—C1—C3—C4178.06 (14)O3i—Cd1—C5—O34.07 (12)
C1—C3—C4—C1ii0.2 (3)C5i—Cd1—C5—O32.70 (8)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4iii0.84 (1)1.96 (1)2.8029 (15)178 (2)
O1W—H1WA···O20.84 (2)1.86 (2)2.6934 (17)172 (2)
O4—H4A···O1Wiv0.83 (1)1.89 (2)2.7004 (17)167 (2)
O4—H4B···O3iii0.84 (1)1.84 (2)2.6706 (16)175 (2)
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C10H8O4)(H2O)3]·2H2O
Mr394.64
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)7.6878 (7), 8.2295 (8), 22.735 (2)
β (°) 95.752 (1)
V3)1431.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.34 × 0.32 × 0.29
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.621, 0.659
No. of measured, independent and
observed [I > 2σ(I)] reflections
11122, 1307, 1296
Rint0.025
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.031, 1.19
No. of reflections1307
No. of parameters107
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Crystal Maker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.842 (11)1.961 (11)2.8029 (15)178 (2)
O1W—H1WA···O20.835 (15)1.864 (15)2.6934 (17)172.3 (19)
O4—H4A···O1Wii0.827 (14)1.888 (15)2.7004 (17)166.9 (19)
O4—H4B···O3i0.836 (14)1.837 (15)2.6706 (16)175 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarnum, G. A., Wang, C. Y., Gandolfo, C. M. & LaDuca, R. L. (2011). J. Mol. Struct. 998, 62–68.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2007). Crystal Maker. CrystalMaker Software Ltd, Bicester, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C. Y. & LaDuca, R. L. (2010). J. Mol. Struct. 983, 162–168.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds