metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(di­hydrogen 3-aza­niumyl-1-hy­dr­oxy­propyl­­idene-1,1-di­phos­phon­ato-κ2O,O′)cobalt(II)

aInstitute of General and Inorganic Chemistry, NAS Ukraine, Kyiv, prosp. Palladina 32/34, 03680, Ukraine
*Correspondence e-mail: complex@ionc.kiev.ua

(Received 21 September 2011; accepted 27 October 2011; online 5 November 2011)

The asymmetric unit of title compound, [Co(C3H10NO7P2)2(H2O)2], contains one half-mol­ecule of the complex. The CoII atom is located on an inversion centre and displays a distorted octa­hedral coordination geometry defined by four O atoms of two 3-aza­niumyl-1-hy­droxy­propyl­idene-1,1-bis­phospho­nato ligands in the equatorial plane and two water mol­ecules located in axial positions. The ligand mol­ecules, which exist in a zwitterionic state, form two six-membered chelate rings with chair conformations. In the crystal, mol­ecules are inter­linked by O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure.

Related literature

For general background to organic diphospho­nic acids and their applications, see: Matczak-Jon & Videnova-Adrabinska (2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]). For applications of bis­phospho­nate metal complexes in medicine, see: Matkovskaya et al. (2001[Matkovskaya, T. A., Popov, K. I. & Yuryeva, E. A. (2001). Bisphosphonates. Properties, Structure and Application in Medicine, p. 223. Moscow: Khimiya.]). For a related structure, see: Bon et al. (2010[Bon, V. V., Dudko, A. V., Kozachkova, A. N., Pekhnyo, V. I. & Tsaryk, N. V. (2010). Acta Cryst. E66, m537-m538.]). For bond-length data, see: Allen et al. (2004[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2004). International Tables for Crystallography, Volume C: Mathemathical, physical and chemical tables, third edition. Edited by E. Prince, pp. 778-789. Dordrecht/Boston/London: Kluwer.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C3H10NO7P2)2(H2O)2]

  • Mr = 563.08

  • Monoclinic, P 21 /c

  • a = 7.3292 (2) Å

  • b = 10.8172 (3) Å

  • c = 12.6403 (3) Å

  • β = 120.801 (1)°

  • V = 860.79 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 100 K

  • 0.50 × 0.25 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.528, Tmax = 0.811

  • 6688 measured reflections

  • 2613 independent reflections

  • 2273 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.04

  • 2613 reflections

  • 157 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O5i 0.85 (3) 2.05 (3) 2.845 (2) 155 (2)
O3—H3O⋯O7i 0.76 (3) 1.72 (3) 2.4627 (19) 167 (3)
O6—H6O⋯O4ii 0.74 (3) 1.78 (3) 2.5124 (18) 175 (3)
O8—H81⋯O4iii 0.89 (3) 1.88 (3) 2.7277 (18) 160 (2)
O8—H82⋯O1iv 0.77 (3) 2.25 (3) 2.8953 (19) 142 (3)
N1—H2N⋯O6iv 0.88 (3) 2.15 (3) 2.975 (2) 156 (2)
N1—H3N⋯O2iii 0.91 (3) 2.30 (3) 3.096 (2) 146 (2)
N1—H3N⋯O5v 0.91 (3) 2.32 (3) 3.030 (2) 134 (2)
N1—H1N⋯O4vi 0.87 (2) 2.33 (2) 3.071 (2) 143 (2)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (v) x+1, y, z; (vi) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2010[Brandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In recent years the design and synthesis of novel metal-organic coordination compounds based on gem-diphosphonic acids has attracted much interest due to their structural diversity and possible applications in many areas (Matczak-Jon & Videnova-Adrabinska, 2005). Particular attention has been paid to 3-amino-1-hydroxypropane-1,1-diyl)bis(phosphonic acid) (pamidronic acid) due to its biological activity and as a result of its usage as a drug to prevent calcification and inhibit bone resorption, etc. (Matkovskaya et al., 2001).

The molecular structure of title complex is shown in Fig. 1; as illustrated the molecule of the complex forms discrete monomeric units. The asymmetric unit contains one-half of the formula unit [Co(C3H10NO7P2)2(H2O)2], with the Co atom lying on an inversion center.

The CoII ion is coordinated in a slightly distorted octahedral geometry which consists of six oxygen atoms, two from water molecules located in the axial positions and four from the two phosphonate groups of two different ligands, which exist in zwitterionic form, creating two six-membered [O, O] chelate rings. The Co—O bond lengths and the O—Co—O angles have expected values (Allen et al., 2004) and conform well to the previously reported related structure (Bon et al., 2010). In the packing, O—H···O and N—H···O hydrogen-bonds exist between the water molecules, phosphonate, hydroxyl O atoms and nitrogen atoms of the amino group (Fig. 2, Table 1). Thus, the molecules are interlinked by these hydrogen bonds to create a three-dimensional structure which partially influences and stabilizes the configuration of the molecule.

Related literature top

For general background to organic diphosphonic acids and their applications, see: Matczak-Jon & Videnova-Adrabinska (2005). For applications of bisphosphonate metal complexes in medicine, see: Matkovskaya et al. (2001). For a related structure, see: Bon et al. (2010). For bond-length data, see: Allen et al. (2004).

Experimental top

Light pink crystals of the title compound were obtained from a mixture of Co(NO3)2.6H2O (0,25 mmol; 0,0728 g) and 3-aminohydroxypropilidene-1,1-diphosphonic acid (0,5 mmol; 0,1175 g) in 20 ml H2O. The combined solution was allowed to slowly evaporate. After 30 days, suitable crystals for X-ray data collection were obtained.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. H atoms bonded to O and N atoms were located in a difference Fourier map. Their positions were refined freely whereas displacement parameters were fixed to Uiso(H) = 1.5Ueq(N,O).The H1n atom of the amino group was refined with a distance restraint (N—H= 0.91 Å). Other H atoms bonded to C were positioned geometrically and refined using a riding model with C—H = 0.99 Å for CH2 with Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years the design and synthesis of novel metal-organic coordination compounds based on gem-diphosphonic acids has attracted much interest due to their structural diversity and possible applications in many areas (Matczak-Jon & Videnova-Adrabinska, 2005). Particular attention has been paid to 3-amino-1-hydroxypropane-1,1-diyl)bis(phosphonic acid) (pamidronic acid) due to its biological activity and as a result of its usage as a drug to prevent calcification and inhibit bone resorption, etc. (Matkovskaya et al., 2001).

The molecular structure of title complex is shown in Fig. 1; as illustrated the molecule of the complex forms discrete monomeric units. The asymmetric unit contains one-half of the formula unit [Co(C3H10NO7P2)2(H2O)2], with the Co atom lying on an inversion center.

The CoII ion is coordinated in a slightly distorted octahedral geometry which consists of six oxygen atoms, two from water molecules located in the axial positions and four from the two phosphonate groups of two different ligands, which exist in zwitterionic form, creating two six-membered [O, O] chelate rings. The Co—O bond lengths and the O—Co—O angles have expected values (Allen et al., 2004) and conform well to the previously reported related structure (Bon et al., 2010). In the packing, O—H···O and N—H···O hydrogen-bonds exist between the water molecules, phosphonate, hydroxyl O atoms and nitrogen atoms of the amino group (Fig. 2, Table 1). Thus, the molecules are interlinked by these hydrogen bonds to create a three-dimensional structure which partially influences and stabilizes the configuration of the molecule.

For general background to organic diphosphonic acids and their applications, see: Matczak-Jon & Videnova-Adrabinska (2005). For applications of bisphosphonate metal complexes in medicine, see: Matkovskaya et al. (2001). For a related structure, see: Bon et al. (2010). For bond-length data, see: Allen et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis, showing the three-dimensional chain structure. Hydrogen bonds are shown as dashed lines.
Diaquabis(dihydrogen 3-azaniumyl-1-hydroxypropylidene-1,1-diphosphonato- κ2O,O')cobalt(II) top
Crystal data top
[Co(C3H10NO7P2)2(H2O)2]F(000) = 578
Mr = 563.08Dx = 2.172 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3543 reflections
a = 7.3292 (2) Åθ = 2.7–30.6°
b = 10.8172 (3) ŵ = 1.46 mm1
c = 12.6403 (3) ÅT = 100 K
β = 120.801 (1)°Block, pink
V = 860.79 (4) Å30.50 × 0.25 × 0.15 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2613 independent reflections
Radiation source: fine-focus sealed tube2273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 30.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 109
Tmin = 0.528, Tmax = 0.811k = 1215
6688 measured reflectionsl = 1812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.4224P]
where P = (Fo2 + 2Fc2)/3
2613 reflections(Δ/σ)max = 0.003
157 parametersΔρmax = 0.70 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
[Co(C3H10NO7P2)2(H2O)2]V = 860.79 (4) Å3
Mr = 563.08Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3292 (2) ŵ = 1.46 mm1
b = 10.8172 (3) ÅT = 100 K
c = 12.6403 (3) Å0.50 × 0.25 × 0.15 mm
β = 120.801 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2613 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2273 reflections with I > 2σ(I)
Tmin = 0.528, Tmax = 0.811Rint = 0.020
6688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.70 e Å3
2613 reflectionsΔρmin = 0.41 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.50000.00000.01045 (9)
P10.25936 (6)0.70145 (4)0.05843 (4)0.00902 (10)
P20.12574 (6)0.58120 (4)0.28208 (4)0.00964 (10)
O10.1630 (2)0.72770 (13)0.29229 (12)0.0156 (3)
H1O0.127 (4)0.802 (3)0.289 (2)0.023*
O20.25165 (18)0.60515 (12)0.02492 (11)0.0124 (2)
O30.1139 (2)0.81197 (12)0.07370 (12)0.0145 (3)
H3O0.154 (4)0.874 (3)0.079 (2)0.022*
O40.48210 (18)0.74524 (13)0.01964 (11)0.0137 (3)
O50.1323 (2)0.49001 (12)0.19349 (11)0.0143 (3)
O60.2632 (2)0.69798 (12)0.29892 (12)0.0151 (3)
H6O0.334 (4)0.712 (2)0.365 (2)0.023*
O70.1968 (2)0.52889 (12)0.40857 (11)0.0137 (3)
O80.1663 (2)0.33228 (13)0.02254 (13)0.0158 (3)
H810.270 (4)0.320 (2)0.007 (2)0.024*
H820.082 (4)0.283 (2)0.014 (2)0.024*
N10.4212 (3)0.38826 (17)0.30480 (17)0.0192 (3)
H2N0.356 (4)0.323 (3)0.297 (2)0.029*
H3N0.553 (5)0.394 (2)0.237 (3)0.029*
H1N0.439 (4)0.383 (3)0.3675 (19)0.029*
C10.1504 (2)0.63551 (16)0.21320 (15)0.0108 (3)
C20.2914 (3)0.52507 (17)0.20331 (16)0.0140 (3)
H2A0.43700.53910.13300.017*
H2B0.23570.44930.18580.017*
C30.3018 (3)0.50443 (17)0.31959 (18)0.0164 (4)
H3A0.15650.49800.39220.020*
H3B0.37430.57500.33250.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01100 (15)0.00938 (17)0.00988 (16)0.00047 (11)0.00457 (12)0.00097 (12)
P10.00920 (18)0.0085 (2)0.00885 (19)0.00167 (14)0.00423 (15)0.00129 (15)
P20.01040 (19)0.0090 (2)0.00774 (18)0.00077 (14)0.00333 (15)0.00018 (15)
O10.0225 (6)0.0115 (6)0.0157 (6)0.0003 (5)0.0118 (5)0.0027 (5)
O20.0120 (5)0.0124 (6)0.0107 (5)0.0017 (4)0.0042 (4)0.0020 (5)
O30.0171 (6)0.0076 (6)0.0190 (6)0.0005 (5)0.0094 (5)0.0013 (5)
O40.0110 (5)0.0168 (7)0.0133 (6)0.0049 (4)0.0063 (5)0.0040 (5)
O50.0163 (6)0.0141 (6)0.0103 (6)0.0043 (5)0.0052 (5)0.0014 (5)
O60.0148 (6)0.0147 (6)0.0109 (6)0.0051 (5)0.0031 (5)0.0004 (5)
O70.0162 (6)0.0125 (6)0.0092 (5)0.0015 (5)0.0041 (5)0.0030 (5)
O80.0139 (6)0.0134 (6)0.0210 (6)0.0007 (5)0.0096 (5)0.0009 (5)
N10.0186 (7)0.0182 (8)0.0237 (8)0.0020 (6)0.0129 (7)0.0071 (7)
C10.0114 (7)0.0099 (8)0.0103 (7)0.0005 (6)0.0050 (6)0.0001 (6)
C20.0155 (7)0.0125 (8)0.0125 (7)0.0038 (6)0.0061 (6)0.0007 (7)
C30.0181 (8)0.0156 (9)0.0180 (9)0.0017 (6)0.0111 (7)0.0008 (7)
Geometric parameters (Å, º) top
Co1—O2i2.0494 (12)O1—H1O0.85 (3)
Co1—O22.0494 (12)O3—H3O0.76 (3)
Co1—O8i2.1221 (14)O6—H6O0.74 (3)
Co1—O82.1221 (14)O8—H810.89 (3)
Co1—O5i2.1225 (13)O8—H820.77 (3)
Co1—O52.1225 (13)N1—C31.487 (3)
P1—O21.5031 (13)N1—H2N0.88 (3)
P1—O41.5199 (12)N1—H3N0.91 (3)
P1—O31.5469 (14)N1—H1N0.870 (17)
P1—C11.8367 (17)C1—C21.542 (2)
P2—O51.5115 (13)C2—C31.527 (3)
P2—O71.5149 (13)C2—H2A0.9900
P2—O61.5609 (14)C2—H2B0.9900
P2—C11.8422 (16)C3—H3A0.9900
O1—C11.448 (2)C3—H3B0.9900
O2i—Co1—O2180.0P2—O5—Co1130.65 (7)
O2i—Co1—O8i92.52 (5)P2—O6—H6O111 (2)
O2—Co1—O8i87.48 (5)Co1—O8—H81126.4 (17)
O2i—Co1—O887.48 (5)Co1—O8—H82107 (2)
O2—Co1—O892.52 (5)H81—O8—H82107 (2)
O8i—Co1—O8180.0C3—N1—H2N111.7 (18)
O2i—Co1—O5i92.85 (5)C3—N1—H3N109.5 (17)
O2—Co1—O5i87.15 (5)H2N—N1—H3N109 (2)
O8i—Co1—O5i90.19 (5)C3—N1—H1N107.2 (19)
O8—Co1—O5i89.81 (5)H2N—N1—H1N113 (2)
O2i—Co1—O587.15 (5)H3N—N1—H1N106 (2)
O2—Co1—O592.85 (5)O1—C1—C2108.19 (14)
O8i—Co1—O589.81 (5)O1—C1—P1108.73 (11)
O8—Co1—O590.19 (5)C2—C1—P1107.85 (11)
O5i—Co1—O5180.00 (7)O1—C1—P2109.67 (11)
O2—P1—O4114.17 (7)C2—C1—P2108.63 (12)
O2—P1—O3110.62 (8)P1—C1—P2113.62 (9)
O4—P1—O3110.93 (8)C3—C2—C1113.39 (14)
O2—P1—C1109.00 (8)C3—C2—H2A108.9
O4—P1—C1105.91 (8)C1—C2—H2A108.9
O3—P1—C1105.73 (8)C3—C2—H2B108.9
O5—P2—O7114.46 (8)C1—C2—H2B108.9
O5—P2—O6111.46 (8)H2A—C2—H2B107.7
O7—P2—O6108.02 (7)N1—C3—C2108.60 (15)
O5—P2—C1107.58 (7)N1—C3—H3A110.0
O7—P2—C1108.58 (8)C2—C3—H3A110.0
O6—P2—C1106.40 (8)N1—C3—H3B110.0
C1—O1—H1O119.0 (17)C2—C3—H3B110.0
P1—O2—Co1129.11 (7)H3A—C3—H3B108.4
P1—O3—H3O115 (2)
O4—P1—O2—Co1170.27 (9)O4—P1—C1—C261.76 (13)
O3—P1—O2—Co163.77 (11)O3—P1—C1—C2179.55 (12)
C1—P1—O2—Co152.07 (12)O2—P1—C1—P258.97 (11)
O8i—Co1—O2—P155.98 (10)O4—P1—C1—P2177.76 (9)
O8—Co1—O2—P1124.02 (10)O3—P1—C1—P259.97 (11)
O5i—Co1—O2—P1146.30 (11)O5—P2—C1—O1177.36 (11)
O5—Co1—O2—P133.70 (11)O7—P2—C1—O158.25 (13)
O7—P2—O5—Co1166.92 (9)O6—P2—C1—O157.80 (13)
O6—P2—O5—Co170.11 (12)O5—P2—C1—C264.58 (13)
C1—P2—O5—Co146.17 (13)O7—P2—C1—C259.81 (13)
O2i—Co1—O5—P2148.83 (11)O6—P2—C1—C2175.86 (11)
O2—Co1—O5—P231.17 (11)O5—P2—C1—P155.46 (11)
O8i—Co1—O5—P256.30 (11)O7—P2—C1—P1179.85 (8)
O8—Co1—O5—P2123.70 (11)O6—P2—C1—P164.10 (11)
O2—P1—C1—O1178.61 (10)O1—C1—C2—C331.88 (19)
O4—P1—C1—O155.34 (13)P1—C1—C2—C3149.34 (13)
O3—P1—C1—O162.45 (12)P2—C1—C2—C387.10 (16)
O2—P1—C1—C261.51 (13)C1—C2—C3—N1173.76 (14)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O5ii0.85 (3)2.05 (3)2.845 (2)155 (2)
O3—H3O···O7ii0.76 (3)1.72 (3)2.4627 (19)167 (3)
O6—H6O···O4iii0.74 (3)1.78 (3)2.5124 (18)175 (3)
O8—H81···O4iv0.89 (3)1.88 (3)2.7277 (18)160 (2)
O8—H82···O1v0.77 (3)2.25 (3)2.8953 (19)142 (3)
N1—H2N···O6v0.88 (3)2.15 (3)2.975 (2)156 (2)
N1—H3N···O2iv0.91 (3)2.30 (3)3.096 (2)146 (2)
N1—H3N···O5vi0.91 (3)2.32 (3)3.030 (2)134 (2)
N1—H1N···O4vii0.87 (2)2.33 (2)3.071 (2)143 (2)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x1, y+3/2, z1/2; (iv) x+1, y+1, z; (v) x, y1/2, z1/2; (vi) x+1, y, z; (vii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C3H10NO7P2)2(H2O)2]
Mr563.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.3292 (2), 10.8172 (3), 12.6403 (3)
β (°) 120.801 (1)
V3)860.79 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.50 × 0.25 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.528, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
6688, 2613, 2273
Rint0.020
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.04
No. of reflections2613
No. of parameters157
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2010), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O5i0.85 (3)2.05 (3)2.845 (2)155 (2)
O3—H3O···O7i0.76 (3)1.72 (3)2.4627 (19)167 (3)
O6—H6O···O4ii0.74 (3)1.78 (3)2.5124 (18)175 (3)
O8—H81···O4iii0.89 (3)1.88 (3)2.7277 (18)160 (2)
O8—H82···O1iv0.77 (3)2.25 (3)2.8953 (19)142 (3)
N1—H2N···O6iv0.88 (3)2.15 (3)2.975 (2)156 (2)
N1—H3N···O2iii0.91 (3)2.30 (3)3.096 (2)146 (2)
N1—H3N···O5v0.91 (3)2.32 (3)3.030 (2)134 (2)
N1—H1N···O4vi0.870 (17)2.33 (2)3.071 (2)143 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+3/2, z1/2; (iii) x+1, y+1, z; (iv) x, y1/2, z1/2; (v) x+1, y, z; (vi) x+1, y1/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge the support of this work by the Ukrainian National Academy of Sciences.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2004). International Tables for Crystallography, Volume C: Mathemathical, physical and chemical tables, third edition. Edited by E. Prince, pp. 778–789. Dordrecht/Boston/London: Kluwer.  Google Scholar
First citationBon, V. V., Dudko, A. V., Kozachkova, A. N., Pekhnyo, V. I. & Tsaryk, N. V. (2010). Acta Cryst. E66, m537–m538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationMatkovskaya, T. A., Popov, K. I. & Yuryeva, E. A. (2001). Bisphosphonates. Properties, Structure and Application in Medicine, p. 223. Moscow: Khimiya.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds