metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­aqua-μ4-fumarato-di-μ3-fumarato-dineodymium(III)] trihydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
*Correspondence e-mail: zhuosioc@yahoo.com.cn

(Received 28 September 2011; accepted 3 November 2011; online 9 November 2011)

The title coordination polymer, {[Nd2(C4H2O4)3(H2O)4]·3H2O}, was synthesized by the reaction of neodymium(III) nitrate hexa­hydrate with fumaric acid in a water–methanol (7:3) solution. The asymmetric unit comprises two Nd3+ cations, three fumarate dianions (L2−), four aqua ligands and three uncoordinated water mol­ecules. The carboxyl­ate groups of the fumarate dianions exhibit different coordination modes. In one fumarate dianion, two carboxyl­ate groups chelate two Nd3+ cations, while one of the O atoms is coordinated to another Nd3+ cation. Another fumarate dianion bridges three Nd3+ cations: one of the carboxyl­ate groups chelates one Nd3+ cation, while the other carboxyl­ate group bridges two Nd3+ cations in a monodentate mode. The third fumarate dianion bridges four Nd3+ cations, where one of the carboxyl­ate groups chelates one Nd3+ cation and coordinates in a monodentate mode to a second Nd3+, while the second carboxyl­ate groups bridges two Nd3+ cations in a monodentate mode and one O atom is coordinated to one Nd3+ cation. The Nd3+ cations are in a distorted tricapped–trigonal prismatic environment and coordinated by seven O atoms from the fumarate ligands and two O atoms from water mol­ecules. The Nd3+ cations are linked by two carboxyl­ate O atoms and two carboxyl­ate groups, generating infinite Nd–O chains to form a three-dimensional framework. There are O—H⋯O and C—H⋯O hydrogen-bonding interactions between the coordin­ated and uncoordinated water mol­ecules and carboxyl­ate O atoms.

Related literature

For applications of metal complexes with carboxylato ligands, see: Eliseeva et al. (2010[Eliseeva, S. V., Pleshkov, D. N., Lyssenko, K. A., Lepnev, L. S., Buenzli, J. C. G. & Kuzminat, N. P. (2010). Inorg. Chem. 49, 9300-9311.]); Kim et al. (2001[Kim, Y. J., Lee, E. W. & Jung, D. Y. (2001). Chem. Mater. 13, 2684-2690.]); Seki & Mori (2002[Seki, K. & Mori, W. (2002). J. Phys. Chem. B, 106, 1380-1385.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd2(C4H2O4)3(H2O)4]·3H2O

  • Mr = 756.76

  • Monoclinic, P 21 /n

  • a = 9.5810 (9) Å

  • b = 14.8675 (15) Å

  • c = 14.9056 (14) Å

  • β = 91.538 (5)°

  • V = 2122.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.93 mm−1

  • T = 298 K

  • 0.16 × 0.15 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.459, Tmax = 0.501

  • 24284 measured reflections

  • 5150 independent reflections

  • 4060 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.05

  • 5150 reflections

  • 306 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.36 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WA⋯O1 0.85 2.57 3.103 (13) 122
O2W—H2WA⋯O3 0.85 2.52 3.319 (13) 158
O2W—H2WB⋯O1Wi 0.85 2.53 2.98 (2) 114
O3W—H3WD⋯O24i 0.85 2.07 2.896 (6) 165
O3W—H3WC⋯O1W 0.85 2.12 2.60 (2) 115
O3W—H3WC⋯O2W 0.85 2.08 2.911 (13) 165
O1W—H1WD⋯O2W 0.85 2.06 2.634 (19) 124
O1W—H1WC⋯O6ii 0.85 2.11 2.959 (17) 178
O8—H8C⋯O3Wiii 0.85 2.05 2.829 (5) 152
O8—H8B⋯O1iv 0.85 1.91 2.745 (5) 169
O13—H13A⋯O3Wiii 0.85 2.14 2.938 (6) 157
O13—H13B⋯O25v 0.82 2.02 2.787 (5) 157
O14—H14A⋯O12vi 0.86 (6) 1.88 (6) 2.740 (5) 172 (6)
O14—H14B⋯O4iii 0.75 (5) 2.04 (6) 2.776 (5) 166 (6)
O16—H16A⋯O27vii 0.72 2.02 2.714 (5) 160
O16—H16C⋯O2viii 0.85 2.07 2.915 (5) 171
C3—H3⋯O24v 0.93 2.53 3.345 (6) 147
C8—H8⋯O12iv 0.93 2.58 3.417 (6) 150
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) -x+1, -y+2, -z+1; (vii) x+1, y, z; (viii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, many metal complexes of carboxylates and lanthanide complexes which display interesting properties have been reported: Mn dicarboxylate compounds present antiferromagnetic interactions (Kim et al., 2001), while Cu dicarboxylates have uniform micropores, high porosities and gas adsorption capacities (Seki et al., 2002). In addition, lanthanide complexes can be used as active materials in luminescent devices (Eliseeva et al., 2010). In this paper, we report the title complex, obtained by the reaction of neodymium(III) nitrate hexahydrate with fumaric acid in a water-methanol (7:3) solution.

The structure of the asymmetric unit of the title complex is shown in Fig. 1. It comprises two Nd3+ cations, three fumarate dianions (L2-), four aqua ligands and three uncoordinated water molecules. The carboxylate groups of the fumarate dianion exhibit different coordination modes. In one fumarate dianion two carboxylate groups chelate with two Nd3+ cations, while one of the O atoms (O11) is coordinated with another Nd3+ cation. The second fumarate dianion bridges three Nd3+ cations, one of carboxylate groups chelating with one Nd3+ cation and the other carboxylate groups bridging two Nd3+ cations in monodentate mode. The third fumarate ligand bridges four Nd3+ cations, one of carboxylate groups chelating with one Nd3+ cation and one of carboxylate groups bridging two Nd3+ cations in monodentate mode, while one O atom (O3) is coordinated with a third Nd3+ cation. The Nd3+ cations are situated within a distorted tricapped trigonal prism and coordinated by seven O atoms from the fumarate dianion ligands and two O atom from water molecules. The Nd—O bond distances range from 2.387 (3) to 2.655 (3) Å. The O—Nd—O bond angles range from 73.4 (1) to 155.0 (1)°. The Nd3+ cations are linked by two carboxylate O atoms (O3 and O11) and two carboxylate groups (O5—C5—O6 and O26—C18—O27) to generate infinite neodymium-oxygen chains (Fig. 2). The chains are further connected by the ligands to form a three-dimensional framework. The crystal is stabilized by hydrogen bond interactions between the coordinated and uncoordinated water molecules and the carboxylate O atoms (Table 1).

Related literature top

For applications of metal complexes of carboxylates, see: Eliseeva et al. (2010); Kim et al. (2001); Seki & Mori (2002).

Experimental top

Fumaric acid (0.3 mmol, 0.035 g) and neodymium(III) nitrate hexahydrate(0.5 mmol, 0.22 g) were dissolved in a water-methanol(7:3) solution (10 ml). The mixture was transferred to a 20 ml Teflon-lined stainless steel autoclave, which was heated at 443 K for 96 h. The reactor was cooled to room temperature over a period of 24 h. Green crystals were obtained after filtration, washing with water and vacum drying.

Refinement top

Carbon-bound H atoms were included in the riding-model approximation, with C—H =0.93Å and with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were located in Fourier difference maps and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(O).

Structure description top

Recently, many metal complexes of carboxylates and lanthanide complexes which display interesting properties have been reported: Mn dicarboxylate compounds present antiferromagnetic interactions (Kim et al., 2001), while Cu dicarboxylates have uniform micropores, high porosities and gas adsorption capacities (Seki et al., 2002). In addition, lanthanide complexes can be used as active materials in luminescent devices (Eliseeva et al., 2010). In this paper, we report the title complex, obtained by the reaction of neodymium(III) nitrate hexahydrate with fumaric acid in a water-methanol (7:3) solution.

The structure of the asymmetric unit of the title complex is shown in Fig. 1. It comprises two Nd3+ cations, three fumarate dianions (L2-), four aqua ligands and three uncoordinated water molecules. The carboxylate groups of the fumarate dianion exhibit different coordination modes. In one fumarate dianion two carboxylate groups chelate with two Nd3+ cations, while one of the O atoms (O11) is coordinated with another Nd3+ cation. The second fumarate dianion bridges three Nd3+ cations, one of carboxylate groups chelating with one Nd3+ cation and the other carboxylate groups bridging two Nd3+ cations in monodentate mode. The third fumarate ligand bridges four Nd3+ cations, one of carboxylate groups chelating with one Nd3+ cation and one of carboxylate groups bridging two Nd3+ cations in monodentate mode, while one O atom (O3) is coordinated with a third Nd3+ cation. The Nd3+ cations are situated within a distorted tricapped trigonal prism and coordinated by seven O atoms from the fumarate dianion ligands and two O atom from water molecules. The Nd—O bond distances range from 2.387 (3) to 2.655 (3) Å. The O—Nd—O bond angles range from 73.4 (1) to 155.0 (1)°. The Nd3+ cations are linked by two carboxylate O atoms (O3 and O11) and two carboxylate groups (O5—C5—O6 and O26—C18—O27) to generate infinite neodymium-oxygen chains (Fig. 2). The chains are further connected by the ligands to form a three-dimensional framework. The crystal is stabilized by hydrogen bond interactions between the coordinated and uncoordinated water molecules and the carboxylate O atoms (Table 1).

For applications of metal complexes of carboxylates, see: Eliseeva et al. (2010); Kim et al. (2001); Seki & Mori (2002).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the local coordination sphere around the neodymium(III) centers with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (A)1 + x,y,z; (B)2 - x,1 - y,1 - z; (C)1/2 + x,3/2 - y,1/2 + z.]
[Figure 2] Fig. 2. Perspective view of the crystal packing.
Poly[[tetraaqua-µ4-fumarato-di-µ3-fumarato-dineodymium(III)] trihydrate] top
Crystal data top
[Nd2(C4H2O4)3(H2O)4]·3H2OF(000) = 1456.0
Mr = 756.76Dx = 2.368 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6284 reflections
a = 9.5810 (9) Åθ = 2.5–28.0°
b = 14.8675 (15) ŵ = 4.93 mm1
c = 14.9056 (14) ÅT = 298 K
β = 91.538 (5)°Block, green
V = 2122.5 (4) Å30.16 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5150 independent reflections
Radiation source: fine-focus sealed tube4060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
phi and ω scansθmax = 28.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.459, Tmax = 0.501k = 1919
24284 measured reflectionsl = 1519
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0302P)2 + 2.6259P]
where P = (Fo2 + 2Fc2)/3
5150 reflections(Δ/σ)max = 0.002
306 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Nd2(C4H2O4)3(H2O)4]·3H2OV = 2122.5 (4) Å3
Mr = 756.76Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5810 (9) ŵ = 4.93 mm1
b = 14.8675 (15) ÅT = 298 K
c = 14.9056 (14) Å0.16 × 0.15 × 0.14 mm
β = 91.538 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
5150 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4060 reflections with I > 2σ(I)
Tmin = 0.459, Tmax = 0.501Rint = 0.052
24284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.36 e Å3
5150 reflectionsΔρmin = 0.89 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd11.02953 (3)0.663992 (15)0.246217 (16)0.01439 (7)
Nd20.80991 (2)0.846421 (15)0.405801 (16)0.01358 (7)
O10.5842 (3)0.7709 (2)0.4569 (2)0.0234 (8)
C30.2687 (5)0.8568 (3)0.3655 (3)0.0227 (11)
H30.30580.87830.31270.027*
O20.5619 (3)0.8871 (2)0.3665 (2)0.0264 (8)
C10.5090 (5)0.8282 (3)0.4166 (3)0.0189 (10)
C20.3555 (5)0.8281 (4)0.4280 (4)0.0291 (12)
H20.32020.80680.48150.035*
O30.7836 (3)0.7226 (2)0.2985 (2)0.0248 (8)
O40.7899 (3)0.6470 (2)0.1732 (2)0.0241 (8)
C40.7199 (5)0.6861 (3)0.2319 (3)0.0186 (10)
O61.0906 (4)0.6561 (2)0.4082 (2)0.0288 (8)
C51.0122 (6)0.6644 (3)0.4739 (3)0.0215 (11)
O50.9116 (4)0.7183 (2)0.4785 (2)0.0312 (9)
O81.0189 (4)0.7802 (2)0.1277 (2)0.0342 (9)
H8B1.04700.75940.07820.041*
H8C1.06210.82820.14220.041*
C80.4972 (5)0.6643 (3)0.1528 (3)0.0229 (11)
H80.54900.65120.10250.028*
C60.1155 (5)0.8573 (3)0.3732 (3)0.0167 (10)
C70.5665 (5)0.6870 (3)0.2248 (3)0.0249 (11)
H70.51690.70490.27450.030*
C101.0375 (5)0.6029 (3)0.5517 (3)0.0238 (11)
H101.12230.57250.55600.029*
C90.9469 (6)0.5895 (3)0.6139 (3)0.0284 (12)
H90.87050.62800.61700.034*
O110.0390 (3)0.8180 (2)0.3136 (2)0.0191 (7)
O120.0605 (3)0.8974 (2)0.4368 (2)0.0283 (8)
O140.7818 (4)1.0060 (2)0.4411 (3)0.0310 (9)
O130.8092 (4)0.9288 (3)0.2613 (2)0.0359 (9)
H13A0.88570.92260.23440.043*
H13B0.74720.94890.22840.043*
O161.0338 (3)0.5710 (2)0.1065 (2)0.0244 (8)
H16C1.01550.51580.11550.029*
H16A1.10040.57870.08610.029*
C170.9609 (6)0.5154 (3)0.6799 (3)0.0229 (11)
O251.0774 (4)0.4770 (2)0.6945 (2)0.0268 (8)
O240.8508 (4)0.4865 (2)0.7148 (2)0.0280 (8)
C180.3435 (5)0.6570 (3)0.1423 (3)0.0172 (10)
O260.2692 (3)0.6793 (2)0.2068 (2)0.0264 (8)
O270.2955 (3)0.6265 (2)0.0686 (2)0.0234 (8)
O2W0.6477 (13)0.5680 (8)0.4310 (8)0.236 (5)
H2WA0.68030.61690.41060.354*
H2WB0.70170.55070.47370.354*
O3W0.4332 (5)0.4644 (3)0.3352 (3)0.0568 (13)
H3WC0.48450.50210.36340.085*
H3WD0.35340.48780.32520.085*
H14A0.833 (6)1.032 (4)0.482 (4)0.043 (19)*
H14B0.776 (6)1.044 (4)0.408 (4)0.023 (16)*
O1W0.3772 (16)0.5909 (13)0.4489 (10)0.342 (10)
H1WD0.44180.60670.41420.514*
H1WC0.29500.61050.43850.514*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.01165 (14)0.01670 (12)0.01485 (13)0.00010 (9)0.00092 (10)0.00118 (9)
Nd20.00971 (14)0.01650 (12)0.01448 (13)0.00087 (9)0.00055 (9)0.00120 (9)
O10.0173 (19)0.0271 (18)0.0256 (19)0.0033 (15)0.0008 (14)0.0066 (15)
C30.016 (3)0.030 (3)0.022 (3)0.005 (2)0.006 (2)0.002 (2)
O20.0102 (18)0.0298 (19)0.039 (2)0.0005 (14)0.0017 (15)0.0124 (16)
C10.019 (3)0.025 (2)0.013 (2)0.003 (2)0.0025 (19)0.0046 (18)
C20.016 (3)0.045 (3)0.026 (3)0.001 (2)0.006 (2)0.009 (2)
O30.0194 (19)0.0286 (18)0.0262 (19)0.0038 (15)0.0014 (15)0.0119 (15)
O40.0141 (18)0.0347 (19)0.0235 (19)0.0003 (15)0.0001 (14)0.0118 (15)
C40.016 (3)0.017 (2)0.022 (3)0.0004 (19)0.002 (2)0.0004 (19)
O60.040 (2)0.0298 (19)0.0168 (18)0.0040 (16)0.0007 (16)0.0004 (14)
C50.031 (3)0.017 (2)0.016 (2)0.000 (2)0.002 (2)0.0009 (18)
O50.034 (2)0.0296 (19)0.030 (2)0.0101 (17)0.0015 (17)0.0109 (16)
O80.052 (3)0.0264 (19)0.024 (2)0.0025 (18)0.0027 (18)0.0020 (16)
C80.016 (3)0.034 (3)0.019 (3)0.004 (2)0.005 (2)0.002 (2)
C60.013 (2)0.020 (2)0.017 (2)0.0006 (19)0.0011 (19)0.0031 (18)
C70.015 (3)0.034 (3)0.025 (3)0.001 (2)0.002 (2)0.011 (2)
C100.029 (3)0.021 (2)0.021 (3)0.005 (2)0.005 (2)0.004 (2)
C90.035 (3)0.021 (2)0.030 (3)0.009 (2)0.001 (2)0.006 (2)
O110.0153 (18)0.0236 (16)0.0183 (17)0.0007 (14)0.0018 (14)0.0039 (13)
O120.0138 (18)0.041 (2)0.031 (2)0.0051 (16)0.0035 (15)0.0138 (17)
O140.043 (3)0.0159 (18)0.033 (2)0.0024 (17)0.0169 (19)0.0004 (17)
O130.029 (2)0.049 (2)0.030 (2)0.0144 (19)0.0089 (17)0.0166 (18)
O160.0199 (19)0.0240 (17)0.030 (2)0.0037 (15)0.0067 (15)0.0051 (15)
C170.033 (3)0.018 (2)0.018 (2)0.000 (2)0.000 (2)0.0011 (19)
O250.025 (2)0.0219 (17)0.033 (2)0.0031 (15)0.0052 (16)0.0079 (15)
O240.030 (2)0.0263 (18)0.028 (2)0.0038 (16)0.0063 (16)0.0026 (15)
C180.011 (2)0.020 (2)0.020 (2)0.0007 (18)0.0020 (19)0.0015 (18)
O260.0138 (19)0.042 (2)0.0239 (19)0.0025 (15)0.0050 (15)0.0083 (16)
O270.0188 (19)0.0361 (19)0.0151 (17)0.0072 (15)0.0027 (14)0.0018 (14)
O2W0.251 (14)0.170 (10)0.285 (15)0.001 (10)0.021 (11)0.011 (10)
O3W0.054 (3)0.040 (3)0.076 (4)0.005 (2)0.001 (3)0.011 (2)
O1W0.264 (16)0.44 (3)0.32 (2)0.100 (17)0.051 (14)0.098 (19)
Geometric parameters (Å, º) top
Nd1—O26i2.397 (3)O8—H8C0.8501
Nd1—O82.471 (3)C8—C71.291 (7)
Nd1—O62.473 (3)C8—C181.480 (7)
Nd1—O11i2.501 (3)C8—H80.9300
Nd1—O162.502 (3)C6—O121.249 (5)
Nd1—O25ii2.504 (3)C6—O111.276 (5)
Nd1—O42.527 (3)C6—Nd2iv2.985 (5)
Nd1—O42.527 (3)C7—H70.9300
Nd1—O24ii2.573 (3)C10—C91.302 (7)
Nd1—O32.649 (3)C10—H100.9300
Nd1—O32.649 (3)C9—C171.482 (6)
Nd1—C17ii2.886 (5)C9—H90.9300
Nd2—O52.387 (3)O11—Nd1iv2.501 (3)
Nd2—O142.446 (4)O11—Nd2iv2.655 (3)
Nd2—O32.447 (3)O12—Nd2iv2.548 (3)
Nd2—O32.447 (3)O14—H14A0.86 (6)
Nd2—O27iii2.467 (3)O14—H14B0.75 (5)
Nd2—O132.477 (3)O13—H13A0.8499
Nd2—O22.507 (3)O13—H13B0.8175
Nd2—O12i2.548 (3)O16—H16C0.8499
Nd2—O12.570 (3)O16—H16A0.7231
Nd2—O11i2.655 (3)C17—O241.265 (6)
Nd2—C6i2.985 (5)C17—O251.267 (6)
O1—C11.258 (5)C17—Nd1ii2.886 (5)
C3—C21.304 (7)O25—Nd1ii2.504 (3)
C3—C61.475 (7)O24—Nd1ii2.573 (3)
C3—H30.9300C18—O261.257 (5)
O2—C11.266 (5)C18—O271.264 (6)
C1—C21.484 (7)O26—Nd1iv2.397 (3)
C2—H20.9300O27—Nd2v2.467 (3)
O3—O30.000 (7)O2W—O2W0.00 (2)
O3—C41.274 (5)O2W—O2W0.00 (2)
O4—O40.000 (7)O2W—H2WA0.8500
O4—C41.259 (5)O2W—H2WB0.8499
C4—O41.259 (5)O3W—O3W0.000 (16)
C4—O31.274 (5)O3W—H3WC0.8500
C4—C71.471 (7)O3W—H3WD0.8500
O6—C51.256 (6)O1W—O1W0.00 (4)
C5—O51.256 (6)O1W—H1WD0.8500
C5—C101.492 (6)O1W—H1WC0.8502
O8—H8B0.8500
O26i—Nd1—O877.26 (12)O2—Nd2—O11i135.19 (11)
O26i—Nd1—O692.32 (12)O12i—Nd2—O11i49.67 (10)
O8—Nd1—O6137.38 (11)O1—Nd2—O11i142.94 (10)
O26i—Nd1—O11i89.22 (11)O5—Nd2—C6i74.15 (12)
O8—Nd1—O11i69.37 (11)O14—Nd2—C6i95.55 (13)
O6—Nd1—O11i69.27 (11)O3—Nd2—C6i91.06 (12)
O26i—Nd1—O1679.13 (11)O3—Nd2—C6i91.06 (12)
O8—Nd1—O1678.01 (11)O27iii—Nd2—C6i103.44 (12)
O6—Nd1—O16141.11 (11)O13—Nd2—C6i79.12 (12)
O11i—Nd1—O16147.08 (11)O2—Nd2—C6i151.25 (12)
O26i—Nd1—O25ii124.75 (12)O12i—Nd2—C6i24.49 (11)
O8—Nd1—O25ii145.90 (12)O1—Nd2—C6i155.32 (11)
O6—Nd1—O25ii72.77 (11)O11i—Nd2—C6i25.30 (11)
O11i—Nd1—O25ii129.43 (11)C1—O1—Nd292.2 (3)
O16—Nd1—O25ii81.22 (11)C2—C3—C6124.3 (5)
O26i—Nd1—O4140.31 (11)C2—C3—H3117.8
O8—Nd1—O475.09 (12)C6—C3—H3117.8
O6—Nd1—O4127.20 (12)C1—O2—Nd295.0 (3)
O11i—Nd1—O4106.71 (10)O1—C1—O2121.1 (4)
O16—Nd1—O467.72 (10)O1—C1—C2120.1 (4)
O25ii—Nd1—O472.11 (11)O2—C1—C2118.8 (4)
O26i—Nd1—O4140.31 (11)C3—C2—C1122.2 (5)
O8—Nd1—O475.09 (12)C3—C2—H2118.9
O6—Nd1—O4127.20 (12)C1—C2—H2118.9
O11i—Nd1—O4106.71 (10)O3—O3—C40 (10)
O16—Nd1—O467.72 (10)O3—O3—Nd20 (10)
O25ii—Nd1—O472.11 (11)C4—O3—Nd2150.4 (3)
O4—Nd1—O40.00 (16)O3—O3—Nd10 (6)
O26i—Nd1—O24ii73.38 (12)C4—O3—Nd192.4 (3)
O8—Nd1—O24ii141.13 (11)Nd2—O3—Nd1111.28 (12)
O6—Nd1—O24ii69.25 (11)O4—O4—C40 (10)
O11i—Nd1—O24ii133.95 (11)O4—O4—Nd10 (3)
O16—Nd1—O24ii71.95 (11)C4—O4—Nd198.6 (3)
O25ii—Nd1—O24ii51.45 (11)O4—C4—O40.0 (3)
O4—Nd1—O24ii113.85 (11)O4—C4—O3119.0 (4)
O4—Nd1—O24ii113.85 (11)O4—C4—O3119.0 (4)
O26i—Nd1—O3155.04 (11)O4—C4—O3119.0 (4)
O8—Nd1—O387.75 (11)O4—C4—O3119.0 (4)
O6—Nd1—O385.27 (11)O3—C4—O30.0 (3)
O11i—Nd1—O366.66 (10)O4—C4—C7120.3 (4)
O16—Nd1—O3117.47 (10)O4—C4—C7120.3 (4)
O25ii—Nd1—O378.22 (11)O3—C4—C7120.6 (4)
O4—Nd1—O349.80 (10)O3—C4—C7120.6 (4)
O4—Nd1—O349.80 (10)C5—O6—Nd1128.7 (3)
O24ii—Nd1—O3127.89 (11)O6—C5—O5125.6 (4)
O26i—Nd1—O3155.04 (11)O6—C5—C10117.2 (4)
O8—Nd1—O387.75 (11)O5—C5—C10117.2 (4)
O6—Nd1—O385.27 (11)C5—O5—Nd2142.0 (3)
O11i—Nd1—O366.66 (10)Nd1—O8—H8B111.0
O16—Nd1—O3117.47 (10)Nd1—O8—H8C113.2
O25ii—Nd1—O378.22 (11)H8B—O8—H8C111.4
O4—Nd1—O349.80 (10)C7—C8—C18126.5 (5)
O4—Nd1—O349.80 (10)C7—C8—H8116.8
O24ii—Nd1—O3127.89 (11)C18—C8—H8116.8
O3—Nd1—O30.00 (6)O12—C6—O11120.1 (4)
O26i—Nd1—C17ii99.25 (14)O12—C6—C3120.1 (4)
O8—Nd1—C17ii156.81 (12)O11—C6—C3119.8 (4)
O6—Nd1—C17ii65.09 (12)O12—C6—Nd2iv57.8 (2)
O11i—Nd1—C17ii133.80 (12)O11—C6—Nd2iv62.7 (2)
O16—Nd1—C17ii78.82 (12)C3—C6—Nd2iv174.0 (3)
O25ii—Nd1—C17ii25.97 (12)C8—C7—C4123.2 (5)
O4—Nd1—C17ii95.22 (13)C8—C7—H7118.4
O4—Nd1—C17ii95.22 (13)C4—C7—H7118.4
O24ii—Nd1—C17ii25.99 (12)C9—C10—C5123.3 (5)
O3—Nd1—C17ii102.18 (13)C9—C10—H10118.3
O3—Nd1—C17ii102.18 (13)C5—C10—H10118.3
O5—Nd2—O14136.23 (13)C10—C9—C17122.4 (5)
O5—Nd2—O374.35 (12)C10—C9—H9118.8
O14—Nd2—O3149.32 (13)C17—C9—H9118.8
O5—Nd2—O374.35 (12)C6—O11—Nd1iv135.4 (3)
O14—Nd2—O3149.32 (13)C6—O11—Nd2iv92.0 (3)
O3—Nd2—O30.00 (10)Nd1iv—O11—Nd2iv109.38 (11)
O5—Nd2—O27iii73.51 (12)C6—O12—Nd2iv97.7 (3)
O14—Nd2—O27iii67.73 (13)Nd2—O14—H14A121 (4)
O3—Nd2—O27iii139.28 (12)Nd2—O14—H14B127 (4)
O3—Nd2—O27iii139.28 (12)H14A—O14—H14B100 (5)
O5—Nd2—O13141.36 (12)Nd2—O13—H13A112.0
O14—Nd2—O1373.12 (14)Nd2—O13—H13B133.5
O3—Nd2—O1378.82 (12)H13A—O13—H13B112.2
O3—Nd2—O1378.82 (12)Nd1—O16—H16C113.1
O27iii—Nd2—O13140.84 (12)Nd1—O16—H16A107.2
O5—Nd2—O2132.21 (12)H16C—O16—H16A114.1
O14—Nd2—O272.98 (13)O24—C17—O25121.1 (4)
O3—Nd2—O287.02 (12)O24—C17—C9117.7 (5)
O3—Nd2—O287.02 (12)O25—C17—C9120.9 (5)
O27iii—Nd2—O296.50 (11)O24—C17—Nd1ii63.1 (2)
O13—Nd2—O272.36 (11)O25—C17—Nd1ii60.0 (2)
O5—Nd2—O12i77.49 (12)C9—C17—Nd1ii160.5 (3)
O14—Nd2—O12i77.37 (13)C17—O25—Nd1ii94.1 (3)
O3—Nd2—O12i114.97 (11)C17—O24—Nd1ii91.0 (3)
O3—Nd2—O12i114.97 (11)O26—C18—O27124.1 (4)
O27iii—Nd2—O12i81.39 (11)O26—C18—C8118.8 (4)
O13—Nd2—O12i89.50 (12)O27—C18—C8117.1 (4)
O2—Nd2—O12i148.62 (12)C18—O26—Nd1iv136.8 (3)
O5—Nd2—O181.57 (11)C18—O27—Nd2v140.2 (3)
O14—Nd2—O1105.16 (13)O2W—O2W—O2W0 (10)
O3—Nd2—O178.02 (11)O2W—O2W—H2WA0.0
O3—Nd2—O178.02 (11)O2W—O2W—H2WA0.0
O27iii—Nd2—O173.15 (11)O2W—O2W—H2WB0.0
O13—Nd2—O1119.40 (12)O2W—O2W—H2WB0.0
O2—Nd2—O151.29 (10)H2WA—O2W—H2WB107.7
O12i—Nd2—O1150.73 (11)O3W—O3W—H3WC0.0
O5—Nd2—O11i76.98 (11)O3W—O3W—H3WD0.0
O14—Nd2—O11i111.28 (12)H3WC—O3W—H3WD108.7
O3—Nd2—O11i67.31 (10)O1W—O1W—H1WD0.0
O3—Nd2—O11i67.31 (10)O1W—O1W—H1WC0.0
O27iii—Nd2—O11i127.13 (10)H1WD—O1W—H1WC118.8
O13—Nd2—O11i67.16 (11)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+1/2, y+3/2, z+1/2; (iv) x1, y, z; (v) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O10.852.573.103 (13)122
O2W—H2WA···O30.852.523.319 (13)158
O2W—H2WB···O1Wvi0.852.532.98 (2)114
O3W—H3WD···O24vi0.852.072.896 (6)165
O3W—H3WC···O1W0.852.122.60 (2)115
O3W—H3WC···O2W0.852.082.911 (13)165
O1W—H1WD···O2W0.852.062.634 (19)124
O1W—H1WC···O6iv0.852.112.959 (17)178
O8—H8C···O3Wvii0.852.052.829 (5)152
O8—H8B···O1viii0.851.912.745 (5)169
O13—H13A···O3Wvii0.852.142.938 (6)157
O13—H13B···O25v0.822.022.787 (5)157
O14—H14A···O12ix0.86 (6)1.88 (6)2.740 (5)172 (6)
O14—H14B···O4vii0.75 (5)2.04 (6)2.776 (5)166 (6)
O16—H16A···O27i0.722.022.714 (5)160
O16—H16C···O2x0.852.072.915 (5)171
C3—H3···O24v0.932.533.345 (6)147
C8—H8···O12viii0.932.583.417 (6)150
Symmetry codes: (i) x+1, y, z; (iv) x1, y, z; (v) x1/2, y+3/2, z1/2; (vi) x+1, y+1, z+1; (vii) x+3/2, y+1/2, z+1/2; (viii) x+1/2, y+3/2, z1/2; (ix) x+1, y+2, z+1; (x) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Nd2(C4H2O4)3(H2O)4]·3H2O
Mr756.76
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.5810 (9), 14.8675 (15), 14.9056 (14)
β (°) 91.538 (5)
V3)2122.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.93
Crystal size (mm)0.16 × 0.15 × 0.14
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.459, 0.501
No. of measured, independent and
observed [I > 2σ(I)] reflections
24284, 5150, 4060
Rint0.052
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.05
No. of reflections5150
No. of parameters306
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.36, 0.89

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O10.852.573.103 (13)121.9
O2W—H2WA···O30.852.523.319 (13)157.8
O2W—H2WB···O1Wi0.852.532.98 (2)114.2
O3W—H3WD···O24i0.852.072.896 (6)165.3
O3W—H3WC···O1W0.852.122.60 (2)115.1
O3W—H3WC···O2W0.852.082.911 (13)165.2
O1W—H1WD···O2W0.852.062.634 (19)124.0
O1W—H1WC···O6ii0.852.112.959 (17)177.8
O8—H8C···O3Wiii0.852.052.829 (5)151.5
O8—H8B···O1iv0.851.912.745 (5)168.7
O13—H13A···O3Wiii0.852.142.938 (6)156.8
O13—H13B···O25v0.822.022.787 (5)156.6
O14—H14A···O12vi0.86 (6)1.88 (6)2.740 (5)172 (6)
O14—H14B···O4iii0.75 (5)2.04 (6)2.776 (5)166 (6)
O16—H16A···O27vii0.722.022.714 (5)159.9
O16—H16C···O2viii0.852.072.915 (5)170.9
C3—H3···O24v0.932.533.345 (6)146.9
C8—H8···O12iv0.932.583.417 (6)150.1
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z1/2; (v) x1/2, y+3/2, z1/2; (vi) x+1, y+2, z+1; (vii) x+1, y, z; (viii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the support of the Department of Science and Technology, Guangdong Province (grant No. 2010 A020507001–76, 5300410, FIPL-05–003)

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEliseeva, S. V., Pleshkov, D. N., Lyssenko, K. A., Lepnev, L. S., Buenzli, J. C. G. & Kuzminat, N. P. (2010). Inorg. Chem. 49, 9300–9311.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKim, Y. J., Lee, E. W. & Jung, D. Y. (2001). Chem. Mater. 13, 2684–2690.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeki, K. & Mori, W. (2002). J. Phys. Chem. B, 106, 1380–1385.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds