metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[5-(pyridin-2-yl)pyrazine-2-carbo­nitrile-κ2N4,N5]silver(I) perchlorate

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: zhangfcnu@163.com

(Received 30 September 2011; accepted 5 November 2011; online 12 November 2011)

In the mononuclear title complex, [Ag(C10H6N4)2]ClO4, the AgI ion is surrounded by two 5-(pyridin-2-yl)pyrazine-2-carbonitrile ligands, forming a considerably distorted square-planar N4-coordination geometry, with two short and two long Ag—N distances. Each perchlorate anion links two mononuclear coordination units through C—H⋯O(perchlorate) hydrogen bonding, forming an infinite tape structure along [110]. Inter­molecular ππ stacking inter­actions between adjacent pyridine and pyrazine rings [centroid–centroid distances of 3.777 (3) and 3.879 (2) Å] further assemble the tape motifs into a three-dimensional supra­molecular structure.

Related literature

For coordination complexes with cyano, carboxyl­ate, pyridyl and triazole groups, see: Wang et al. (2009[Wang, Y., Zhao, X.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 2137-2145.]); Manriquez et al. (1991[Manriquez, J. M., Yee, G. T., Mclean, R. S., Epstein, A. J. & Miller, J. S. (1991). Science, 252, 1415-1417.]). For these involving 2,2′-bipyridine derivatives, see: Berghian et al. (2005[Berghian, C., Darabantu, M., Turck, A. & Plé, N. (2005). Tetrahedron, 61, 9637-9644.]); Mathieu et al. (2001[Mathieu, J., Gros, P. & Fort, Y. (2001). Tetrahedron Lett. 42, 1879-1881.]). For comparable structures, see: Biju & Rajasekharan (2008[Biju, A. R. & Rajasekharan, M. V. (2008). Polyhedron, 27, 2065-2068.]); Wang et al. (2010[Wang, Z.-J., Zhang, F. & Wan, C.-Q. (2010). Acta Cryst. E66, m1232-m1233.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C10H6N4)2]ClO4

  • Mr = 571.70

  • Triclinic, [P \overline 1]

  • a = 7.8804 (10) Å

  • b = 11.3152 (14) Å

  • c = 12.3317 (14) Å

  • α = 104.015 (2)°

  • β = 92.015 (2)°

  • γ = 101.171 (2)°

  • V = 1042.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.577, Tmax = 0.755

  • 7304 measured reflections

  • 5075 independent reflections

  • 3882 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.03

  • 5075 reflections

  • 307 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N1 2.184 (2)
Ag1—N5 2.193 (2)
Ag1—N6 2.683 (2)
Ag1—N2 2.739 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.93 2.71 3.203 (2) 114
C14—H14A⋯O2i 0.93 2.54 3.103 (2) 119
C5—H5A⋯O4ii 0.93 2.45 3.193 (3) 137
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cyano, carboxylate, pyridyl and triazole groups have been widely employed as organic linkers to bond with metal ions to construct subtile metal organic frameworks (MOFs) (Wang et al. 2009; Manriquez et al. 1991). Many 2,2'-bipyridine derivatives together with their various metal complexes have also been synthesized and well characterized (Berghian et al. 2005; Mathieu et al. 2001).

Herein, we present the structure of a new complex [Ag(C10H6N4)2]ClO4 derived from 5-(2-pyridyl)pyrazine-2-carbonitrile, a similar ligand to the 2,2'-bipyridine featuring a 2-cyanopyrazinyl group bonding to the 2-pyridyl carbon atom (Scheme 1). As shown in Fig. 1, the two ligands around the central AgI ion are in an anti-relationship and almost in the same plane, thus the AgI ion is surrounded by two 2-pyridyl N atoms and two 2-pyrazinyl N atoms. The Ag1—N1(pyridyl) and Ag1—N5(pyridyl) bonds are 2.184 (2) and 2.193 (2) Å, respectively. Meanwhile, the longer Ag1—N6(pyrazinyl) and Ag1—N2(pyrazinyl) distances are 2.684 (2) Å and 2.739 (3) Å, respectively. The Ag—N bond lengths are similar to those (2.196 (2)–2.685 (2) Å) in the isomorphous mononuclear structure of [Ag(C10H6N4)2]BF4 reported by us recently (Wang et al., 2010). Also, the longer Ag—N(pyrazinyl) distance is comparable to that in [Ag(dafone)2]NO3.H2O (dafone = 4,5-diazafluoren-9-one) (Biju & Rajasekharan, 2008). If the weak Ag···N contact is included, a planar N4-square coordination geometry is formed. The perchlorate anions function as linkages to link neighboring [Ag(C10H6N4)2]+ moieties arranged along the [110] direction into an infinite tape structure through C—H···O interactions (Table 1, Fig. 2). The tapes are stacked along the [110] direction and interconnect via ππ interactions. The Cg1(pyridyl)···Cg1i(pyridyl) and Cg2(pyridyl)···Cg2ii(pyridyl) distances are 3.777 (3) and 3.879 (2) Å, respectively, while that of Cg3(pyrazinyl)···Cg3iii(pyrazinyl) is 3.626 (2) Å (symmetry codes: I –x + 1, –y + 1, –z + 1; ii –x + 1, –y + 2, –z + 2; iii –x + 1, –y + 2, –z + 1. Cg1, Cg2, Cg3 represent the N1-C1-C2-C3-C4-C5, N5-C11-C12-C13-C14-C15 and N2-C6-C7-N3-C8-C9 rings, respectively). A three-dimensional supramolecular framework is formed (Fig. 3).

Related literature top

For coordination complexes with cyano, carboxylate, pyridyl and triazole groups, see: Wang et al. (2009); Manriquez et al. (1991). For these involving 2,2'-bipyridine derivatives, see: Berghian et al. (2005); Mathieu et al. (2001). For comparable structures, see: Biju & Rajasekharan (2008); Wang et al. (2010).

Experimental top

The ligand 5-(2-pyridyl)-2-cyanopyrazine was obtained commercially. To a clear solution of 3 ml methanol containing the ligand (18.2 mg, 0.1 mmol), AgClO4 (22 mg, 0.1mmol) was added with stirring at room temperature. 1 ml acetonitrile was subsequently added dropwise to make the solution clear. After filtration the clear solution was kept in air for one week at room temperature to yield colorless rod-like crystals (19.0 mg, 66% yeild).

Refinement top

All the H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å for aryl hydrogens.Uiso(H) = 1.2Ueq(C)aryl.

Structure description top

Cyano, carboxylate, pyridyl and triazole groups have been widely employed as organic linkers to bond with metal ions to construct subtile metal organic frameworks (MOFs) (Wang et al. 2009; Manriquez et al. 1991). Many 2,2'-bipyridine derivatives together with their various metal complexes have also been synthesized and well characterized (Berghian et al. 2005; Mathieu et al. 2001).

Herein, we present the structure of a new complex [Ag(C10H6N4)2]ClO4 derived from 5-(2-pyridyl)pyrazine-2-carbonitrile, a similar ligand to the 2,2'-bipyridine featuring a 2-cyanopyrazinyl group bonding to the 2-pyridyl carbon atom (Scheme 1). As shown in Fig. 1, the two ligands around the central AgI ion are in an anti-relationship and almost in the same plane, thus the AgI ion is surrounded by two 2-pyridyl N atoms and two 2-pyrazinyl N atoms. The Ag1—N1(pyridyl) and Ag1—N5(pyridyl) bonds are 2.184 (2) and 2.193 (2) Å, respectively. Meanwhile, the longer Ag1—N6(pyrazinyl) and Ag1—N2(pyrazinyl) distances are 2.684 (2) Å and 2.739 (3) Å, respectively. The Ag—N bond lengths are similar to those (2.196 (2)–2.685 (2) Å) in the isomorphous mononuclear structure of [Ag(C10H6N4)2]BF4 reported by us recently (Wang et al., 2010). Also, the longer Ag—N(pyrazinyl) distance is comparable to that in [Ag(dafone)2]NO3.H2O (dafone = 4,5-diazafluoren-9-one) (Biju & Rajasekharan, 2008). If the weak Ag···N contact is included, a planar N4-square coordination geometry is formed. The perchlorate anions function as linkages to link neighboring [Ag(C10H6N4)2]+ moieties arranged along the [110] direction into an infinite tape structure through C—H···O interactions (Table 1, Fig. 2). The tapes are stacked along the [110] direction and interconnect via ππ interactions. The Cg1(pyridyl)···Cg1i(pyridyl) and Cg2(pyridyl)···Cg2ii(pyridyl) distances are 3.777 (3) and 3.879 (2) Å, respectively, while that of Cg3(pyrazinyl)···Cg3iii(pyrazinyl) is 3.626 (2) Å (symmetry codes: I –x + 1, –y + 1, –z + 1; ii –x + 1, –y + 2, –z + 2; iii –x + 1, –y + 2, –z + 1. Cg1, Cg2, Cg3 represent the N1-C1-C2-C3-C4-C5, N5-C11-C12-C13-C14-C15 and N2-C6-C7-N3-C8-C9 rings, respectively). A three-dimensional supramolecular framework is formed (Fig. 3).

For coordination complexes with cyano, carboxylate, pyridyl and triazole groups, see: Wang et al. (2009); Manriquez et al. (1991). For these involving 2,2'-bipyridine derivatives, see: Berghian et al. (2005); Mathieu et al. (2001). For comparable structures, see: Biju & Rajasekharan (2008); Wang et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title [Ag(C10H6N4)2]ClO4. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The perchlorate linkages between the [Ag(C10H6N4)2]+ moieties arranged along the [110] direction. The red-dashed lines indicate the C—H···O(perchlorate) Hydrogen-bonding interactions, while the purple balls represent the AgI ions. Symmetry codes: i –x + 2, –y + 2, –z + 1; ii –x + 1, –y + 1, –z + 1.
[Figure 3] Fig. 3. View down the c axis of the three-dimensional supramolecular structure of the title complex. All non-covalent interactions are omitted for clarity.
Bis[5-(pyridin-2-yl)pyrazine-2-carbonitrile- κ2N4,N5]silver(I) perchlorate top
Crystal data top
[Ag(C10H6N4)2]ClO4Z = 2
Mr = 571.70F(000) = 568
Triclinic, P1Dx = 1.821 Mg m3
a = 7.8804 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3152 (14) ÅCell parameters from 233 reflections
c = 12.3317 (14) Åθ = 1.7–28.2°
α = 104.015 (2)°µ = 1.14 mm1
β = 92.015 (2)°T = 293 K
γ = 101.171 (2)°Rod, colorless
V = 1042.8 (2) Å30.30 × 0.20 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5075 independent reflections
Radiation source: fine-focus sealed tube3882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.577, Tmax = 0.755k = 1510
7304 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.4461P]
where P = (Fo2 + 2Fc2)/3
5075 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.54 e Å3
10 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ag(C10H6N4)2]ClO4γ = 101.171 (2)°
Mr = 571.70V = 1042.8 (2) Å3
Triclinic, P1Z = 2
a = 7.8804 (10) ÅMo Kα radiation
b = 11.3152 (14) ŵ = 1.14 mm1
c = 12.3317 (14) ÅT = 293 K
α = 104.015 (2)°0.30 × 0.20 × 0.12 mm
β = 92.015 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5075 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3882 reflections with I > 2σ(I)
Tmin = 0.577, Tmax = 0.755Rint = 0.021
7304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03410 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.54 e Å3
5075 reflectionsΔρmin = 0.31 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.50428 (3)0.75075 (2)0.705977 (16)0.05505 (10)
C10.3777 (3)0.6399 (2)0.45026 (19)0.0332 (5)
C20.2969 (4)0.5507 (3)0.3561 (2)0.0460 (6)
H2A0.30900.56520.28540.055*
C30.1978 (4)0.4399 (3)0.3670 (3)0.0519 (7)
H3A0.14200.37940.30420.062*
C40.1834 (4)0.4209 (3)0.4728 (3)0.0519 (7)
H4A0.11660.34780.48320.062*
C50.2700 (4)0.5124 (3)0.5623 (2)0.0490 (7)
H5A0.26160.49850.63340.059*
N10.3662 (3)0.6209 (2)0.55367 (17)0.0380 (5)
C60.7085 (3)0.9257 (2)0.5006 (2)0.0392 (6)
H6A0.80060.97080.55270.047*
C70.6760 (3)0.9659 (2)0.4053 (2)0.0369 (5)
N30.5409 (3)0.9082 (2)0.32982 (17)0.0391 (5)
C90.4813 (3)0.7606 (2)0.43988 (19)0.0323 (5)
N20.6093 (3)0.8232 (2)0.51831 (16)0.0371 (5)
C80.4446 (3)0.8066 (2)0.3479 (2)0.0367 (5)
H8A0.34900.76410.29770.044*
C110.6248 (3)0.8669 (2)0.96211 (18)0.0329 (5)
C120.7024 (4)0.9591 (3)1.0561 (2)0.0411 (6)
H12A0.68620.94731.12740.049*
C130.8034 (4)1.0681 (3)1.0438 (2)0.0451 (6)
H13A0.85601.13061.10630.054*
C140.8250 (4)1.0828 (3)0.9377 (2)0.0500 (7)
H14A0.89271.15520.92660.060*
C150.7445 (4)0.9883 (3)0.8481 (2)0.0519 (7)
H15A0.75980.99900.77640.062*
N50.6457 (3)0.8821 (2)0.85757 (17)0.0410 (5)
C160.2892 (4)0.5835 (2)0.9077 (2)0.0435 (6)
H16A0.20740.53380.85040.052*
C170.2979 (3)0.5534 (2)1.0099 (2)0.0372 (5)
C180.5251 (3)0.7139 (3)1.0743 (2)0.0400 (6)
H18A0.61260.75931.12960.048*
C190.5123 (3)0.7507 (2)0.97452 (18)0.0322 (5)
N60.3962 (3)0.6827 (2)0.89007 (17)0.0408 (5)
N70.4176 (3)0.6168 (2)1.09313 (17)0.0418 (5)
C100.7861 (4)1.0716 (3)0.3789 (2)0.0464 (6)
N40.8670 (4)1.1518 (3)0.3512 (2)0.0716 (8)
C200.1815 (4)0.4486 (3)1.0339 (2)0.0443 (6)
N80.0976 (4)0.3679 (3)1.0585 (2)0.0603 (7)
Cl10.94869 (8)0.75080 (6)0.28153 (5)0.03921 (15)
O31.0442 (3)0.6770 (2)0.20672 (19)0.0635 (6)
O40.7780 (3)0.6817 (2)0.28566 (19)0.0590 (5)
O11.0367 (3)0.7906 (3)0.39031 (19)0.0854 (9)
O20.9306 (4)0.8567 (2)0.2423 (3)0.0870 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.07966 (19)0.05148 (15)0.02647 (11)0.00307 (12)0.00799 (10)0.00575 (9)
C10.0370 (12)0.0342 (12)0.0289 (11)0.0064 (10)0.0016 (9)0.0099 (10)
C20.0593 (17)0.0446 (15)0.0304 (12)0.0041 (13)0.0068 (11)0.0091 (11)
C30.0600 (18)0.0374 (15)0.0489 (16)0.0027 (13)0.0132 (13)0.0056 (12)
C40.0540 (17)0.0401 (15)0.0598 (18)0.0018 (13)0.0004 (14)0.0193 (14)
C50.0591 (17)0.0481 (16)0.0400 (14)0.0006 (14)0.0055 (13)0.0193 (13)
N10.0451 (12)0.0390 (12)0.0289 (10)0.0022 (9)0.0030 (9)0.0117 (9)
C60.0460 (14)0.0367 (13)0.0292 (12)0.0005 (11)0.0004 (10)0.0050 (10)
C70.0488 (14)0.0298 (12)0.0313 (12)0.0067 (11)0.0096 (10)0.0066 (10)
N30.0446 (12)0.0408 (12)0.0325 (10)0.0070 (10)0.0033 (9)0.0121 (9)
C90.0372 (12)0.0334 (12)0.0262 (11)0.0077 (10)0.0068 (9)0.0065 (9)
N20.0467 (12)0.0356 (11)0.0253 (9)0.0030 (9)0.0006 (8)0.0059 (8)
C80.0366 (13)0.0405 (14)0.0332 (12)0.0054 (11)0.0011 (10)0.0120 (10)
C110.0368 (12)0.0357 (12)0.0254 (11)0.0056 (10)0.0014 (9)0.0082 (9)
C120.0528 (15)0.0419 (14)0.0263 (11)0.0048 (12)0.0005 (10)0.0088 (10)
C130.0519 (16)0.0398 (14)0.0368 (13)0.0011 (12)0.0043 (11)0.0046 (11)
C140.0541 (16)0.0428 (15)0.0477 (16)0.0068 (13)0.0048 (13)0.0148 (13)
C150.0649 (18)0.0529 (17)0.0338 (14)0.0052 (14)0.0080 (13)0.0169 (13)
N50.0500 (12)0.0434 (12)0.0256 (10)0.0018 (10)0.0025 (9)0.0105 (9)
C160.0543 (16)0.0384 (14)0.0308 (12)0.0020 (12)0.0032 (11)0.0057 (11)
C170.0410 (13)0.0353 (13)0.0347 (12)0.0074 (11)0.0080 (10)0.0078 (10)
C180.0428 (14)0.0448 (15)0.0299 (12)0.0008 (11)0.0004 (10)0.0133 (11)
C190.0373 (12)0.0346 (12)0.0239 (10)0.0075 (10)0.0030 (9)0.0059 (9)
N60.0534 (13)0.0370 (12)0.0271 (10)0.0004 (10)0.0008 (9)0.0070 (9)
N70.0473 (12)0.0455 (13)0.0320 (11)0.0027 (10)0.0029 (9)0.0140 (10)
C100.0627 (17)0.0367 (14)0.0330 (13)0.0002 (13)0.0008 (12)0.0051 (11)
N40.104 (2)0.0470 (16)0.0509 (16)0.0174 (16)0.0052 (15)0.0140 (13)
C200.0489 (15)0.0419 (15)0.0389 (14)0.0029 (12)0.0045 (12)0.0092 (12)
N80.0701 (17)0.0492 (15)0.0560 (16)0.0049 (13)0.0054 (13)0.0166 (13)
Cl10.0416 (3)0.0371 (3)0.0345 (3)0.0008 (3)0.0034 (2)0.0066 (2)
O30.0616 (13)0.0711 (15)0.0531 (13)0.0254 (12)0.0021 (10)0.0022 (11)
O40.0473 (11)0.0565 (13)0.0687 (14)0.0064 (10)0.0009 (10)0.0215 (11)
O10.0658 (15)0.121 (2)0.0418 (12)0.0060 (15)0.0094 (11)0.0089 (14)
O20.0997 (19)0.0640 (16)0.126 (2)0.0313 (14)0.0595 (18)0.0591 (17)
Geometric parameters (Å, º) top
Ag1—N12.184 (2)C11—C121.387 (3)
Ag1—N52.193 (2)C11—C191.481 (3)
Ag1—N62.683 (2)C12—C131.378 (4)
Ag1—N22.739 (2)C12—H12A0.9300
C1—N11.347 (3)C13—C141.371 (4)
C1—C21.379 (4)C13—H13A0.9300
C1—C91.486 (3)C14—C151.372 (4)
C2—C31.382 (4)C14—H14A0.9300
C2—H2A0.9300C15—N51.333 (3)
C3—C41.378 (4)C15—H15A0.9300
C3—H3A0.9300C16—N61.335 (3)
C4—C51.369 (4)C16—C171.386 (3)
C4—H4A0.9300C16—H16A0.9300
C5—N11.342 (3)C17—N71.331 (3)
C5—H5A0.9300C17—C201.450 (4)
C6—N21.337 (3)C18—N71.325 (3)
C6—C71.392 (3)C18—C191.397 (3)
C6—H6A0.9300C18—H18A0.9300
C7—N31.339 (3)C19—N61.336 (3)
C7—C101.447 (4)C10—N41.135 (4)
N3—C81.321 (3)C20—N81.131 (4)
C9—N21.333 (3)Cl1—O11.416 (2)
C9—C81.401 (3)Cl1—O21.426 (2)
C8—H8A0.9300Cl1—O31.426 (2)
C11—N51.353 (3)Cl1—O41.428 (2)
N1—Ag1—N5179.23 (7)C13—C12—H12A120.0
N1—C1—C2121.7 (2)C11—C12—H12A120.0
N1—C1—C9117.9 (2)C14—C13—C12118.7 (3)
C2—C1—C9120.4 (2)C14—C13—H13A120.7
C1—C2—C3119.9 (2)C12—C13—H13A120.7
C1—C2—H2A120.1C13—C14—C15118.6 (3)
C3—C2—H2A120.1C13—C14—H14A120.7
C4—C3—C2118.7 (3)C15—C14—H14A120.7
C4—C3—H3A120.7N5—C15—C14124.0 (2)
C2—C3—H3A120.7N5—C15—H15A118.0
C5—C4—C3118.3 (3)C14—C15—H15A118.0
C5—C4—H4A120.9C15—N5—C11117.7 (2)
C3—C4—H4A120.9C15—N5—Ag1118.68 (17)
N1—C5—C4124.0 (3)C11—N5—Ag1123.31 (17)
N1—C5—H5A118.0N6—C16—C17121.1 (2)
C4—C5—H5A118.0N6—C16—H16A119.5
C5—N1—C1117.5 (2)C17—C16—H16A119.5
C5—N1—Ag1118.25 (17)N7—C17—C16122.4 (2)
C1—N1—Ag1124.21 (17)N7—C17—C20114.5 (2)
N2—C6—C7121.0 (2)C16—C17—C20123.0 (2)
N2—C6—H6A119.5N7—C18—C19122.6 (2)
C7—C6—H6A119.5N7—C18—H18A118.7
N3—C7—C6122.3 (2)C19—C18—H18A118.7
N3—C7—C10114.7 (2)N6—C19—C18120.4 (2)
C6—C7—C10123.0 (2)N6—C19—C11119.3 (2)
C8—N3—C7116.1 (2)C18—C19—C11120.3 (2)
N2—C9—C8120.9 (2)C16—N6—C19117.3 (2)
N2—C9—C1119.2 (2)C18—N7—C17116.1 (2)
C8—C9—C1119.9 (2)N4—C10—C7175.5 (3)
C9—N2—C6117.1 (2)N8—C20—C17175.7 (3)
N3—C8—C9122.4 (2)O1—Cl1—O2109.5 (2)
N3—C8—H8A118.8O1—Cl1—O3109.86 (16)
C9—C8—H8A118.8O2—Cl1—O3109.58 (15)
N5—C11—C12121.1 (2)O1—Cl1—O4109.76 (14)
N5—C11—C19118.5 (2)O2—Cl1—O4107.38 (15)
C12—C11—C19120.4 (2)O3—Cl1—O4110.68 (14)
C13—C12—C11120.0 (2)
N1—C1—C2—C31.5 (4)C11—C12—C13—C140.0 (4)
C9—C1—C2—C3178.6 (3)C12—C13—C14—C150.2 (5)
C1—C2—C3—C40.5 (5)C13—C14—C15—N50.0 (5)
C2—C3—C4—C50.8 (5)C14—C15—N5—C110.4 (5)
C3—C4—C5—N11.2 (5)C14—C15—N5—Ag1173.3 (2)
C4—C5—N1—C10.2 (4)C12—C11—N5—C150.6 (4)
C4—C5—N1—Ag1177.0 (2)C19—C11—N5—C15178.6 (2)
C2—C1—N1—C51.2 (4)C12—C11—N5—Ag1172.76 (19)
C9—C1—N1—C5178.9 (2)C19—C11—N5—Ag15.3 (3)
C2—C1—N1—Ag1175.5 (2)N1—Ag1—N5—C1528 (6)
C9—C1—N1—Ag14.4 (3)N1—Ag1—N5—C11159 (6)
N5—Ag1—N1—C5151 (6)N6—C16—C17—N73.6 (4)
N5—Ag1—N1—C126 (6)N6—C16—C17—C20178.4 (3)
N2—C6—C7—N33.0 (4)N7—C18—C19—N64.7 (4)
N2—C6—C7—C10176.0 (2)N7—C18—C19—C11174.1 (2)
C6—C7—N3—C83.3 (4)N5—C11—C19—N619.7 (3)
C10—C7—N3—C8175.8 (2)C12—C11—C19—N6158.4 (2)
N1—C1—C9—N226.0 (3)N5—C11—C19—C18161.5 (2)
C2—C1—C9—N2153.9 (2)C12—C11—C19—C1820.5 (4)
N1—C1—C9—C8154.5 (2)C17—C16—N6—C190.5 (4)
C2—C1—C9—C825.6 (4)C18—C19—N6—C163.4 (4)
C8—C9—N2—C65.1 (3)C11—C19—N6—C16175.4 (2)
C1—C9—N2—C6174.4 (2)C19—C18—N7—C171.6 (4)
C7—C6—N2—C91.4 (4)C16—C17—N7—C182.4 (4)
C7—N3—C8—C90.5 (4)C20—C17—N7—C18179.4 (2)
N2—C9—C8—N34.9 (4)N3—C7—C10—N414 (4)
C1—C9—C8—N3174.6 (2)C6—C7—C10—N4165 (4)
N5—C11—C12—C130.4 (4)N7—C17—C20—N811 (4)
C19—C11—C12—C13178.4 (2)C16—C17—C20—N8167 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.932.713.203 (2)114
C14—H14A···O2i0.932.543.103 (2)119
C5—H5A···O4ii0.932.453.193 (3)137
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C10H6N4)2]ClO4
Mr571.70
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8804 (10), 11.3152 (14), 12.3317 (14)
α, β, γ (°)104.015 (2), 92.015 (2), 101.171 (2)
V3)1042.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.30 × 0.20 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.577, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
7304, 5075, 3882
Rint0.021
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.03
No. of reflections5075
No. of parameters307
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.31

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ag1—N12.184 (2)Ag1—N62.683 (2)
Ag1—N52.193 (2)Ag1—N22.739 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.932.713.203 (2)114
C14—H14A···O2i0.932.543.103 (2)119
C5—H5A···O4ii0.932.453.193 (3)137
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.

References

First citationBerghian, C., Darabantu, M., Turck, A. & Plé, N. (2005). Tetrahedron, 61, 9637–9644.  Web of Science CrossRef CAS Google Scholar
First citationBiju, A. R. & Rajasekharan, M. V. (2008). Polyhedron, 27, 2065–2068.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationManriquez, J. M., Yee, G. T., Mclean, R. S., Epstein, A. J. & Miller, J. S. (1991). Science, 252, 1415–1417.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMathieu, J., Gros, P. & Fort, Y. (2001). Tetrahedron Lett. 42, 1879–1881.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-J., Zhang, F. & Wan, C.-Q. (2010). Acta Cryst. E66, m1232–m1233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y., Zhao, X.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 2137–2145.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds