metal-organic compounds
Bis[5-(pyridin-2-yl)pyrazine-2-carbonitrile-κ2N4,N5]silver(I) perchlorate
aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: zhangfcnu@163.com
In the mononuclear title complex, [Ag(C10H6N4)2]ClO4, the AgI ion is surrounded by two 5-(pyridin-2-yl)pyrazine-2-carbonitrile ligands, forming a considerably distorted square-planar N4-coordination geometry, with two short and two long Ag—N distances. Each perchlorate anion links two mononuclear coordination units through C—H⋯O(perchlorate) hydrogen bonding, forming an infinite tape structure along [110]. Intermolecular π–π stacking interactions between adjacent pyridine and pyrazine rings [centroid–centroid distances of 3.777 (3) and 3.879 (2) Å] further assemble the tape motifs into a three-dimensional supramolecular structure.
Related literature
For coordination complexes with cyano, carboxylate, pyridyl and triazole groups, see: Wang et al. (2009); Manriquez et al. (1991). For these involving 2,2′-bipyridine derivatives, see: Berghian et al. (2005); Mathieu et al. (2001). For comparable structures, see: Biju & Rajasekharan (2008); Wang et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536811046708/ez2265sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811046708/ez2265Isup2.hkl
The ligand 5-(2-pyridyl)-2-cyanopyrazine was obtained commercially. To a clear solution of 3 ml methanol containing the ligand (18.2 mg, 0.1 mmol), AgClO4 (22 mg, 0.1mmol) was added with stirring at room temperature. 1 ml acetonitrile was subsequently added dropwise to make the solution clear. After filtration the clear solution was kept in air for one week at room temperature to yield colorless rod-like crystals (19.0 mg, 66% yeild).
All the H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å for aryl hydrogens.Uiso(H) = 1.2Ueq(C)aryl.
Cyano, carboxylate, pyridyl and triazole groups have been widely employed as organic linkers to bond with metal ions to construct subtile metal organic frameworks (MOFs) (Wang et al. 2009; Manriquez et al. 1991). Many 2,2'-bipyridine derivatives together with their various metal complexes have also been synthesized and well characterized (Berghian et al. 2005; Mathieu et al. 2001).
Herein, we present the structure of a new complex [Ag(C10H6N4)2]ClO4 derived from 5-(2-pyridyl)pyrazine-2-carbonitrile, a similar ligand to the 2,2'-bipyridine featuring a 2-cyanopyrazinyl group bonding to the 2-pyridyl carbon atom (Scheme 1). As shown in Fig. 1, the two ligands around the central AgI ion are in an anti-relationship and almost in the same plane, thus the AgI ion is surrounded by two 2-pyridyl N atoms and two 2-pyrazinyl N atoms. The Ag1—N1(pyridyl) and Ag1—N5(pyridyl) bonds are 2.184 (2) and 2.193 (2) Å, respectively. Meanwhile, the longer Ag1—N6(pyrazinyl) and Ag1—N2(pyrazinyl) distances are 2.684 (2) Å and 2.739 (3) Å, respectively. The Ag—N bond lengths are similar to those (2.196 (2)–2.685 (2) Å) in the isomorphous mononuclear structure of [Ag(C10H6N4)2]BF4 reported by us recently (Wang et al., 2010). Also, the longer Ag—N(pyrazinyl) distance is comparable to that in [Ag(dafone)2]NO3.H2O (dafone = 4,5-diazafluoren-9-one) (Biju & Rajasekharan, 2008). If the weak Ag···N contact is included, a planar N4-square coordination geometry is formed. The perchlorate anions function as linkages to link neighboring [Ag(C10H6N4)2]+ moieties arranged along the [110] direction into an infinite tape structure through C—H···O interactions (Table 1, Fig. 2). The tapes are stacked along the [110] direction and interconnect via π–π interactions. The Cg1(pyridyl)···Cg1i(pyridyl) and Cg2(pyridyl)···Cg2ii(pyridyl) distances are 3.777 (3) and 3.879 (2) Å, respectively, while that of Cg3(pyrazinyl)···Cg3iii(pyrazinyl) is 3.626 (2) Å (symmetry codes: I –x + 1, –y + 1, –z + 1; ii –x + 1, –y + 2, –z + 2; iii –x + 1, –y + 2, –z + 1. Cg1, Cg2, Cg3 represent the N1-C1-C2-C3-C4-C5, N5-C11-C12-C13-C14-C15 and N2-C6-C7-N3-C8-C9 rings, respectively). A three-dimensional supramolecular framework is formed (Fig. 3).
For coordination complexes with cyano, carboxylate, pyridyl and triazole groups, see: Wang et al. (2009); Manriquez et al. (1991). For these involving 2,2'-bipyridine derivatives, see: Berghian et al. (2005); Mathieu et al. (2001). For comparable structures, see: Biju & Rajasekharan (2008); Wang et al. (2010).
Data collection: APEX2 (Bruker, 2007); cell
APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Ag(C10H6N4)2]ClO4 | Z = 2 |
Mr = 571.70 | F(000) = 568 |
Triclinic, P1 | Dx = 1.821 Mg m−3 |
a = 7.8804 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.3152 (14) Å | Cell parameters from 233 reflections |
c = 12.3317 (14) Å | θ = 1.7–28.2° |
α = 104.015 (2)° | µ = 1.14 mm−1 |
β = 92.015 (2)° | T = 293 K |
γ = 101.171 (2)° | Rod, colorless |
V = 1042.8 (2) Å3 | 0.30 × 0.20 × 0.12 mm |
Bruker APEXII CCD area-detector diffractometer | 5075 independent reflections |
Radiation source: fine-focus sealed tube | 3882 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 28.3°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −10→10 |
Tmin = 0.577, Tmax = 0.755 | k = −15→10 |
7304 measured reflections | l = −16→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0409P)2 + 0.4461P] where P = (Fo2 + 2Fc2)/3 |
5075 reflections | (Δ/σ)max = 0.001 |
307 parameters | Δρmax = 0.54 e Å−3 |
10 restraints | Δρmin = −0.31 e Å−3 |
[Ag(C10H6N4)2]ClO4 | γ = 101.171 (2)° |
Mr = 571.70 | V = 1042.8 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.8804 (10) Å | Mo Kα radiation |
b = 11.3152 (14) Å | µ = 1.14 mm−1 |
c = 12.3317 (14) Å | T = 293 K |
α = 104.015 (2)° | 0.30 × 0.20 × 0.12 mm |
β = 92.015 (2)° |
Bruker APEXII CCD area-detector diffractometer | 5075 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 3882 reflections with I > 2σ(I) |
Tmin = 0.577, Tmax = 0.755 | Rint = 0.021 |
7304 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 10 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.54 e Å−3 |
5075 reflections | Δρmin = −0.31 e Å−3 |
307 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.50428 (3) | 0.75075 (2) | 0.705977 (16) | 0.05505 (10) | |
C1 | 0.3777 (3) | 0.6399 (2) | 0.45026 (19) | 0.0332 (5) | |
C2 | 0.2969 (4) | 0.5507 (3) | 0.3561 (2) | 0.0460 (6) | |
H2A | 0.3090 | 0.5652 | 0.2854 | 0.055* | |
C3 | 0.1978 (4) | 0.4399 (3) | 0.3670 (3) | 0.0519 (7) | |
H3A | 0.1420 | 0.3794 | 0.3042 | 0.062* | |
C4 | 0.1834 (4) | 0.4209 (3) | 0.4728 (3) | 0.0519 (7) | |
H4A | 0.1166 | 0.3478 | 0.4832 | 0.062* | |
C5 | 0.2700 (4) | 0.5124 (3) | 0.5623 (2) | 0.0490 (7) | |
H5A | 0.2616 | 0.4985 | 0.6334 | 0.059* | |
N1 | 0.3662 (3) | 0.6209 (2) | 0.55367 (17) | 0.0380 (5) | |
C6 | 0.7085 (3) | 0.9257 (2) | 0.5006 (2) | 0.0392 (6) | |
H6A | 0.8006 | 0.9708 | 0.5527 | 0.047* | |
C7 | 0.6760 (3) | 0.9659 (2) | 0.4053 (2) | 0.0369 (5) | |
N3 | 0.5409 (3) | 0.9082 (2) | 0.32982 (17) | 0.0391 (5) | |
C9 | 0.4813 (3) | 0.7606 (2) | 0.43988 (19) | 0.0323 (5) | |
N2 | 0.6093 (3) | 0.8232 (2) | 0.51831 (16) | 0.0371 (5) | |
C8 | 0.4446 (3) | 0.8066 (2) | 0.3479 (2) | 0.0367 (5) | |
H8A | 0.3490 | 0.7641 | 0.2977 | 0.044* | |
C11 | 0.6248 (3) | 0.8669 (2) | 0.96211 (18) | 0.0329 (5) | |
C12 | 0.7024 (4) | 0.9591 (3) | 1.0561 (2) | 0.0411 (6) | |
H12A | 0.6862 | 0.9473 | 1.1274 | 0.049* | |
C13 | 0.8034 (4) | 1.0681 (3) | 1.0438 (2) | 0.0451 (6) | |
H13A | 0.8560 | 1.1306 | 1.1063 | 0.054* | |
C14 | 0.8250 (4) | 1.0828 (3) | 0.9377 (2) | 0.0500 (7) | |
H14A | 0.8927 | 1.1552 | 0.9266 | 0.060* | |
C15 | 0.7445 (4) | 0.9883 (3) | 0.8481 (2) | 0.0519 (7) | |
H15A | 0.7598 | 0.9990 | 0.7764 | 0.062* | |
N5 | 0.6457 (3) | 0.8821 (2) | 0.85757 (17) | 0.0410 (5) | |
C16 | 0.2892 (4) | 0.5835 (2) | 0.9077 (2) | 0.0435 (6) | |
H16A | 0.2074 | 0.5338 | 0.8504 | 0.052* | |
C17 | 0.2979 (3) | 0.5534 (2) | 1.0099 (2) | 0.0372 (5) | |
C18 | 0.5251 (3) | 0.7139 (3) | 1.0743 (2) | 0.0400 (6) | |
H18A | 0.6126 | 0.7593 | 1.1296 | 0.048* | |
C19 | 0.5123 (3) | 0.7507 (2) | 0.97452 (18) | 0.0322 (5) | |
N6 | 0.3962 (3) | 0.6827 (2) | 0.89007 (17) | 0.0408 (5) | |
N7 | 0.4176 (3) | 0.6168 (2) | 1.09313 (17) | 0.0418 (5) | |
C10 | 0.7861 (4) | 1.0716 (3) | 0.3789 (2) | 0.0464 (6) | |
N4 | 0.8670 (4) | 1.1518 (3) | 0.3512 (2) | 0.0716 (8) | |
C20 | 0.1815 (4) | 0.4486 (3) | 1.0339 (2) | 0.0443 (6) | |
N8 | 0.0976 (4) | 0.3679 (3) | 1.0585 (2) | 0.0603 (7) | |
Cl1 | 0.94869 (8) | 0.75080 (6) | 0.28153 (5) | 0.03921 (15) | |
O3 | 1.0442 (3) | 0.6770 (2) | 0.20672 (19) | 0.0635 (6) | |
O4 | 0.7780 (3) | 0.6817 (2) | 0.28566 (19) | 0.0590 (5) | |
O1 | 1.0367 (3) | 0.7906 (3) | 0.39031 (19) | 0.0854 (9) | |
O2 | 0.9306 (4) | 0.8567 (2) | 0.2423 (3) | 0.0870 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.07966 (19) | 0.05148 (15) | 0.02647 (11) | 0.00307 (12) | −0.00799 (10) | 0.00575 (9) |
C1 | 0.0370 (12) | 0.0342 (12) | 0.0289 (11) | 0.0064 (10) | 0.0016 (9) | 0.0099 (10) |
C2 | 0.0593 (17) | 0.0446 (15) | 0.0304 (12) | 0.0041 (13) | −0.0068 (11) | 0.0091 (11) |
C3 | 0.0600 (18) | 0.0374 (15) | 0.0489 (16) | −0.0027 (13) | −0.0132 (13) | 0.0056 (12) |
C4 | 0.0540 (17) | 0.0401 (15) | 0.0598 (18) | −0.0018 (13) | −0.0004 (14) | 0.0193 (14) |
C5 | 0.0591 (17) | 0.0481 (16) | 0.0400 (14) | 0.0006 (14) | 0.0055 (13) | 0.0193 (13) |
N1 | 0.0451 (12) | 0.0390 (12) | 0.0289 (10) | 0.0022 (9) | 0.0030 (9) | 0.0117 (9) |
C6 | 0.0460 (14) | 0.0367 (13) | 0.0292 (12) | −0.0005 (11) | −0.0004 (10) | 0.0050 (10) |
C7 | 0.0488 (14) | 0.0298 (12) | 0.0313 (12) | 0.0067 (11) | 0.0096 (10) | 0.0066 (10) |
N3 | 0.0446 (12) | 0.0408 (12) | 0.0325 (10) | 0.0070 (10) | 0.0033 (9) | 0.0121 (9) |
C9 | 0.0372 (12) | 0.0334 (12) | 0.0262 (11) | 0.0077 (10) | 0.0068 (9) | 0.0065 (9) |
N2 | 0.0467 (12) | 0.0356 (11) | 0.0253 (9) | 0.0030 (9) | 0.0006 (8) | 0.0059 (8) |
C8 | 0.0366 (13) | 0.0405 (14) | 0.0332 (12) | 0.0054 (11) | 0.0011 (10) | 0.0120 (10) |
C11 | 0.0368 (12) | 0.0357 (12) | 0.0254 (11) | 0.0056 (10) | 0.0014 (9) | 0.0082 (9) |
C12 | 0.0528 (15) | 0.0419 (14) | 0.0263 (11) | 0.0048 (12) | −0.0005 (10) | 0.0088 (10) |
C13 | 0.0519 (16) | 0.0398 (14) | 0.0368 (13) | 0.0011 (12) | −0.0043 (11) | 0.0046 (11) |
C14 | 0.0541 (16) | 0.0428 (15) | 0.0477 (16) | −0.0068 (13) | 0.0048 (13) | 0.0148 (13) |
C15 | 0.0649 (18) | 0.0529 (17) | 0.0338 (14) | −0.0052 (14) | 0.0080 (13) | 0.0169 (13) |
N5 | 0.0500 (12) | 0.0434 (12) | 0.0256 (10) | −0.0018 (10) | 0.0025 (9) | 0.0105 (9) |
C16 | 0.0543 (16) | 0.0384 (14) | 0.0308 (12) | −0.0020 (12) | −0.0032 (11) | 0.0057 (11) |
C17 | 0.0410 (13) | 0.0353 (13) | 0.0347 (12) | 0.0074 (11) | 0.0080 (10) | 0.0078 (10) |
C18 | 0.0428 (14) | 0.0448 (15) | 0.0299 (12) | −0.0008 (11) | −0.0004 (10) | 0.0133 (11) |
C19 | 0.0373 (12) | 0.0346 (12) | 0.0239 (10) | 0.0075 (10) | 0.0030 (9) | 0.0059 (9) |
N6 | 0.0534 (13) | 0.0370 (12) | 0.0271 (10) | −0.0004 (10) | −0.0008 (9) | 0.0070 (9) |
N7 | 0.0473 (12) | 0.0455 (13) | 0.0320 (11) | 0.0027 (10) | 0.0029 (9) | 0.0140 (10) |
C10 | 0.0627 (17) | 0.0367 (14) | 0.0330 (13) | −0.0002 (13) | 0.0008 (12) | 0.0051 (11) |
N4 | 0.104 (2) | 0.0470 (16) | 0.0509 (16) | −0.0174 (16) | 0.0052 (15) | 0.0140 (13) |
C20 | 0.0489 (15) | 0.0419 (15) | 0.0389 (14) | 0.0029 (12) | 0.0045 (12) | 0.0092 (12) |
N8 | 0.0701 (17) | 0.0492 (15) | 0.0560 (16) | −0.0049 (13) | 0.0054 (13) | 0.0166 (13) |
Cl1 | 0.0416 (3) | 0.0371 (3) | 0.0345 (3) | 0.0008 (3) | 0.0034 (2) | 0.0066 (2) |
O3 | 0.0616 (13) | 0.0711 (15) | 0.0531 (13) | 0.0254 (12) | 0.0021 (10) | −0.0022 (11) |
O4 | 0.0473 (11) | 0.0565 (13) | 0.0687 (14) | −0.0064 (10) | 0.0009 (10) | 0.0215 (11) |
O1 | 0.0658 (15) | 0.121 (2) | 0.0418 (12) | −0.0060 (15) | −0.0094 (11) | −0.0089 (14) |
O2 | 0.0997 (19) | 0.0640 (16) | 0.126 (2) | 0.0313 (14) | 0.0595 (18) | 0.0591 (17) |
Ag1—N1 | 2.184 (2) | C11—C12 | 1.387 (3) |
Ag1—N5 | 2.193 (2) | C11—C19 | 1.481 (3) |
Ag1—N6 | 2.683 (2) | C12—C13 | 1.378 (4) |
Ag1—N2 | 2.739 (2) | C12—H12A | 0.9300 |
C1—N1 | 1.347 (3) | C13—C14 | 1.371 (4) |
C1—C2 | 1.379 (4) | C13—H13A | 0.9300 |
C1—C9 | 1.486 (3) | C14—C15 | 1.372 (4) |
C2—C3 | 1.382 (4) | C14—H14A | 0.9300 |
C2—H2A | 0.9300 | C15—N5 | 1.333 (3) |
C3—C4 | 1.378 (4) | C15—H15A | 0.9300 |
C3—H3A | 0.9300 | C16—N6 | 1.335 (3) |
C4—C5 | 1.369 (4) | C16—C17 | 1.386 (3) |
C4—H4A | 0.9300 | C16—H16A | 0.9300 |
C5—N1 | 1.342 (3) | C17—N7 | 1.331 (3) |
C5—H5A | 0.9300 | C17—C20 | 1.450 (4) |
C6—N2 | 1.337 (3) | C18—N7 | 1.325 (3) |
C6—C7 | 1.392 (3) | C18—C19 | 1.397 (3) |
C6—H6A | 0.9300 | C18—H18A | 0.9300 |
C7—N3 | 1.339 (3) | C19—N6 | 1.336 (3) |
C7—C10 | 1.447 (4) | C10—N4 | 1.135 (4) |
N3—C8 | 1.321 (3) | C20—N8 | 1.131 (4) |
C9—N2 | 1.333 (3) | Cl1—O1 | 1.416 (2) |
C9—C8 | 1.401 (3) | Cl1—O2 | 1.426 (2) |
C8—H8A | 0.9300 | Cl1—O3 | 1.426 (2) |
C11—N5 | 1.353 (3) | Cl1—O4 | 1.428 (2) |
N1—Ag1—N5 | 179.23 (7) | C13—C12—H12A | 120.0 |
N1—C1—C2 | 121.7 (2) | C11—C12—H12A | 120.0 |
N1—C1—C9 | 117.9 (2) | C14—C13—C12 | 118.7 (3) |
C2—C1—C9 | 120.4 (2) | C14—C13—H13A | 120.7 |
C1—C2—C3 | 119.9 (2) | C12—C13—H13A | 120.7 |
C1—C2—H2A | 120.1 | C13—C14—C15 | 118.6 (3) |
C3—C2—H2A | 120.1 | C13—C14—H14A | 120.7 |
C4—C3—C2 | 118.7 (3) | C15—C14—H14A | 120.7 |
C4—C3—H3A | 120.7 | N5—C15—C14 | 124.0 (2) |
C2—C3—H3A | 120.7 | N5—C15—H15A | 118.0 |
C5—C4—C3 | 118.3 (3) | C14—C15—H15A | 118.0 |
C5—C4—H4A | 120.9 | C15—N5—C11 | 117.7 (2) |
C3—C4—H4A | 120.9 | C15—N5—Ag1 | 118.68 (17) |
N1—C5—C4 | 124.0 (3) | C11—N5—Ag1 | 123.31 (17) |
N1—C5—H5A | 118.0 | N6—C16—C17 | 121.1 (2) |
C4—C5—H5A | 118.0 | N6—C16—H16A | 119.5 |
C5—N1—C1 | 117.5 (2) | C17—C16—H16A | 119.5 |
C5—N1—Ag1 | 118.25 (17) | N7—C17—C16 | 122.4 (2) |
C1—N1—Ag1 | 124.21 (17) | N7—C17—C20 | 114.5 (2) |
N2—C6—C7 | 121.0 (2) | C16—C17—C20 | 123.0 (2) |
N2—C6—H6A | 119.5 | N7—C18—C19 | 122.6 (2) |
C7—C6—H6A | 119.5 | N7—C18—H18A | 118.7 |
N3—C7—C6 | 122.3 (2) | C19—C18—H18A | 118.7 |
N3—C7—C10 | 114.7 (2) | N6—C19—C18 | 120.4 (2) |
C6—C7—C10 | 123.0 (2) | N6—C19—C11 | 119.3 (2) |
C8—N3—C7 | 116.1 (2) | C18—C19—C11 | 120.3 (2) |
N2—C9—C8 | 120.9 (2) | C16—N6—C19 | 117.3 (2) |
N2—C9—C1 | 119.2 (2) | C18—N7—C17 | 116.1 (2) |
C8—C9—C1 | 119.9 (2) | N4—C10—C7 | 175.5 (3) |
C9—N2—C6 | 117.1 (2) | N8—C20—C17 | 175.7 (3) |
N3—C8—C9 | 122.4 (2) | O1—Cl1—O2 | 109.5 (2) |
N3—C8—H8A | 118.8 | O1—Cl1—O3 | 109.86 (16) |
C9—C8—H8A | 118.8 | O2—Cl1—O3 | 109.58 (15) |
N5—C11—C12 | 121.1 (2) | O1—Cl1—O4 | 109.76 (14) |
N5—C11—C19 | 118.5 (2) | O2—Cl1—O4 | 107.38 (15) |
C12—C11—C19 | 120.4 (2) | O3—Cl1—O4 | 110.68 (14) |
C13—C12—C11 | 120.0 (2) | ||
N1—C1—C2—C3 | 1.5 (4) | C11—C12—C13—C14 | 0.0 (4) |
C9—C1—C2—C3 | −178.6 (3) | C12—C13—C14—C15 | 0.2 (5) |
C1—C2—C3—C4 | −0.5 (5) | C13—C14—C15—N5 | 0.0 (5) |
C2—C3—C4—C5 | −0.8 (5) | C14—C15—N5—C11 | −0.4 (5) |
C3—C4—C5—N1 | 1.2 (5) | C14—C15—N5—Ag1 | 173.3 (2) |
C4—C5—N1—C1 | −0.2 (4) | C12—C11—N5—C15 | 0.6 (4) |
C4—C5—N1—Ag1 | −177.0 (2) | C19—C11—N5—C15 | 178.6 (2) |
C2—C1—N1—C5 | −1.2 (4) | C12—C11—N5—Ag1 | −172.76 (19) |
C9—C1—N1—C5 | 178.9 (2) | C19—C11—N5—Ag1 | 5.3 (3) |
C2—C1—N1—Ag1 | 175.5 (2) | N1—Ag1—N5—C15 | 28 (6) |
C9—C1—N1—Ag1 | −4.4 (3) | N1—Ag1—N5—C11 | −159 (6) |
N5—Ag1—N1—C5 | 151 (6) | N6—C16—C17—N7 | −3.6 (4) |
N5—Ag1—N1—C1 | −26 (6) | N6—C16—C17—C20 | 178.4 (3) |
N2—C6—C7—N3 | 3.0 (4) | N7—C18—C19—N6 | −4.7 (4) |
N2—C6—C7—C10 | −176.0 (2) | N7—C18—C19—C11 | 174.1 (2) |
C6—C7—N3—C8 | −3.3 (4) | N5—C11—C19—N6 | −19.7 (3) |
C10—C7—N3—C8 | 175.8 (2) | C12—C11—C19—N6 | 158.4 (2) |
N1—C1—C9—N2 | 26.0 (3) | N5—C11—C19—C18 | 161.5 (2) |
C2—C1—C9—N2 | −153.9 (2) | C12—C11—C19—C18 | −20.5 (4) |
N1—C1—C9—C8 | −154.5 (2) | C17—C16—N6—C19 | 0.5 (4) |
C2—C1—C9—C8 | 25.6 (4) | C18—C19—N6—C16 | 3.4 (4) |
C8—C9—N2—C6 | −5.1 (3) | C11—C19—N6—C16 | −175.4 (2) |
C1—C9—N2—C6 | 174.4 (2) | C19—C18—N7—C17 | 1.6 (4) |
C7—C6—N2—C9 | 1.4 (4) | C16—C17—N7—C18 | 2.4 (4) |
C7—N3—C8—C9 | −0.5 (4) | C20—C17—N7—C18 | −179.4 (2) |
N2—C9—C8—N3 | 4.9 (4) | N3—C7—C10—N4 | −14 (4) |
C1—C9—C8—N3 | −174.6 (2) | C6—C7—C10—N4 | 165 (4) |
N5—C11—C12—C13 | −0.4 (4) | N7—C17—C20—N8 | −11 (4) |
C19—C11—C12—C13 | −178.4 (2) | C16—C17—C20—N8 | 167 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···O2i | 0.93 | 2.71 | 3.203 (2) | 114 |
C14—H14A···O2i | 0.93 | 2.54 | 3.103 (2) | 119 |
C5—H5A···O4ii | 0.93 | 2.45 | 3.193 (3) | 137 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ag(C10H6N4)2]ClO4 |
Mr | 571.70 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.8804 (10), 11.3152 (14), 12.3317 (14) |
α, β, γ (°) | 104.015 (2), 92.015 (2), 101.171 (2) |
V (Å3) | 1042.8 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.14 |
Crystal size (mm) | 0.30 × 0.20 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.577, 0.755 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7304, 5075, 3882 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.092, 1.03 |
No. of reflections | 5075 |
No. of parameters | 307 |
No. of restraints | 10 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.54, −0.31 |
Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···O2i | 0.93 | 2.71 | 3.203 (2) | 114 |
C14—H14A···O2i | 0.93 | 2.54 | 3.103 (2) | 119 |
C5—H5A···O4ii | 0.93 | 2.45 | 3.193 (3) | 137 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.
References
Berghian, C., Darabantu, M., Turck, A. & Plé, N. (2005). Tetrahedron, 61, 9637–9644. Web of Science CrossRef CAS Google Scholar
Biju, A. R. & Rajasekharan, M. V. (2008). Polyhedron, 27, 2065–2068. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Manriquez, J. M., Yee, G. T., Mclean, R. S., Epstein, A. J. & Miller, J. S. (1991). Science, 252, 1415–1417. CrossRef PubMed CAS Web of Science Google Scholar
Mathieu, J., Gros, P. & Fort, Y. (2001). Tetrahedron Lett. 42, 1879–1881. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z.-J., Zhang, F. & Wan, C.-Q. (2010). Acta Cryst. E66, m1232–m1233. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, Y., Zhao, X.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 2137–2145. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cyano, carboxylate, pyridyl and triazole groups have been widely employed as organic linkers to bond with metal ions to construct subtile metal organic frameworks (MOFs) (Wang et al. 2009; Manriquez et al. 1991). Many 2,2'-bipyridine derivatives together with their various metal complexes have also been synthesized and well characterized (Berghian et al. 2005; Mathieu et al. 2001).
Herein, we present the structure of a new complex [Ag(C10H6N4)2]ClO4 derived from 5-(2-pyridyl)pyrazine-2-carbonitrile, a similar ligand to the 2,2'-bipyridine featuring a 2-cyanopyrazinyl group bonding to the 2-pyridyl carbon atom (Scheme 1). As shown in Fig. 1, the two ligands around the central AgI ion are in an anti-relationship and almost in the same plane, thus the AgI ion is surrounded by two 2-pyridyl N atoms and two 2-pyrazinyl N atoms. The Ag1—N1(pyridyl) and Ag1—N5(pyridyl) bonds are 2.184 (2) and 2.193 (2) Å, respectively. Meanwhile, the longer Ag1—N6(pyrazinyl) and Ag1—N2(pyrazinyl) distances are 2.684 (2) Å and 2.739 (3) Å, respectively. The Ag—N bond lengths are similar to those (2.196 (2)–2.685 (2) Å) in the isomorphous mononuclear structure of [Ag(C10H6N4)2]BF4 reported by us recently (Wang et al., 2010). Also, the longer Ag—N(pyrazinyl) distance is comparable to that in [Ag(dafone)2]NO3.H2O (dafone = 4,5-diazafluoren-9-one) (Biju & Rajasekharan, 2008). If the weak Ag···N contact is included, a planar N4-square coordination geometry is formed. The perchlorate anions function as linkages to link neighboring [Ag(C10H6N4)2]+ moieties arranged along the [110] direction into an infinite tape structure through C—H···O interactions (Table 1, Fig. 2). The tapes are stacked along the [110] direction and interconnect via π–π interactions. The Cg1(pyridyl)···Cg1i(pyridyl) and Cg2(pyridyl)···Cg2ii(pyridyl) distances are 3.777 (3) and 3.879 (2) Å, respectively, while that of Cg3(pyrazinyl)···Cg3iii(pyrazinyl) is 3.626 (2) Å (symmetry codes: I –x + 1, –y + 1, –z + 1; ii –x + 1, –y + 2, –z + 2; iii –x + 1, –y + 2, –z + 1. Cg1, Cg2, Cg3 represent the N1-C1-C2-C3-C4-C5, N5-C11-C12-C13-C14-C15 and N2-C6-C7-N3-C8-C9 rings, respectively). A three-dimensional supramolecular framework is formed (Fig. 3).