metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[bis­­(3,5-di­methyl-1H-pyrazol-1-yl-κN2)meth­yl]pyridine-κN}copper(II) dinitrate

aKey Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: jcliu8@nwnu.edu.cn

(Received 19 October 2011; accepted 31 October 2011; online 5 November 2011)

In the mononuclear title complex, [Cu(C16H19N5)2](NO3)2, the CuII ion is located on a twofold rotation axis and is six-coordinated by six N atoms from two 2-[bis­(3,5-dimethyl-1H-pyrazol-1-yl)meth­yl]pyridine ligands, forming a distorted octa­hedral geometry. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions.

Related literature

For background to complexes based on rigid ligands containing pyrazole, see: Zhang et al. (2009[Zhang, J., Li, A. F. & Andy Hor, T. S. (2009). Dalton Trans. pp. 9327-9333.]); Otten et al. (2009[Otten, E., Batinas, A. A., Meetsma, A. & Hessen, B. (2009). J. Am. Chem. Soc. 131, 5298-5312.]); Arroyo et al. (2000[Arroyo, N., Torre, F. G., Jalón, F. A., Manzano, B. R., Moreno-Lara, B. & Rodríguez, A. M. (2000). J. Organomet. Chem. 603, 174-184.]); Morin et al. (2011[Morin, T. J., Wanniarachchi, S., Gwengo, C., Makura, V., Tatlock, H. M., Lindeman, S. V., Bennett, B., Long, G. J., Grandjean, F. & Gardinier, J. R. (2011). Dalton Trans. 40, 8024-8034.]). For the bioinorganic chemistry of cooper complexes, see: Turski & Thiele (2009[Turski, M. L. & Thiele, D. J. (2009). J. Biol. Chem. 284, 717-721.]); Finney et al. (2009[Finney, L., Vogt, S., Fukai, T. & Glesne, D. (2009). Clin. Exp. Pharmacol. Physiol. 36, 88-94.]); Tardito & Marchiò (2009[Tardito, S. & Marchiò, L. (2009). Curr. Med. Chem. 16, 1325-1348.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H19N5)2](NO3)2

  • Mr = 750.28

  • Monoclinic, C 2/c

  • a = 24.819 (6) Å

  • b = 10.918 (3) Å

  • c = 17.592 (4) Å

  • β = 132.348 (2)°

  • V = 3523.0 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.859, Tmax = 0.899

  • 12411 measured reflections

  • 3266 independent reflections

  • 2601 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.07

  • 3266 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.39 3.245 (4) 153
C8—H8⋯O2ii 0.93 2.46 3.338 (4) 158
C15—H15c⋯O2iii 0.96 2.29 3.202 (6) 159
Symmetry codes: (i) [-x+1, y-1, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rigid ligand with pyrazole is one of the most desirable ligand to biologists and bioinorganic chemists for specific performance, such as catalysis and fluxional behaviour (Zhang et al., 2009; Otten et al., 2009; Arroyo et al., 2000), and also in electrochemistry (Morin et al. (2011)). Especially, the research field dealing with copper complexes embrace wide range of topics, such as metastasis development (Turski et al., 2009; Finney et al., 2009), anticancer activity (Tardito et al., 2009), and other aspects of bioinorganic chemistry. In the present work, we report the synthesis and the structure of the title complex [Cu(bpz*mpy)2](NO3)2.

An X-ray diffraction study performed on title complex [Cu(bpz*mpy)2](NO3)2 (Fig. 1) reveals that it crystallizes in the monoclinic system with space group C2/c. The central copper ion is six-coordinated by six nitrogen atoms from two ligands. N(1), N(1A), N(5) and N(5A) atoms form the equatorial plane with distance of Cu—N being in the range of 2.030 (2)–2.045 (2) Å, N(2) and N(2 A) atoms are in apical position with distance of Cu—N being 2.339 (2) Å [symmetry codes: (A) = 1 - x, y, 3/2 - z]. Consequently, the central copper ion coordination geometry can be described as a distorted octahedral coordination environment.

In the crystal, molecules are linked by weak intermolecular C—H···O interactions (Fig. 2).

Related literature top

For background to complexes based on rigid ligands containing pyrazole, see: Zhang et al. (2009); Otten et al. (2009); Arroyo et al. (2000); Morin et al. (2011). For the bioinorganic chemistry of cooper complexes, see: Turski et al. (2009); Finney et al. (2009); Tardito et al. (2009).

Experimental top

Cu(NO3)2.3H2O (0.1 mmol, 24.2 mg), bpz*mpy (0.2 mmol, 56.3 mg) were dissolved in MeOH. The resulting green solution was stirred for 1 h at the ambient temperature. Blue and block crystal was obtained by evaporation after one week, and washed with methol. Yield: 47 wt%.

Refinement top

The H atoms were included in calculated positions and treated as riding atoms: C–H = 0.93- 0.98 Å, with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(Cmethyl)

Structure description top

The rigid ligand with pyrazole is one of the most desirable ligand to biologists and bioinorganic chemists for specific performance, such as catalysis and fluxional behaviour (Zhang et al., 2009; Otten et al., 2009; Arroyo et al., 2000), and also in electrochemistry (Morin et al. (2011)). Especially, the research field dealing with copper complexes embrace wide range of topics, such as metastasis development (Turski et al., 2009; Finney et al., 2009), anticancer activity (Tardito et al., 2009), and other aspects of bioinorganic chemistry. In the present work, we report the synthesis and the structure of the title complex [Cu(bpz*mpy)2](NO3)2.

An X-ray diffraction study performed on title complex [Cu(bpz*mpy)2](NO3)2 (Fig. 1) reveals that it crystallizes in the monoclinic system with space group C2/c. The central copper ion is six-coordinated by six nitrogen atoms from two ligands. N(1), N(1A), N(5) and N(5A) atoms form the equatorial plane with distance of Cu—N being in the range of 2.030 (2)–2.045 (2) Å, N(2) and N(2 A) atoms are in apical position with distance of Cu—N being 2.339 (2) Å [symmetry codes: (A) = 1 - x, y, 3/2 - z]. Consequently, the central copper ion coordination geometry can be described as a distorted octahedral coordination environment.

In the crystal, molecules are linked by weak intermolecular C—H···O interactions (Fig. 2).

For background to complexes based on rigid ligands containing pyrazole, see: Zhang et al. (2009); Otten et al. (2009); Arroyo et al. (2000); Morin et al. (2011). For the bioinorganic chemistry of cooper complexes, see: Turski et al. (2009); Finney et al. (2009); Tardito et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Symmetry code: (A)= 1 - x, y, 3/2 - z.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Weak interaction among the molecules are shown as dashed lines.
Bis{2-[bis(3,5-dimethyl-1H-pyrazol-1-yl-κN2)methyl]pyridine- κN}copper(II) dinitrate top
Crystal data top
[Cu(C16H19N5)2](NO3)2F(000) = 1564
Mr = 750.28Dx = 1.415 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4634 reflections
a = 24.819 (6) Åθ = 2.2–25.8°
b = 10.918 (3) ŵ = 0.68 mm1
c = 17.592 (4) ÅT = 296 K
β = 132.348 (2)°Block, blue
V = 3523.0 (14) Å30.23 × 0.22 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3266 independent reflections
Radiation source: fine-focus sealed tube2601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3029
Tmin = 0.859, Tmax = 0.899k = 1313
12411 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0412P)2 + 5.0393P]
where P = (Fo2 + 2Fc2)/3
3266 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C16H19N5)2](NO3)2V = 3523.0 (14) Å3
Mr = 750.28Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.819 (6) ŵ = 0.68 mm1
b = 10.918 (3) ÅT = 296 K
c = 17.592 (4) Å0.23 × 0.22 × 0.16 mm
β = 132.348 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3266 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2601 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.899Rint = 0.022
12411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
3266 reflectionsΔρmin = 0.32 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.01320 (4)0.75000.03860 (15)
C10.48707 (15)0.2377 (2)0.8338 (2)0.0508 (7)
H10.53510.25020.86460.061*
C20.45590 (17)0.3194 (3)0.8536 (2)0.0595 (8)
H20.48280.38490.89800.071*
C30.38457 (16)0.3035 (3)0.8069 (2)0.0598 (8)
H30.36210.35860.81830.072*
C40.34694 (15)0.2046 (2)0.7430 (2)0.0492 (6)
H40.29850.19200.71020.059*
C50.38190 (13)0.1246 (2)0.72802 (18)0.0368 (5)
C60.34211 (13)0.0120 (2)0.66153 (19)0.0389 (5)
H60.29410.01090.64030.047*
C70.26736 (15)0.0142 (3)0.4692 (2)0.0554 (7)
C80.28709 (17)0.0194 (3)0.4136 (2)0.0611 (8)
H80.25590.01960.34230.073*
C90.36269 (16)0.0244 (2)0.4835 (2)0.0498 (7)
C100.4118 (2)0.0301 (4)0.4627 (3)0.0755 (10)
H10A0.46040.00780.52370.113*
H10B0.39470.02570.40820.113*
H10C0.41190.11190.44270.113*
C110.19391 (19)0.0068 (5)0.4360 (3)0.1009 (15)
H11A0.18590.07850.45880.151*
H11B0.15700.00180.36230.151*
H11C0.19160.06470.46550.151*
C120.35339 (18)0.1970 (3)0.7337 (2)0.0553 (7)
C130.4112 (2)0.2737 (3)0.7987 (3)0.0666 (9)
H130.41040.34870.82300.080*
C140.47163 (17)0.2200 (2)0.8223 (2)0.0540 (7)
C150.2759 (2)0.2089 (3)0.6840 (4)0.0882 (12)
H15A0.24550.21710.61100.132*
H15B0.27050.28000.71050.132*
H15C0.26170.13730.69850.132*
C160.54737 (19)0.2688 (3)0.8906 (3)0.0773 (10)
H16A0.58110.20210.91720.116*
H16B0.55800.31300.94650.116*
H16C0.55180.32280.85200.116*
N10.45132 (11)0.14066 (18)0.77218 (15)0.0392 (5)
N20.38955 (12)0.0231 (2)0.57884 (16)0.0463 (5)
N30.33024 (11)0.01645 (19)0.56902 (16)0.0416 (5)
N40.37949 (12)0.09956 (18)0.71912 (16)0.0420 (5)
N50.45224 (12)0.11305 (19)0.77316 (17)0.0448 (5)
N60.35109 (14)0.5779 (2)0.41294 (19)0.0512 (6)
O10.35080 (16)0.6715 (3)0.4505 (2)0.1132 (11)
O20.29475 (13)0.5446 (3)0.3289 (2)0.0896 (8)
O30.40686 (15)0.5216 (2)0.4542 (2)0.1047 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0389 (3)0.0372 (2)0.0438 (3)0.0000.0295 (2)0.000
C10.0402 (15)0.0482 (15)0.0480 (16)0.0088 (12)0.0232 (14)0.0131 (12)
C20.0570 (19)0.0490 (16)0.0591 (19)0.0058 (13)0.0337 (16)0.0185 (14)
C30.0576 (19)0.0546 (17)0.0637 (19)0.0056 (14)0.0394 (17)0.0134 (14)
C40.0440 (15)0.0497 (15)0.0526 (16)0.0009 (12)0.0320 (14)0.0070 (13)
C50.0368 (13)0.0370 (12)0.0341 (13)0.0017 (10)0.0229 (12)0.0016 (10)
C60.0371 (13)0.0431 (13)0.0409 (13)0.0054 (11)0.0280 (12)0.0068 (11)
C70.0431 (16)0.0669 (18)0.0400 (15)0.0112 (14)0.0215 (14)0.0093 (13)
C80.0593 (19)0.075 (2)0.0334 (14)0.0083 (16)0.0248 (15)0.0067 (14)
C90.0621 (18)0.0511 (15)0.0426 (15)0.0026 (13)0.0378 (15)0.0022 (12)
C100.085 (2)0.103 (3)0.061 (2)0.004 (2)0.059 (2)0.0016 (19)
C110.0434 (19)0.176 (5)0.057 (2)0.017 (2)0.0226 (18)0.004 (2)
C120.078 (2)0.0428 (15)0.078 (2)0.0118 (14)0.0658 (19)0.0078 (14)
C130.108 (3)0.0402 (15)0.096 (3)0.0011 (17)0.086 (2)0.0072 (16)
C140.076 (2)0.0427 (15)0.0636 (19)0.0079 (14)0.0553 (18)0.0085 (13)
C150.093 (3)0.062 (2)0.147 (4)0.0158 (19)0.096 (3)0.001 (2)
C160.088 (3)0.062 (2)0.090 (3)0.0267 (18)0.063 (2)0.0329 (18)
N10.0345 (11)0.0405 (11)0.0383 (12)0.0020 (9)0.0227 (10)0.0039 (9)
N20.0425 (12)0.0615 (14)0.0384 (12)0.0045 (10)0.0286 (11)0.0039 (10)
N30.0368 (11)0.0503 (12)0.0366 (11)0.0080 (9)0.0243 (10)0.0077 (9)
N40.0501 (13)0.0391 (11)0.0494 (13)0.0049 (9)0.0386 (12)0.0045 (9)
N50.0505 (13)0.0415 (12)0.0508 (13)0.0030 (10)0.0374 (12)0.0043 (10)
N60.0515 (15)0.0467 (13)0.0554 (15)0.0091 (11)0.0361 (14)0.0065 (11)
O10.103 (2)0.098 (2)0.116 (2)0.0088 (17)0.065 (2)0.0504 (18)
O20.0583 (15)0.0995 (19)0.0702 (16)0.0095 (14)0.0268 (14)0.0291 (14)
O30.0630 (16)0.0806 (18)0.098 (2)0.0121 (14)0.0247 (16)0.0141 (15)
Geometric parameters (Å, º) top
Cu1—N5i2.030 (2)C9—C101.491 (4)
Cu1—N52.030 (2)C10—H10A0.9600
Cu1—N12.045 (2)C10—H10B0.9600
Cu1—N1i2.045 (2)C10—H10C0.9600
Cu1—N2i2.339 (2)C11—H11A0.9600
Cu1—N22.339 (2)C11—H11B0.9600
C1—N11.337 (3)C11—H11C0.9600
C1—C21.370 (4)C12—N41.358 (3)
C1—H10.9300C12—C131.363 (4)
C2—C31.371 (4)C12—C151.488 (4)
C2—H20.9300C13—C141.388 (4)
C3—C41.374 (4)C13—H130.9300
C3—H30.9300C14—N51.334 (3)
C4—C51.376 (3)C14—C161.490 (4)
C4—H40.9300C15—H15A0.9600
C5—N11.341 (3)C15—H15B0.9600
C5—C61.516 (3)C15—H15C0.9600
C6—N31.446 (3)C16—H16A0.9600
C6—N41.451 (3)C16—H16B0.9600
C6—H60.9800C16—H16C0.9600
C7—N31.352 (3)N2—N31.363 (3)
C7—C81.359 (4)N4—N51.369 (3)
C7—C111.495 (5)N6—O31.211 (3)
C8—C91.388 (4)N6—O21.219 (3)
C8—H80.9300N6—O11.220 (3)
C9—N21.324 (3)
N5i—Cu1—N594.48 (12)C9—C10—H10C109.5
N5i—Cu1—N1179.57 (9)H10A—C10—H10C109.5
N5—Cu1—N185.63 (8)H10B—C10—H10C109.5
N5i—Cu1—N1i85.63 (8)C7—C11—H11A109.5
N5—Cu1—N1i179.57 (9)C7—C11—H11B109.5
N1—Cu1—N1i94.26 (12)H11A—C11—H11B109.5
N5i—Cu1—N2i87.32 (8)C7—C11—H11C109.5
N5—Cu1—N2i96.28 (8)H11A—C11—H11C109.5
N1—Cu1—N2i93.08 (8)H11B—C11—H11C109.5
N1i—Cu1—N2i83.31 (8)N4—C12—C13105.8 (3)
N5i—Cu1—N296.28 (8)N4—C12—C15123.3 (3)
N5—Cu1—N287.32 (8)C13—C12—C15130.8 (3)
N1—Cu1—N283.31 (8)C12—C13—C14107.9 (3)
N1i—Cu1—N293.08 (8)C12—C13—H13126.1
N2i—Cu1—N2174.72 (11)C14—C13—H13126.1
N1—C1—C2122.8 (3)N5—C14—C13109.3 (3)
N1—C1—H1118.6N5—C14—C16123.0 (3)
C2—C1—H1118.6C13—C14—C16127.7 (3)
C1—C2—C3119.2 (3)C12—C15—H15A109.5
C1—C2—H2120.4C12—C15—H15B109.5
C3—C2—H2120.4H15A—C15—H15B109.5
C2—C3—C4118.8 (3)C12—C15—H15C109.5
C2—C3—H3120.6H15A—C15—H15C109.5
C4—C3—H3120.6H15B—C15—H15C109.5
C3—C4—C5119.2 (3)C14—C16—H16A109.5
C3—C4—H4120.4C14—C16—H16B109.5
C5—C4—H4120.4H16A—C16—H16B109.5
N1—C5—C4122.4 (2)C14—C16—H16C109.5
N1—C5—C6117.9 (2)H16A—C16—H16C109.5
C4—C5—C6119.7 (2)H16B—C16—H16C109.5
N3—C6—N4111.33 (19)C1—N1—C5117.7 (2)
N3—C6—C5111.97 (19)C1—N1—Cu1122.61 (17)
N4—C6—C5111.4 (2)C5—N1—Cu1119.60 (15)
N3—C6—H6107.3C9—N2—N3105.1 (2)
N4—C6—H6107.3C9—N2—Cu1141.70 (19)
C5—C6—H6107.3N3—N2—Cu1112.94 (15)
N3—C7—C8105.9 (3)C7—N3—N2111.6 (2)
N3—C7—C11123.1 (3)C7—N3—C6130.0 (2)
C8—C7—C11131.1 (3)N2—N3—C6118.4 (2)
C7—C8—C9107.0 (3)C12—N4—N5111.0 (2)
C7—C8—H8126.5C12—N4—C6128.9 (2)
C9—C8—H8126.5N5—N4—C6119.95 (19)
N2—C9—C8110.4 (2)C14—N5—N4106.0 (2)
N2—C9—C10121.0 (3)C14—N5—Cu1136.0 (2)
C8—C9—C10128.7 (3)N4—N5—Cu1117.58 (15)
C9—C10—H10A109.5O3—N6—O2119.3 (3)
C9—C10—H10B109.5O3—N6—O1121.5 (3)
H10A—C10—H10B109.5O2—N6—O1119.1 (3)
N1—C1—C2—C31.4 (5)N5—Cu1—N2—N338.62 (17)
C1—C2—C3—C41.0 (5)N1—Cu1—N2—N347.29 (16)
C2—C3—C4—C50.2 (4)N1i—Cu1—N2—N3141.22 (17)
C3—C4—C5—N11.3 (4)C8—C7—N3—N20.0 (3)
C3—C4—C5—C6177.2 (3)C11—C7—N3—N2179.8 (3)
N1—C5—C6—N367.1 (3)C8—C7—N3—C6179.4 (2)
C4—C5—C6—N3114.3 (3)C11—C7—N3—C60.4 (5)
N1—C5—C6—N458.3 (3)C9—N2—N3—C70.2 (3)
C4—C5—C6—N4120.3 (2)Cu1—N2—N3—C7175.91 (18)
N3—C7—C8—C90.2 (3)C9—N2—N3—C6179.3 (2)
C11—C7—C8—C9179.6 (4)Cu1—N2—N3—C63.6 (3)
C7—C8—C9—N20.3 (3)N4—C6—N3—C7114.3 (3)
C7—C8—C9—C10179.5 (3)C5—C6—N3—C7120.3 (3)
N4—C12—C13—C140.1 (3)N4—C6—N3—N265.1 (3)
C15—C12—C13—C14179.6 (3)C5—C6—N3—N260.3 (3)
C12—C13—C14—N50.3 (3)C13—C12—N4—N50.1 (3)
C12—C13—C14—C16179.8 (3)C15—C12—N4—N5179.4 (3)
C2—C1—N1—C50.4 (4)C13—C12—N4—C6176.1 (2)
C2—C1—N1—Cu1176.1 (2)C15—C12—N4—C64.4 (4)
C4—C5—N1—C11.0 (4)N3—C6—N4—C12110.1 (3)
C6—C5—N1—C1177.6 (2)C5—C6—N4—C12124.1 (3)
C4—C5—N1—Cu1177.61 (19)N3—C6—N4—N574.0 (3)
C6—C5—N1—Cu11.0 (3)C5—C6—N4—N551.8 (3)
N5—Cu1—N1—C1133.1 (2)C13—C14—N5—N40.4 (3)
N1i—Cu1—N1—C146.47 (18)C16—C14—N5—N4179.8 (3)
N2i—Cu1—N1—C137.0 (2)C13—C14—N5—Cu1171.5 (2)
N2—Cu1—N1—C1139.1 (2)C16—C14—N5—Cu18.3 (5)
N5—Cu1—N1—C543.32 (18)C12—N4—N5—C140.3 (3)
N1i—Cu1—N1—C5137.1 (2)C6—N4—N5—C14176.3 (2)
N2i—Cu1—N1—C5139.39 (18)C12—N4—N5—Cu1173.37 (17)
N2—Cu1—N1—C544.48 (18)C6—N4—N5—Cu110.0 (3)
C8—C9—N2—N30.4 (3)N5i—Cu1—N5—C1440.8 (2)
C10—C9—N2—N3179.5 (3)N1—Cu1—N5—C14139.7 (3)
C8—C9—N2—Cu1173.9 (2)N2i—Cu1—N5—C1447.0 (3)
C10—C9—N2—Cu15.9 (5)N2—Cu1—N5—C14136.9 (3)
N5i—Cu1—N2—C940.4 (3)N5i—Cu1—N5—N4130.4 (2)
N5—Cu1—N2—C9134.6 (3)N1—Cu1—N5—N449.17 (17)
N1—Cu1—N2—C9139.5 (3)N2i—Cu1—N5—N4141.80 (17)
N1i—Cu1—N2—C945.6 (3)N2—Cu1—N5—N434.32 (17)
N5i—Cu1—N2—N3132.84 (17)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3ii0.932.393.245 (4)153
C8—H8···O2iii0.932.463.338 (4)158
C15—H15c···O2iv0.962.293.202 (6)159
Symmetry codes: (ii) x+1, y1, z+3/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C16H19N5)2](NO3)2
Mr750.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)24.819 (6), 10.918 (3), 17.592 (4)
β (°) 132.348 (2)
V3)3523.0 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.23 × 0.22 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.859, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
12411, 3266, 2601
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.07
No. of reflections3266
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.393.245 (4)153
C8—H8···O2ii0.932.463.338 (4)158
C15—H15c···O2iii0.962.293.202 (6)159
Symmetry codes: (i) x+1, y1, z+3/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the NSFC (No. 20871099) and the Natural Science Foundation of Gansu (No. 0710RJZA113).

References

First citationArroyo, N., Torre, F. G., Jalón, F. A., Manzano, B. R., Moreno-Lara, B. & Rodríguez, A. M. (2000). J. Organomet. Chem. 603, 174–184.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFinney, L., Vogt, S., Fukai, T. & Glesne, D. (2009). Clin. Exp. Pharmacol. Physiol. 36, 88–94.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMorin, T. J., Wanniarachchi, S., Gwengo, C., Makura, V., Tatlock, H. M., Lindeman, S. V., Bennett, B., Long, G. J., Grandjean, F. & Gardinier, J. R. (2011). Dalton Trans. 40, 8024–8034.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOtten, E., Batinas, A. A., Meetsma, A. & Hessen, B. (2009). J. Am. Chem. Soc. 131, 5298–5312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTardito, S. & Marchiò, L. (2009). Curr. Med. Chem. 16, 1325–1348.  CrossRef PubMed CAS Google Scholar
First citationTurski, M. L. & Thiele, D. J. (2009). J. Biol. Chem. 284, 717–721.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, J., Li, A. F. & Andy Hor, T. S. (2009). Dalton Trans. pp. 9327–9333.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds