organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1RS,3RS,3aRS,6aSR)-5-Benzyl-4,6-dioxo-3-phenyl­octa­hydro­pyrrolo­[3,4-c]pyrrol-1-yl]acetamide

aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, bInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation, and cDepartment of Chemistry, Middle East Technical University, Ankara 06531, Turkey
*Correspondence e-mail: kudr@org.chem.msu.ru

(Received 23 October 2011; accepted 27 October 2011; online 5 November 2011)

In the title compound, C21H21N3O3, the relative stereochemistry of the four stereogenic C atoms has been determined. The dihedral angle between the phenyl rings is 77.63 (7)°. In the crystal, ribbons spread along the a axis are formed by N—H⋯O hydrogen bonds. C—H⋯π inter­actions also occur.

Related literature

For general background to chemistry affording polycyclic pyrrolidine-based scaffolds, see: Kudryavtsev & Irkha (2005[Kudryavtsev, K. V. & Irkha, V. V. (2005). Molecules, 10, 755-761.]); Kudryavtsev (2008[Kudryavtsev, K. V. (2008). Russ. Chem. Bull. 57, 2364-2372.], 2011[Kudryavtsev, K. V. (2011). Heterocycles, 83, 323-330.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O3

  • Mr = 363.41

  • Triclinic, [P \overline 1]

  • a = 9.101 (5) Å

  • b = 9.270 (5) Å

  • c = 12.945 (5) Å

  • α = 103.73 (4)°

  • β = 92.30 (4)°

  • γ = 113.94 (4)°

  • V = 958.1 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 4399 measured reflections

  • 3561 independent reflections

  • 2309 reflections with I > 2σ(I)

  • Rint = 0.011

  • 2 standard reflections every 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.108

  • S = 1.02

  • 3561 reflections

  • 329 parameters

  • All H-atom parameters refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H32⋯O1i 0.91 (2) 2.194 (19) 3.003 (2) 147.3 (16)
N3—H31⋯O3ii 0.90 (2) 2.00 (2) 2.903 (2) 175.7 (18)
C18—H18⋯Cg1iii 0.93 (2) 2.71 3.627 166.5
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+2, -z; (iii) -x, -y+2, -z+1.

Data collection: CAD4 (Schagen et al., 1988[Schagen, J. D., Strauer, L., van Meurs, F. & Williams, G. (1988). CAD4. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD4; data reduction: XCAD4 (Harms, 1997[Harms, K. (1997). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The adjacent molecules are combined into ribbons along a-axis by hydrogen bonds between neighbouring amide groups (Fig. 2). These ribbons are linked by T-shaped C—H···π interactions between phenyl substituents. Of interest, secondary amine hydrogen atom NH does not participate in hydrogen bonding.

Related literature top

For general background [to what?], see: Kudryavtsev & Irkha (2005); Kudryavtsev (2008, 2011).

Experimental top

1.134 g (10.69 mmol) of benzaldehyde, 1.410 g (10.68 mmol) of L-asparagine and 2.000 g (10.68 mmol) of N-benzylmaleimide were stirred at 140°C in 30 ml of DMF under an inert atmosphere during 4 h. After cooling to room temperature the reaction mixture was concentrated on rotary evaporator. The residue was chromatographed on silica gel 60 (particle size 0.040–0.063 mm) using CHCl3—MeOH (40: 1) as eluent. 2-[(1RS,3RS,3aRS,6aSR)-5-Benzyl-4,6-dioxo-3- phenyloctahydropyrrolo[3,4-c]pyrrol-1-yl]acetamide. Yield 22%, colorless crystals, mp 148–149°C. 1H NMR (DMSO-d6, δ, J/Hz): 2.44 (dd, 1H, J = 15.0, 8.8); 2.58 (dd, 1H, J = 15.0, 3.5); 3.23 (dd, 1H, J = 8.8, 7.5); 3.42 (dt, 2H, J = 8.1, 3.5); 4.15 (d, 1H, J = 7.5); 4.57 (s, 2H); 6.93 (s, 1H); 7.25–7.31(m, 4H); 7.32–7.40 (m, 5H); 7.46 (br.s, 1H); 7.47–7.51 (m, 2H). Found (%): C, 69.34; H, 5.85; N, 11.78. C21H21N3O3. Calculated (%): C, 69.41; H, 5.82; N, 11.56. The crystals for X-ray analysis were obtained by slow evaporation of saturated chloroform solution at ambient tempreture.

Refinement top

All hydrogen atoms were located in a difference Fourier map and refined with isotropic thermal parameters.

Structure description top

The adjacent molecules are combined into ribbons along a-axis by hydrogen bonds between neighbouring amide groups (Fig. 2). These ribbons are linked by T-shaped C—H···π interactions between phenyl substituents. Of interest, secondary amine hydrogen atom NH does not participate in hydrogen bonding.

For general background [to what?], see: Kudryavtsev & Irkha (2005); Kudryavtsev (2008, 2011).

Computing details top

Data collection: CAD4 (Schagen et al., 1988); cell refinement: CAD4 (Schagen et al., 1988); data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen-bonded ribbons along a-axis in the structure of the title compound.
2-[(1RS,3RS,3aRS,6aSR)-5-Benzyl-4,6-dioxo-3- phenyloctahydropyrrolo[3,4-c]pyrrol-1-yl]acetamide top
Crystal data top
C21H21N3O3Z = 2
Mr = 363.41F(000) = 384
Triclinic, P1Dx = 1.260 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.101 (5) ÅCell parameters from 25 reflections
b = 9.270 (5) Åθ = 12–13°
c = 12.945 (5) ŵ = 0.09 mm1
α = 103.73 (4)°T = 293 K
β = 92.30 (4)°Block, colourless
γ = 113.94 (4)°0.50 × 0.40 × 0.30 mm
V = 958.1 (8) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.011
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.5°
Graphite monochromatorh = 1010
ω scansk = 1111
4399 measured reflectionsl = 215
3561 independent reflections2 standard reflections every 120 min
2309 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.0755P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3561 reflectionsΔρmax = 0.23 e Å3
329 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (3)
Crystal data top
C21H21N3O3γ = 113.94 (4)°
Mr = 363.41V = 958.1 (8) Å3
Triclinic, P1Z = 2
a = 9.101 (5) ÅMo Kα radiation
b = 9.270 (5) ŵ = 0.09 mm1
c = 12.945 (5) ÅT = 293 K
α = 103.73 (4)°0.50 × 0.40 × 0.30 mm
β = 92.30 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.011
4399 measured reflections2 standard reflections every 120 min
3561 independent reflections intensity decay: none
2309 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.108All H-atom parameters refined
S = 1.02Δρmax = 0.23 e Å3
3561 reflectionsΔρmin = 0.16 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24934 (15)0.58343 (15)0.22990 (10)0.0479 (3)
N20.22129 (15)0.92640 (17)0.28729 (10)0.0483 (3)
N30.32943 (19)1.0559 (2)0.00733 (12)0.0609 (4)
O10.27577 (14)0.69214 (15)0.09260 (9)0.0641 (3)
O20.16268 (15)0.53957 (17)0.38310 (11)0.0802 (4)
O30.36090 (17)0.8890 (2)0.08216 (11)0.0822 (5)
C10.15214 (17)0.83233 (18)0.36351 (11)0.0422 (3)
C20.02806 (17)0.80608 (18)0.34669 (11)0.0425 (3)
C30.15032 (18)0.6298 (2)0.32723 (12)0.0504 (4)
C40.20472 (17)0.70517 (18)0.17794 (11)0.0441 (3)
C50.05359 (16)0.84700 (18)0.24194 (11)0.0399 (3)
C60.10000 (17)0.85783 (19)0.19148 (11)0.0419 (3)
C70.13948 (19)0.9617 (2)0.11336 (14)0.0480 (4)
C80.28660 (18)0.9660 (2)0.06133 (12)0.0504 (4)
C90.3871 (2)0.4207 (2)0.18643 (16)0.0583 (4)
C100.54238 (19)0.41544 (18)0.22548 (13)0.0510 (4)
C110.6492 (2)0.4469 (2)0.16611 (15)0.0647 (5)
C120.7917 (3)0.4421 (3)0.2033 (2)0.0843 (7)
C130.8263 (3)0.4063 (3)0.2991 (2)0.0888 (7)
C140.7207 (3)0.3752 (3)0.3577 (2)0.0867 (7)
C150.5794 (3)0.3789 (2)0.32126 (16)0.0691 (5)
C160.23862 (16)0.91778 (18)0.47794 (11)0.0410 (3)
C170.34576 (19)1.0818 (2)0.50956 (13)0.0510 (4)
C180.4222 (2)1.1578 (2)0.61503 (15)0.0604 (4)
C190.3912 (2)1.0709 (3)0.69041 (14)0.0607 (5)
C200.2857 (2)0.9079 (3)0.65957 (14)0.0651 (5)
C210.2094 (2)0.8303 (2)0.55396 (13)0.0559 (4)
H10.1496 (17)0.7255 (19)0.3441 (11)0.043 (4)*
H60.0843 (17)0.7458 (19)0.1533 (11)0.045 (4)*
H720.045 (2)0.917 (2)0.0574 (14)0.060 (5)*
H50.0619 (17)0.9502 (18)0.2500 (11)0.041 (4)*
H220.0542 (19)0.874 (2)0.4050 (13)0.054 (4)*
H170.369 (2)1.143 (2)0.4586 (14)0.062 (5)*
H710.158 (2)1.071 (2)0.1478 (14)0.063 (5)*
H210.135 (2)0.718 (2)0.5356 (14)0.068 (5)*
H920.356 (2)0.339 (2)0.2133 (14)0.070 (5)*
H180.497 (2)1.268 (2)0.6354 (15)0.075 (6)*
H910.397 (2)0.400 (2)0.1100 (16)0.072 (6)*
H20.308 (2)0.920 (2)0.2746 (13)0.060 (5)*
H190.450 (2)1.126 (2)0.7648 (17)0.083 (6)*
H320.275 (2)1.114 (2)0.0222 (15)0.074 (6)*
H110.622 (2)0.479 (2)0.1011 (16)0.076 (6)*
H150.502 (3)0.348 (3)0.3604 (17)0.099 (7)*
H200.262 (2)0.843 (2)0.7129 (17)0.085 (6)*
H310.423 (3)1.069 (2)0.0340 (16)0.082 (6)*
H140.748 (3)0.347 (3)0.4305 (19)0.111 (8)*
H120.858 (3)0.462 (3)0.1610 (19)0.103 (8)*
H130.926 (3)0.398 (3)0.323 (2)0.111 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0463 (7)0.0459 (7)0.0468 (7)0.0128 (6)0.0111 (6)0.0166 (6)
N20.0359 (7)0.0718 (9)0.0450 (7)0.0238 (6)0.0155 (5)0.0272 (6)
N30.0601 (9)0.0864 (11)0.0618 (9)0.0404 (8)0.0319 (7)0.0461 (8)
O10.0597 (7)0.0739 (8)0.0508 (7)0.0174 (6)0.0008 (5)0.0249 (6)
O20.0680 (8)0.0850 (9)0.0834 (9)0.0099 (7)0.0072 (7)0.0579 (8)
O30.0839 (9)0.1354 (12)0.0919 (10)0.0783 (9)0.0596 (8)0.0819 (9)
C10.0432 (8)0.0473 (9)0.0417 (8)0.0220 (7)0.0146 (6)0.0164 (7)
C20.0403 (8)0.0511 (8)0.0374 (8)0.0194 (7)0.0138 (6)0.0138 (7)
C30.0455 (8)0.0585 (9)0.0492 (9)0.0169 (7)0.0150 (7)0.0268 (8)
C40.0425 (8)0.0514 (8)0.0413 (8)0.0204 (7)0.0123 (6)0.0166 (7)
C50.0391 (7)0.0436 (8)0.0435 (8)0.0205 (6)0.0150 (6)0.0172 (6)
C60.0415 (8)0.0505 (9)0.0424 (8)0.0240 (7)0.0171 (6)0.0191 (7)
C70.0434 (9)0.0611 (10)0.0488 (9)0.0246 (8)0.0156 (7)0.0261 (8)
C80.0497 (9)0.0702 (10)0.0435 (8)0.0296 (8)0.0173 (7)0.0288 (8)
C90.0572 (10)0.0448 (9)0.0604 (11)0.0109 (8)0.0126 (8)0.0115 (8)
C100.0520 (9)0.0370 (8)0.0525 (9)0.0090 (7)0.0098 (7)0.0101 (7)
C110.0676 (11)0.0618 (11)0.0554 (10)0.0225 (9)0.0022 (9)0.0105 (9)
C120.0716 (14)0.0691 (13)0.1083 (18)0.0337 (11)0.0010 (13)0.0137 (12)
C130.0777 (15)0.0622 (12)0.130 (2)0.0300 (11)0.0492 (15)0.0267 (13)
C140.0970 (17)0.0768 (14)0.0990 (17)0.0351 (13)0.0525 (14)0.0445 (13)
C150.0751 (12)0.0611 (11)0.0751 (13)0.0222 (9)0.0264 (10)0.0363 (10)
C160.0377 (7)0.0511 (8)0.0428 (8)0.0245 (6)0.0125 (6)0.0170 (6)
C170.0521 (9)0.0527 (9)0.0531 (9)0.0243 (8)0.0122 (7)0.0192 (8)
C180.0535 (10)0.0590 (11)0.0627 (11)0.0251 (9)0.0055 (8)0.0048 (9)
C190.0530 (10)0.0871 (14)0.0468 (9)0.0407 (10)0.0049 (8)0.0080 (9)
C200.0699 (12)0.0902 (14)0.0494 (10)0.0406 (11)0.0139 (9)0.0321 (10)
C210.0582 (10)0.0600 (11)0.0508 (9)0.0211 (9)0.0101 (8)0.0250 (8)
Geometric parameters (Å, º) top
N1—C41.379 (2)C9—C101.506 (2)
N1—C31.386 (2)C9—H921.030 (18)
N1—C91.473 (2)C9—H910.955 (19)
N2—C61.452 (2)C10—C111.377 (3)
N2—C11.4639 (19)C10—C151.381 (2)
N2—H20.832 (18)C11—C121.389 (3)
N3—C81.324 (2)C11—H110.97 (2)
N3—H320.91 (2)C12—C131.374 (4)
N3—H310.90 (2)C12—H120.90 (2)
O1—C41.2120 (18)C13—C141.361 (4)
O2—C31.2053 (19)C13—H130.95 (3)
O3—C81.2281 (19)C14—C151.378 (3)
C1—C161.511 (2)C14—H141.05 (2)
C1—C21.555 (2)C15—H151.01 (2)
C1—H10.953 (15)C16—C171.378 (2)
C2—C31.509 (2)C16—C211.386 (2)
C2—C51.525 (2)C17—C181.384 (3)
C2—H220.966 (16)C17—H170.943 (18)
C4—C51.494 (2)C18—C191.375 (3)
C5—C61.543 (2)C18—H180.93 (2)
C5—H50.972 (14)C19—C201.368 (3)
C6—C71.513 (2)C19—H190.99 (2)
C6—H60.987 (15)C20—C211.386 (3)
C7—C81.513 (2)C20—H201.00 (2)
C7—H720.978 (18)C21—H210.944 (19)
C7—H710.944 (19)
C4—N1—C3112.94 (13)O3—C8—N3122.40 (15)
C4—N1—C9123.65 (14)O3—C8—C7121.10 (13)
C3—N1—C9123.41 (14)N3—C8—C7116.50 (14)
C6—N2—C1107.05 (12)N1—C9—C10112.20 (14)
C6—N2—H2112.4 (12)N1—C9—H92106.3 (10)
C1—N2—H2109.2 (12)C10—C9—H92109.0 (10)
C8—N3—H32122.6 (12)N1—C9—H91105.6 (11)
C8—N3—H31118.2 (12)C10—C9—H91111.2 (11)
H32—N3—H31118.8 (17)H92—C9—H91112.5 (15)
N2—C1—C16113.54 (13)C11—C10—C15119.19 (18)
N2—C1—C2101.61 (11)C11—C10—C9120.46 (16)
C16—C1—C2114.38 (12)C15—C10—C9120.35 (17)
N2—C1—H1112.9 (9)C10—C11—C12119.8 (2)
C16—C1—H1108.1 (8)C10—C11—H11120.2 (12)
C2—C1—H1106.1 (9)C12—C11—H11119.9 (12)
C3—C2—C5104.30 (13)C13—C12—C11120.3 (2)
C3—C2—C1114.00 (13)C13—C12—H12123.5 (16)
C5—C2—C1106.24 (11)C11—C12—H12116.2 (16)
C3—C2—H22108.6 (9)C14—C13—C12119.9 (2)
C5—C2—H22110.1 (9)C14—C13—H13120.0 (15)
C1—C2—H22113.2 (9)C12—C13—H13120.1 (15)
O2—C3—N1123.89 (15)C13—C14—C15120.3 (2)
O2—C3—C2127.97 (15)C13—C14—H14119.8 (13)
N1—C3—C2108.13 (13)C15—C14—H14119.9 (13)
O1—C4—N1124.11 (15)C14—C15—C10120.5 (2)
O1—C4—C5127.43 (14)C14—C15—H15122.1 (12)
N1—C4—C5108.40 (13)C10—C15—H15117.3 (12)
C4—C5—C2105.30 (12)C17—C16—C21118.60 (15)
C4—C5—C6112.59 (12)C17—C16—C1121.77 (14)
C2—C5—C6103.62 (11)C21—C16—C1119.62 (14)
C4—C5—H5111.1 (8)C16—C17—C18120.74 (17)
C2—C5—H5115.4 (8)C16—C17—H17119.8 (11)
C6—C5—H5108.6 (8)C18—C17—H17119.4 (11)
N2—C6—C7113.43 (13)C19—C18—C17120.39 (18)
N2—C6—C5100.79 (11)C19—C18—H18119.3 (12)
C7—C6—C5113.69 (12)C17—C18—H18120.3 (12)
N2—C6—H6111.2 (8)C20—C19—C18119.24 (17)
C7—C6—H6108.8 (8)C20—C19—H19121.2 (12)
C5—C6—H6108.7 (8)C18—C19—H19119.5 (12)
C6—C7—C8113.10 (13)C19—C20—C21120.81 (18)
C6—C7—H72108.4 (9)C19—C20—H20120.4 (12)
C8—C7—H72109.2 (10)C21—C20—H20118.8 (12)
C6—C7—H71111.0 (10)C20—C21—C16120.22 (18)
C8—C7—H71108.4 (11)C20—C21—H21118.8 (11)
H72—C7—H71106.6 (14)C16—C21—H21121.0 (11)
C6—N2—C1—C16162.41 (12)C4—C5—C6—C790.44 (16)
C6—N2—C1—C239.10 (14)C2—C5—C6—C7156.31 (13)
N2—C1—C2—C3129.33 (13)N2—C6—C7—C867.80 (18)
C16—C1—C2—C3107.94 (15)C5—C6—C7—C8177.81 (13)
N2—C1—C2—C515.04 (14)C6—C7—C8—O30.9 (2)
C16—C1—C2—C5137.77 (13)C6—C7—C8—N3179.38 (15)
C4—N1—C3—O2176.19 (15)C4—N1—C9—C1092.44 (19)
C9—N1—C3—O23.4 (2)C3—N1—C9—C1087.97 (19)
C4—N1—C3—C22.69 (17)N1—C9—C10—C1192.8 (2)
C9—N1—C3—C2177.68 (13)N1—C9—C10—C1587.3 (2)
C5—C2—C3—O2171.11 (16)C15—C10—C11—C120.2 (3)
C1—C2—C3—O255.7 (2)C9—C10—C11—C12179.83 (16)
C5—C2—C3—N17.71 (15)C10—C11—C12—C130.1 (3)
C1—C2—C3—N1123.14 (13)C11—C12—C13—C140.1 (3)
C3—N1—C4—O1178.84 (14)C12—C13—C14—C150.2 (4)
C9—N1—C4—O11.5 (2)C13—C14—C15—C100.5 (3)
C3—N1—C4—C53.74 (16)C11—C10—C15—C140.5 (3)
C9—N1—C4—C5175.89 (13)C9—C10—C15—C14179.51 (17)
O1—C4—C5—C2174.29 (15)N2—C1—C16—C1713.95 (19)
N1—C4—C5—C28.41 (15)C2—C1—C16—C17102.06 (16)
O1—C4—C5—C673.49 (19)N2—C1—C16—C21166.52 (13)
N1—C4—C5—C6103.82 (14)C2—C1—C16—C2177.47 (17)
C3—C2—C5—C49.55 (14)C21—C16—C17—C180.2 (2)
C1—C2—C5—C4130.31 (12)C1—C16—C17—C18179.33 (13)
C3—C2—C5—C6108.87 (13)C16—C17—C18—C190.6 (2)
C1—C2—C5—C611.89 (14)C17—C18—C19—C200.9 (3)
C1—N2—C6—C7168.92 (12)C18—C19—C20—C210.4 (3)
C1—N2—C6—C547.03 (14)C19—C20—C21—C160.4 (3)
C4—C5—C6—N2147.85 (12)C17—C16—C21—C200.7 (2)
C2—C5—C6—N234.60 (14)C1—C16—C21—C20178.86 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N3—H32···O1i0.91 (2)2.194 (19)3.003 (2)147.3 (16)
N3—H31···O3ii0.90 (2)2.00 (2)2.903 (2)175.7 (18)
C18—H18···Cg1iii0.93 (2)2.713.627166.5
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z; (iii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC21H21N3O3
Mr363.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.101 (5), 9.270 (5), 12.945 (5)
α, β, γ (°)103.73 (4), 92.30 (4), 113.94 (4)
V3)958.1 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4399, 3561, 2309
Rint0.011
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.108, 1.02
No. of reflections3561
No. of parameters329
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: CAD4 (Schagen et al., 1988), XCAD4 (Harms, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N3—H32···O1i0.91 (2)2.194 (19)3.003 (2)147.3 (16)
N3—H31···O3ii0.90 (2)2.00 (2)2.903 (2)175.7 (18)
C18—H18···Cg1iii0.93 (2)2.713.627166.5
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z; (iii) x, y+2, z+1.
 

Acknowledgements

This study was partially supported by the Russian Foundation for Basic Research (project Nos. 11–03-00630 − a and 11–03-91375-ST_a) and State Contract No. 11.519.11.2032.

References

First citationHarms, K. (1997). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKudryavtsev, K. V. (2008). Russ. Chem. Bull. 57, 2364–2372.  Web of Science CrossRef CAS Google Scholar
First citationKudryavtsev, K. V. (2011). Heterocycles, 83, 323–330.  CAS Google Scholar
First citationKudryavtsev, K. V. & Irkha, V. V. (2005). Molecules, 10, 755–761.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchagen, J. D., Strauer, L., van Meurs, F. & Williams, G. (1988). CAD4. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds