organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5-[(2-Hy­dr­oxy-5-meth­­oxy­benzyl­­idene)amino]-1,3,4-thia­diazole-2(3H)-thione

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran, bX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: hkargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 3 November 2011; accepted 9 November 2011; online 16 November 2011)

In the title thione–Schiff base compound, C10H9N3O2S2, the dihedral angle between the benzene ring and the five-membered ring is 6.69 (8)°. An intra­molecular O—H⋯N hydrogen bond forms an S22(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯S inter­actions occur, generating R22(8) ring motifs. The crystal structure features a S⋯S contact [3.3776 (7) Å], which is significantly shorter than the sum of the van der Waals radii (3.7 Å). The crystal structure also features C—H⋯O and ππ inter­actions [centroid–centroid distances = 3.4636 (9)–3.808 (1) Å].

Related literature

For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the biological versatility of thione ligands see, for example: Kumar et al. (1988[Kumar, R., Giri S. & Nizamuddin (1988). J. Indian Chem. Soc. 65, 572-573.]); Yadav et al. (1989[Yadav, L. D. S., Shukla, K. N. & Singh, H. (1989). Indian J. Chem. Sect. B, 28, 78-80.]). For a related structure, see: Zhang (2003[Zhang, Y.-X. (2003). Acta Cryst. E59, o581-o582.]). For van der Waals radii, see: Bondi, (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3O2S2

  • Mr = 267.32

  • Triclinic, [P \overline 1]

  • a = 6.2266 (2) Å

  • b = 8.0680 (2) Å

  • c = 11.9695 (3) Å

  • α = 83.027 (2)°

  • β = 77.993 (1)°

  • γ = 87.898 (1)°

  • V = 583.76 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 291 K

  • 0.11 × 0.08 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.978

  • 10303 measured reflections

  • 2894 independent reflections

  • 1990 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.02

  • 2894 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 1.84 2.616 (2) 151
N3—H3⋯S2i 0.80 2.53 3.3163 (15) 169
C2—H2A⋯O1ii 0.93 2.57 3.481 (2) 167
C3—H3A⋯O2iii 0.93 2.52 3.442 (3) 172
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x, -y, -z; (iii) -x-1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compounds incorporating a thiadiazole ring have attracted much attention due to their biological activity (Kumar et al., 1988; Yadav et al., 1989). Here we report the crystal structure of a new Schiff base compound containing a thiadiazol ring system.

The asymmetric unit of the title compound, Fig. 1, comprises a thione-Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Zhang, 2003).

The dihedral angle between the benzene ring and the five-membered ring is 6.69 (8)°. An intramolecular O—H···N hydrogen bond makes S22(6) ring motif. Intermolecular N—H···S interactions link neighboring molecules into individual dimers with R22(8) ring motifs (Bernstein et al.,1995). The interesting feature of the crystal structure is a short S(1)···S(1)i [3.3776 (7)Å; (i) 1 - x,1 - y,1 - z ] contact which is significantly shorter than the sum of the Van der Waals radius of S atoms (Bondi, 1964). The crystal structure is stabilized by the intermolecular C—H···O, and π-π interactions [Cg1···Cg1iv = 3.4636 (9)Å, (iv) -1 - x, -y, 1 -z; Cg1···Cg2v = 3.5242 (10)Å, (v) 1 + x, y, z; Cg2···Cg2vi = 3.808 (1)Å, (vi) -x, 1 - y, -z Cg1 and Cg2 are centroids of S(1)/C(8)/N(2)/N(3)/C(9) and C1–C6 rings, respectively.

Related literature top

For standard values of bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the biological versatility of thione ligands see, for example: Kumar et al. (1988); Yadav et al. (1989). For a related structure, see: Zhang (2003). For van der Waals radii, see: Bondi, (1964).

Experimental top

The title compound was synthesized by adding 5-methoxy-salicylaldehyde (1 mmol) to a solution of 5-aminothiophene-2-thiol (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

All hydrogen atoms were positioned geometrically with C—H = 0.93-0.96 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was applied to the methyl group.

Structure description top

Compounds incorporating a thiadiazole ring have attracted much attention due to their biological activity (Kumar et al., 1988; Yadav et al., 1989). Here we report the crystal structure of a new Schiff base compound containing a thiadiazol ring system.

The asymmetric unit of the title compound, Fig. 1, comprises a thione-Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Zhang, 2003).

The dihedral angle between the benzene ring and the five-membered ring is 6.69 (8)°. An intramolecular O—H···N hydrogen bond makes S22(6) ring motif. Intermolecular N—H···S interactions link neighboring molecules into individual dimers with R22(8) ring motifs (Bernstein et al.,1995). The interesting feature of the crystal structure is a short S(1)···S(1)i [3.3776 (7)Å; (i) 1 - x,1 - y,1 - z ] contact which is significantly shorter than the sum of the Van der Waals radius of S atoms (Bondi, 1964). The crystal structure is stabilized by the intermolecular C—H···O, and π-π interactions [Cg1···Cg1iv = 3.4636 (9)Å, (iv) -1 - x, -y, 1 -z; Cg1···Cg2v = 3.5242 (10)Å, (v) 1 + x, y, z; Cg2···Cg2vi = 3.808 (1)Å, (vi) -x, 1 - y, -z Cg1 and Cg2 are centroids of S(1)/C(8)/N(2)/N(3)/C(9) and C1–C6 rings, respectively.

For standard values of bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the biological versatility of thione ligands see, for example: Kumar et al. (1988); Yadav et al. (1989). For a related structure, see: Zhang (2003). For van der Waals radii, see: Bondi, (1964).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title compound, showing 40% probability displacement ellipsoids. The intramolecular hydrogen bond is drawn as dashed line.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a-axis. Hydrogen bonds and S···S contacts are drawn as dashed lines.
(E)-5-[(2-Hydroxy-5-methoxybenzylidene)amino]-1,3,4-thiadiazole- 2(3H)-thione top
Crystal data top
C10H9N3O2S2Z = 2
Mr = 267.32F(000) = 276
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2266 (2) ÅCell parameters from 2525 reflections
b = 8.0680 (2) Åθ = 2.5–27.4°
c = 11.9695 (3) ŵ = 0.45 mm1
α = 83.027 (2)°T = 291 K
β = 77.993 (1)°Block, yellow
γ = 87.898 (1)°0.11 × 0.08 × 0.05 mm
V = 583.76 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2894 independent reflections
Radiation source: fine-focus sealed tube1990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 28.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 85
Tmin = 0.952, Tmax = 0.978k = 1010
10303 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0525P)2]
where P = (Fo2 + 2Fc2)/3
2894 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H9N3O2S2γ = 87.898 (1)°
Mr = 267.32V = 583.76 (3) Å3
Triclinic, P1Z = 2
a = 6.2266 (2) ÅMo Kα radiation
b = 8.0680 (2) ŵ = 0.45 mm1
c = 11.9695 (3) ÅT = 291 K
α = 83.027 (2)°0.11 × 0.08 × 0.05 mm
β = 77.993 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2894 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1990 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.978Rint = 0.030
10303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
2894 reflectionsΔρmin = 0.25 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51725 (8)0.31804 (6)0.44207 (4)0.04448 (16)
S20.89337 (8)0.25182 (7)0.56684 (5)0.05370 (18)
O10.1438 (3)0.05675 (17)0.13460 (13)0.0639 (4)
H10.22790.06460.18130.096*
O20.3796 (3)0.62067 (18)0.12072 (13)0.0651 (4)
N10.3359 (2)0.18322 (18)0.27908 (12)0.0401 (4)
N20.6290 (2)0.05119 (18)0.34526 (12)0.0409 (4)
N30.7659 (2)0.07198 (18)0.41793 (12)0.0402 (4)
H30.85760.00180.42580.048*
C10.0238 (3)0.2001 (2)0.13354 (15)0.0421 (4)
C20.1342 (3)0.2186 (2)0.06674 (16)0.0457 (5)
H2A0.15290.13470.02290.055*
C30.2630 (3)0.3596 (2)0.06470 (15)0.0449 (5)
H3A0.36910.37010.01980.054*
C40.2373 (3)0.4871 (2)0.12883 (15)0.0418 (4)
C50.0803 (3)0.4727 (2)0.19435 (14)0.0404 (4)
H50.06200.55870.23660.049*
C60.0536 (3)0.3286 (2)0.19832 (14)0.0352 (4)
C70.2144 (3)0.3154 (2)0.26892 (14)0.0385 (4)
H7A0.23200.40450.30860.046*
C80.4892 (3)0.1745 (2)0.34711 (14)0.0364 (4)
C90.7411 (3)0.2037 (2)0.47685 (15)0.0391 (4)
C100.3578 (4)0.7562 (3)0.1826 (2)0.0667 (6)
H10A0.38790.71890.26350.100*
H10B0.45990.84340.16660.100*
H10C0.21090.79790.15960.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0469 (3)0.0408 (3)0.0532 (3)0.0106 (2)0.0243 (2)0.0142 (2)
S20.0522 (3)0.0568 (3)0.0638 (3)0.0094 (2)0.0324 (3)0.0208 (3)
O10.0781 (10)0.0504 (9)0.0822 (10)0.0294 (8)0.0512 (8)0.0319 (8)
O20.0684 (10)0.0569 (9)0.0849 (11)0.0316 (7)0.0458 (8)0.0255 (8)
N10.0404 (8)0.0411 (9)0.0433 (8)0.0049 (7)0.0180 (7)0.0081 (7)
N20.0412 (8)0.0420 (9)0.0451 (8)0.0065 (7)0.0191 (7)0.0108 (7)
N30.0392 (8)0.0391 (8)0.0469 (8)0.0090 (6)0.0198 (7)0.0073 (7)
C10.0491 (11)0.0382 (10)0.0424 (10)0.0097 (8)0.0166 (8)0.0085 (8)
C20.0554 (12)0.0430 (11)0.0461 (10)0.0054 (9)0.0239 (9)0.0134 (9)
C30.0453 (10)0.0530 (12)0.0418 (10)0.0037 (9)0.0218 (8)0.0057 (9)
C40.0440 (10)0.0409 (10)0.0422 (10)0.0109 (8)0.0139 (8)0.0062 (8)
C50.0442 (10)0.0392 (10)0.0406 (9)0.0063 (8)0.0137 (8)0.0091 (8)
C60.0361 (9)0.0372 (9)0.0342 (8)0.0036 (7)0.0119 (7)0.0049 (7)
C70.0395 (10)0.0398 (10)0.0385 (9)0.0012 (8)0.0125 (8)0.0068 (8)
C80.0361 (9)0.0357 (9)0.0397 (9)0.0022 (8)0.0135 (8)0.0039 (8)
C90.0367 (9)0.0401 (10)0.0415 (9)0.0011 (8)0.0119 (8)0.0028 (8)
C100.0740 (15)0.0496 (13)0.0833 (16)0.0266 (11)0.0277 (13)0.0228 (12)
Geometric parameters (Å, º) top
S1—C91.7383 (18)C1—C61.407 (2)
S1—C81.7550 (17)C2—C31.368 (3)
S2—C91.6624 (19)C2—H2A0.9300
O1—C11.354 (2)C3—C41.389 (3)
O1—H10.8513C3—H3A0.9300
O2—C41.377 (2)C4—C51.368 (2)
O2—C101.418 (3)C5—C61.408 (2)
N1—C71.293 (2)C5—H50.9300
N1—C81.373 (2)C6—C71.432 (2)
N2—C81.297 (2)C7—H7A0.9300
N2—N31.366 (2)C10—H10A0.9600
N3—C91.332 (2)C10—H10B0.9600
N3—H30.8004C10—H10C0.9600
C1—C21.385 (3)
C9—S1—C889.57 (8)C4—C5—H5119.8
C1—O1—H1105.8C6—C5—H5119.8
C4—O2—C10117.48 (15)C1—C6—C5118.89 (16)
C7—N1—C8120.57 (15)C1—C6—C7121.70 (16)
C8—N2—N3109.05 (15)C5—C6—C7119.40 (16)
C9—N3—N2120.21 (15)N1—C7—C6121.91 (17)
C9—N3—H3121.3N1—C7—H7A119.0
N2—N3—H3118.5C6—C7—H7A119.0
O1—C1—C2118.24 (16)N2—C8—N1120.02 (16)
O1—C1—C6122.23 (17)N2—C8—S1114.13 (13)
C2—C1—C6119.53 (17)N1—C8—S1125.85 (13)
C3—C2—C1120.48 (17)N3—C9—S2127.15 (14)
C3—C2—H2A119.8N3—C9—S1107.00 (13)
C1—C2—H2A119.8S2—C9—S1125.86 (11)
C2—C3—C4120.82 (17)O2—C10—H10A109.5
C2—C3—H3A119.6O2—C10—H10B109.5
C4—C3—H3A119.6H10A—C10—H10B109.5
C5—C4—O2125.16 (16)O2—C10—H10C109.5
C5—C4—C3119.82 (17)H10A—C10—H10C109.5
O2—C4—C3115.02 (16)H10B—C10—H10C109.5
C4—C5—C6120.46 (17)
C8—N2—N3—C90.3 (2)C4—C5—C6—C7179.03 (16)
O1—C1—C2—C3178.58 (18)C8—N1—C7—C6179.75 (15)
C6—C1—C2—C30.9 (3)C1—C6—C7—N11.9 (3)
C1—C2—C3—C40.4 (3)C5—C6—C7—N1177.34 (16)
C10—O2—C4—C51.9 (3)N3—N2—C8—N1178.84 (14)
C10—O2—C4—C3178.74 (19)N3—N2—C8—S11.70 (19)
C2—C3—C4—C50.5 (3)C7—N1—C8—N2171.14 (17)
C2—C3—C4—O2178.95 (18)C7—N1—C8—S19.5 (2)
O2—C4—C5—C6178.60 (17)C9—S1—C8—N22.05 (14)
C3—C4—C5—C60.8 (3)C9—S1—C8—N1178.53 (16)
O1—C1—C6—C5178.85 (17)N2—N3—C9—S2178.78 (13)
C2—C1—C6—C50.6 (3)N2—N3—C9—S11.2 (2)
O1—C1—C6—C70.4 (3)C8—S1—C9—N31.69 (13)
C2—C1—C6—C7179.87 (17)C8—S1—C9—S2178.29 (13)
C4—C5—C6—C10.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.851.842.616 (2)151
N3—H3···S2i0.802.533.3163 (15)169
C2—H2A···O1ii0.932.573.481 (2)167
C3—H3A···O2iii0.932.523.442 (3)172
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H9N3O2S2
Mr267.32
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)6.2266 (2), 8.0680 (2), 11.9695 (3)
α, β, γ (°)83.027 (2), 77.993 (1), 87.898 (1)
V3)583.76 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.11 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.952, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
10303, 2894, 1990
Rint0.030
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.02
No. of reflections2894
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.851.842.616 (2)151
N3—H3···S2i0.802.533.3163 (15)169
C2—H2A···O1ii0.932.573.481 (2)167
C3—H3A···O2iii0.932.523.442 (3)172
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z; (iii) x1, y+1, z.
 

Acknowledgements

HK thanks PNU for financial support. RK thanks the Islamic Azad University. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKumar, R., Giri S. & Nizamuddin (1988). J. Indian Chem. Soc. 65, 572–573.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, L. D. S., Shukla, K. N. & Singh, H. (1989). Indian J. Chem. Sect. B, 28, 78–80.  Google Scholar
First citationZhang, Y.-X. (2003). Acta Cryst. E59, o581–o582.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds