organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(9,9-Dioctyl-9H-fluorene-2,7-di­yl)bis­­(4,4,5,5-tetra­methyl-1,3,2-dioxaborolane)

aDepartment of Chemistry and Biology, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: hlwork02@126.com

(Received 11 November 2011; accepted 19 November 2011; online 25 November 2011)

In the title compound, C41H64B2O4, one of the five-membered rings has an envelope conformation, while the other, which may be affected by disorder, is nearly coplanar with the fluorene ring. The dihedral angle between the fluorene and dioxaborolane rings is 2.29 (1)°. Two of the methyl groups are disordered over two orientations in 0.67 (3):0.33 (3) and 0.568 (10):0.432 (10) ratios.

Related literature

For the synthesis of the title compound, see: Pasini et al. (2003[Pasini, M., Destri, S., Porzio, W., Botta, C. & Giovanella, U. (2003). J. Mater. Chem. 13, 807-813.]). For applications of the title compound, see: Cheon et al. (2005[Cheon, C. H., Joo, S. H., Kim, K., Jin, J., Shin, H. W. & Kim, Y. R. (2005). Macromolecules, 38, 6336-6345.]); Usta et al. (2006[Usta, H., Lu, G., Facchetti, A. & Marks, T. J. (2006). J. Am. Chem. Soc. 128, 9034-9035.]); Xie et al. (2006[Xie, L., Liu, F., Tang, C., Hou, X., Hua, Y., Fan, Q. & Huang, W. (2006). Org. Lett. 8, 2787-2790.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C41H64B2O4

  • Mr = 642.54

  • Triclinic, [P \overline 1]

  • a = 12.8429 (16) Å

  • b = 13.4909 (17) Å

  • c = 14.1641 (18) Å

  • α = 110.369 (2)°

  • β = 90.183 (2)°

  • γ = 115.632 (2)°

  • V = 2039.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 296 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.917, Tmax = 0.948

  • 15861 measured reflections

  • 7119 independent reflections

  • 5313 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.189

  • S = 1.12

  • 7119 reflections

  • 476 parameters

  • 44 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT.Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organoboron compounds have broad applications in organic synthesis, chemical sensing, and catalysis. For example the C—B bond in arylboronic acids and related derivatives is an extremely versatile synthon for constructing C—C bonds in catalyzed cross-coupling reactions with aromatic halides (commonly known as the Miyaura-Suzuki cross-coupling reaction). (Cheon et al., 2005; Usta et al., 2006; Xie et al., 2006).

We herein report the crystal structure of the title compound (Fig. 1). One of the five membered rings (B1—O1—C3—C4—O2) has an envelope conformation, with maximum deviations from the plane of the fluorene ring of 0.374 (2), 0.113 (2), 0.202 (2) and 0.468 (2)Å for O1, C3, C4 and O2 respectively. The second five-membered ring (B2—O3—C38—C39—O4), which may be affected by disorder, is nearly co-planar with the fluorene ring. The dihedral angel between them is 2.29 (1) °. All bond lengths and angles are in normal ranges (Allen et al., 1987). Two sets of methyl groups (C40/C40', C41/C41') and (C42/C42', C43/C43') are disordered over two orientations in a ratio of 0.67 (3):0.33 (3) and 0.57 (1):0.43 (1) respectively. The crystal is mainly stabilized by van der Waals forces.

Related literature top

For the synthesis of the title compound, see: Pasini et al. (2003). For applications of the title compound, see: Cheon et al. (2005); Usta et al. (2006); Xie et al. (2006). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound (I) were prepared according to the reported method (Pasini et al., 2003). Crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of a CH2Cl2 and EtOH solution in a ratio of 5:2 at room temperature for one week.

Refinement top

Two sets of methyl groups (C40, C41) and (C42, C43) were found to be disordered over two orientations. The occupancies of the disordered positions (C40/C40', C41/C41') and (C42/C42', C43/C43') were refined to 0.67 (3):0.33 (3) and 0.57 (1):0.43 (1) respectively. All Hydrogen atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq (methyl C) was applied.

Structure description top

Organoboron compounds have broad applications in organic synthesis, chemical sensing, and catalysis. For example the C—B bond in arylboronic acids and related derivatives is an extremely versatile synthon for constructing C—C bonds in catalyzed cross-coupling reactions with aromatic halides (commonly known as the Miyaura-Suzuki cross-coupling reaction). (Cheon et al., 2005; Usta et al., 2006; Xie et al., 2006).

We herein report the crystal structure of the title compound (Fig. 1). One of the five membered rings (B1—O1—C3—C4—O2) has an envelope conformation, with maximum deviations from the plane of the fluorene ring of 0.374 (2), 0.113 (2), 0.202 (2) and 0.468 (2)Å for O1, C3, C4 and O2 respectively. The second five-membered ring (B2—O3—C38—C39—O4), which may be affected by disorder, is nearly co-planar with the fluorene ring. The dihedral angel between them is 2.29 (1) °. All bond lengths and angles are in normal ranges (Allen et al., 1987). Two sets of methyl groups (C40/C40', C41/C41') and (C42/C42', C43/C43') are disordered over two orientations in a ratio of 0.67 (3):0.33 (3) and 0.57 (1):0.43 (1) respectively. The crystal is mainly stabilized by van der Waals forces.

For the synthesis of the title compound, see: Pasini et al. (2003). For applications of the title compound, see: Cheon et al. (2005); Usta et al. (2006); Xie et al. (2006). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 20% probability level and H atoms are omitted for clarity.
2,2'-(9,9-Dioctyl-9H-fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2- dioxaborolane) top
Crystal data top
C41H64B2O4Z = 2
Mr = 642.54F(000) = 704
Triclinic, P1Dx = 1.046 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.8429 (16) ÅCell parameters from 5599 reflections
b = 13.4909 (17) Åθ = 2.6–30.3°
c = 14.1641 (18) ŵ = 0.06 mm1
α = 110.369 (2)°T = 296 K
β = 90.183 (2)°Block, yellow
γ = 115.632 (2)°0.16 × 0.12 × 0.10 mm
V = 2039.6 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
7119 independent reflections
Radiation source: fine-focus sealed tube5313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1515
Tmin = 0.917, Tmax = 0.948k = 1616
15861 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1065P)2 + 0.2655P]
where P = (Fo2 + 2Fc2)/3
7119 reflections(Δ/σ)max < 0.001
476 parametersΔρmax = 0.42 e Å3
44 restraintsΔρmin = 0.39 e Å3
Crystal data top
C41H64B2O4γ = 115.632 (2)°
Mr = 642.54V = 2039.6 (4) Å3
Triclinic, P1Z = 2
a = 12.8429 (16) ÅMo Kα radiation
b = 13.4909 (17) ŵ = 0.06 mm1
c = 14.1641 (18) ÅT = 296 K
α = 110.369 (2)°0.16 × 0.12 × 0.10 mm
β = 90.183 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7119 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
5313 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.948Rint = 0.023
15861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05944 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.12Δρmax = 0.42 e Å3
7119 reflectionsΔρmin = 0.39 e Å3
476 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.3735 (2)0.3651 (3)0.3764 (3)0.0806 (8)
H1A1.34870.36930.31450.121*
H1B1.43350.34000.36650.121*
H1C1.40410.44230.43110.121*
C21.3038 (3)0.2702 (3)0.5025 (2)0.0933 (10)
H2A1.34720.34980.55320.140*
H2B1.35190.23060.49180.140*
H2C1.23470.22710.52560.140*
C31.2687 (2)0.2753 (2)0.40342 (18)0.0563 (6)
C41.2019 (2)0.15304 (19)0.31209 (18)0.0541 (5)
C51.2783 (3)0.1184 (3)0.2395 (2)0.0851 (9)
H5A1.22990.04460.18330.128*
H5B1.33470.10890.27540.128*
H5C1.31860.17970.21400.128*
C61.1277 (3)0.0521 (3)0.3440 (3)0.0920 (10)
H6A1.08160.07600.39140.138*
H6B1.17780.03250.37630.138*
H6C1.07660.01640.28480.138*
B11.10573 (19)0.26359 (19)0.32660 (17)0.0416 (5)
C81.01169 (16)0.29926 (17)0.30368 (14)0.0387 (4)
C91.01592 (17)0.40754 (17)0.36800 (14)0.0421 (5)
H91.07770.45900.42320.051*
C100.93147 (17)0.43989 (16)0.35192 (14)0.0410 (4)
H100.93640.51220.39550.049*
C110.83889 (15)0.36303 (15)0.26974 (13)0.0335 (4)
C120.83306 (15)0.25488 (15)0.20272 (13)0.0339 (4)
C130.91887 (16)0.22385 (16)0.21998 (14)0.0379 (4)
H130.91480.15230.17560.045*
C140.73640 (15)0.37181 (16)0.23552 (13)0.0348 (4)
C150.66891 (15)0.26943 (15)0.14792 (13)0.0349 (4)
C160.56717 (16)0.25641 (17)0.09998 (14)0.0395 (4)
H160.52230.18830.04200.047*
C170.53113 (17)0.34486 (18)0.13794 (15)0.0425 (5)
C180.60018 (18)0.44592 (18)0.22592 (16)0.0457 (5)
H180.57680.50500.25200.055*
C190.70171 (17)0.46038 (17)0.27493 (15)0.0417 (4)
H190.74620.52810.33330.050*
C200.72435 (15)0.18565 (15)0.11903 (13)0.0357 (4)
C210.75758 (17)0.16625 (17)0.01160 (14)0.0417 (4)
H21A0.80130.12110.00130.050*
H21B0.68560.11730.03890.050*
C220.82896 (19)0.27659 (18)0.00990 (15)0.0484 (5)
H22A0.89830.32980.04320.058*
H22B0.78270.31800.00790.058*
C230.8663 (2)0.24673 (19)0.11365 (16)0.0519 (5)
H23A0.91090.20380.11530.062*
H23B0.79630.19340.16600.062*
C240.9392 (2)0.3522 (2)0.14084 (19)0.0623 (6)
H24A1.00370.41090.08440.075*
H24B0.89100.38860.14920.075*
C250.9891 (2)0.3205 (2)0.23854 (19)0.0661 (7)
H25A1.04660.39380.24300.079*
H25B1.02990.27620.23290.079*
C260.9001 (2)0.2484 (2)0.33613 (19)0.0630 (6)
H26A0.86650.29670.34640.076*
H26B0.83720.18010.32840.076*
C270.9479 (3)0.2039 (3)0.4314 (2)0.0736 (7)
H27A1.00970.27220.44020.088*
H27B0.98290.15680.42080.088*
C280.8573 (3)0.1300 (4)0.5278 (2)0.1048 (11)
H28A0.79460.06340.51920.157*
H28B0.89260.10150.58370.157*
H28C0.82680.17790.54210.157*
C290.64286 (17)0.06309 (16)0.12104 (15)0.0434 (5)
H29A0.57240.02630.07020.052*
H29B0.68190.01350.10000.052*
C300.6060 (2)0.0617 (2)0.22205 (18)0.0579 (6)
H30A0.56110.10550.24150.069*
H30B0.67550.10150.27460.069*
C310.5322 (2)0.0648 (2)0.21612 (19)0.0660 (7)
H31A0.45930.10090.16850.079*
H31B0.57380.11050.18830.079*
C320.5034 (3)0.0744 (2)0.3151 (2)0.0753 (8)
H32A0.45440.03610.33930.090*
H32B0.57570.03110.36500.090*
C330.4407 (3)0.2015 (2)0.3100 (2)0.0767 (8)
H33A0.36590.24360.26370.092*
H33B0.48720.24160.28190.092*
C340.4194 (2)0.2087 (2)0.4121 (2)0.0715 (7)
H34A0.37100.17030.43910.086*
H34B0.49410.16400.45880.086*
C350.3606 (3)0.3333 (2)0.4101 (2)0.0738 (7)
H35A0.28630.37860.36260.089*
H35B0.40960.37130.38470.089*
C360.3384 (3)0.3377 (3)0.5127 (2)0.0866 (9)
H36A0.41120.29120.56070.130*
H36B0.30480.41890.50700.130*
H36C0.28500.30580.53610.130*
B20.4188 (2)0.3322 (2)0.08212 (19)0.0488 (6)
C380.2767 (2)0.3777 (2)0.0435 (2)0.0611 (6)
C390.2543 (2)0.2548 (3)0.0344 (2)0.0851 (9)
C400.1778 (6)0.3834 (9)0.0988 (9)0.093 (3)0.67 (3)
H40A0.16230.33710.14020.139*0.67 (3)
H40B0.10840.35200.04960.139*0.67 (3)
H40C0.19970.46480.14180.139*0.67 (3)
C410.3233 (13)0.4701 (11)0.0030 (10)0.127 (4)0.67 (3)
H41A0.35150.54820.04990.191*0.67 (3)
H41B0.26150.45620.05190.191*0.67 (3)
H41C0.38650.46470.03670.191*0.67 (3)
C420.1504 (5)0.1564 (5)0.0060 (6)0.103 (2)0.568 (10)
H42A0.14270.07900.04610.154*0.568 (10)
H42B0.07820.15820.02010.154*0.568 (10)
H42C0.16770.17290.06550.154*0.568 (10)
C430.2241 (8)0.2131 (9)0.1497 (3)0.118 (3)0.568 (10)
H43A0.28930.26100.17380.177*0.568 (10)
H43B0.15630.22080.16680.177*0.568 (10)
H43C0.20760.13110.18160.177*0.568 (10)
C40'0.1934 (17)0.362 (2)0.1209 (16)0.141 (10)0.33 (3)
H40D0.18660.29780.13890.211*0.33 (3)
H40E0.11740.34540.09090.211*0.33 (3)
H40F0.22420.43470.18130.211*0.33 (3)
C41'0.2797 (18)0.4763 (12)0.0103 (13)0.072 (4)0.33 (3)
H41D0.28700.54290.06950.108*0.33 (3)
H41E0.20840.44570.03620.108*0.33 (3)
H41F0.34560.50170.02310.108*0.33 (3)
C42'0.1352 (6)0.1440 (7)0.0788 (11)0.140 (5)0.432 (10)
H42D0.14110.08800.14000.210*0.432 (10)
H42E0.07780.16620.09480.210*0.432 (10)
H42F0.11190.10810.02960.210*0.432 (10)
C43'0.2997 (9)0.2856 (9)0.1295 (6)0.102 (3)0.432 (10)
H43D0.37160.35900.10610.153*0.432 (10)
H43E0.24160.29380.16450.153*0.432 (10)
H43F0.31330.22250.17550.153*0.432 (10)
O11.18195 (12)0.31982 (13)0.41729 (11)0.0534 (4)
O21.12008 (13)0.17226 (13)0.25826 (11)0.0565 (4)
O30.37970 (16)0.41406 (17)0.11369 (14)0.0825 (6)
O40.35039 (15)0.23804 (16)0.00401 (14)0.0759 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0436 (14)0.0717 (17)0.116 (2)0.0235 (13)0.0014 (14)0.0286 (16)
C20.107 (2)0.138 (3)0.0654 (18)0.092 (2)0.0010 (16)0.0268 (17)
C30.0499 (13)0.0632 (14)0.0600 (14)0.0372 (11)0.0022 (10)0.0145 (11)
C40.0532 (13)0.0539 (12)0.0622 (14)0.0331 (11)0.0056 (10)0.0195 (10)
C50.091 (2)0.090 (2)0.084 (2)0.0639 (18)0.0190 (16)0.0163 (16)
C60.092 (2)0.0718 (18)0.128 (3)0.0404 (17)0.021 (2)0.0540 (19)
B10.0374 (12)0.0436 (12)0.0424 (12)0.0184 (10)0.0037 (9)0.0155 (10)
C80.0338 (10)0.0447 (10)0.0380 (10)0.0168 (8)0.0040 (8)0.0181 (8)
C90.0368 (10)0.0445 (10)0.0344 (10)0.0140 (8)0.0052 (8)0.0099 (8)
C100.0433 (11)0.0381 (10)0.0355 (10)0.0187 (9)0.0009 (8)0.0078 (8)
C110.0328 (9)0.0358 (9)0.0310 (9)0.0147 (8)0.0046 (7)0.0136 (7)
C120.0320 (9)0.0358 (9)0.0309 (9)0.0141 (8)0.0020 (7)0.0116 (7)
C130.0374 (10)0.0373 (9)0.0380 (10)0.0188 (8)0.0038 (8)0.0116 (8)
C140.0349 (10)0.0385 (9)0.0340 (9)0.0180 (8)0.0074 (7)0.0161 (8)
C150.0329 (9)0.0374 (9)0.0360 (10)0.0164 (8)0.0048 (7)0.0155 (8)
C160.0339 (10)0.0426 (10)0.0380 (10)0.0164 (8)0.0000 (8)0.0130 (8)
C170.0390 (10)0.0513 (11)0.0453 (11)0.0253 (9)0.0095 (9)0.0221 (9)
C180.0466 (11)0.0503 (11)0.0500 (12)0.0313 (10)0.0127 (9)0.0187 (9)
C190.0435 (11)0.0400 (10)0.0393 (10)0.0219 (9)0.0056 (8)0.0098 (8)
C200.0341 (10)0.0360 (9)0.0338 (9)0.0170 (8)0.0020 (7)0.0091 (7)
C210.0447 (11)0.0439 (10)0.0316 (10)0.0230 (9)0.0018 (8)0.0061 (8)
C220.0527 (12)0.0509 (11)0.0431 (11)0.0268 (10)0.0098 (9)0.0161 (9)
C230.0562 (13)0.0553 (12)0.0463 (12)0.0272 (11)0.0125 (10)0.0202 (10)
C240.0646 (15)0.0573 (13)0.0606 (14)0.0241 (12)0.0139 (12)0.0234 (11)
C250.0584 (15)0.0766 (16)0.0697 (16)0.0271 (13)0.0222 (12)0.0407 (13)
C260.0633 (15)0.0770 (16)0.0669 (15)0.0385 (13)0.0224 (12)0.0398 (13)
C270.0791 (18)0.0840 (18)0.0736 (17)0.0409 (15)0.0347 (15)0.0437 (15)
C280.110 (3)0.140 (3)0.069 (2)0.063 (2)0.0244 (19)0.040 (2)
C290.0393 (11)0.0372 (10)0.0450 (11)0.0138 (8)0.0050 (8)0.0115 (8)
C300.0544 (13)0.0518 (12)0.0603 (14)0.0151 (11)0.0057 (11)0.0262 (11)
C310.0634 (15)0.0588 (14)0.0667 (16)0.0162 (12)0.0050 (12)0.0300 (12)
C320.0764 (18)0.0681 (16)0.0673 (16)0.0176 (14)0.0081 (13)0.0311 (13)
C330.0750 (18)0.0675 (16)0.0829 (19)0.0230 (14)0.0168 (15)0.0367 (14)
C340.0692 (17)0.0677 (15)0.0754 (17)0.0263 (13)0.0072 (13)0.0324 (13)
C350.0725 (17)0.0656 (16)0.0860 (19)0.0290 (14)0.0127 (14)0.0359 (14)
C360.087 (2)0.096 (2)0.085 (2)0.0403 (17)0.0201 (16)0.0460 (17)
B20.0443 (13)0.0602 (14)0.0517 (14)0.0297 (12)0.0098 (11)0.0253 (12)
C380.0472 (13)0.0878 (17)0.0750 (16)0.0436 (13)0.0127 (11)0.0449 (14)
C390.0682 (17)0.108 (2)0.0802 (18)0.0588 (16)0.0179 (13)0.0149 (15)
C400.075 (4)0.129 (6)0.094 (5)0.064 (4)0.032 (3)0.043 (4)
C410.097 (7)0.164 (8)0.174 (8)0.059 (6)0.037 (6)0.126 (7)
C420.080 (4)0.091 (4)0.114 (5)0.032 (3)0.003 (3)0.023 (3)
C430.110 (5)0.144 (5)0.096 (4)0.073 (4)0.013 (3)0.024 (3)
C40'0.101 (11)0.29 (3)0.166 (17)0.136 (16)0.081 (12)0.18 (2)
C41'0.064 (8)0.085 (7)0.095 (8)0.044 (6)0.022 (6)0.053 (6)
C42'0.127 (6)0.144 (6)0.148 (7)0.072 (5)0.012 (4)0.043 (4)
C43'0.111 (5)0.110 (5)0.087 (5)0.069 (4)0.008 (3)0.017 (3)
O10.0498 (8)0.0613 (9)0.0492 (9)0.0370 (7)0.0065 (7)0.0071 (7)
O20.0565 (9)0.0565 (9)0.0517 (9)0.0333 (8)0.0054 (7)0.0066 (7)
O30.0767 (12)0.0906 (13)0.0821 (13)0.0640 (11)0.0161 (9)0.0031 (10)
O40.0681 (11)0.0818 (12)0.0751 (12)0.0503 (10)0.0183 (9)0.0075 (9)
Geometric parameters (Å, º) top
C1—C31.530 (4)C27—H27B0.9700
C1—H1A0.9600C28—H28A0.9600
C1—H1B0.9600C28—H28B0.9600
C1—H1C0.9600C28—H28C0.9600
C2—C31.505 (4)C29—C301.512 (3)
C2—H2A0.9600C29—H29A0.9700
C2—H2B0.9600C29—H29B0.9700
C2—H2C0.9600C30—C311.522 (3)
C3—O11.462 (2)C30—H30A0.9700
C3—C41.554 (3)C30—H30B0.9700
C4—O21.456 (2)C31—C321.485 (4)
C4—C61.509 (4)C31—H31A0.9700
C4—C51.519 (4)C31—H31B0.9700
C5—H5A0.9600C32—C331.520 (4)
C5—H5B0.9600C32—H32A0.9700
C5—H5C0.9600C32—H32B0.9700
C6—H6A0.9600C33—C341.501 (4)
C6—H6B0.9600C33—H33A0.9700
C6—H6C0.9600C33—H33B0.9700
B1—O11.362 (3)C34—C351.505 (4)
B1—O21.362 (3)C34—H34A0.9700
B1—C81.551 (3)C34—H34B0.9700
C8—C131.401 (3)C35—C361.498 (4)
C8—C91.404 (3)C35—H35A0.9700
C9—C101.377 (3)C35—H35B0.9700
C9—H90.9300C36—H36A0.9600
C10—C111.388 (3)C36—H36B0.9600
C10—H100.9300C36—H36C0.9600
C11—C121.406 (2)B2—O31.345 (3)
C11—C141.467 (2)B2—O41.350 (3)
C12—C131.385 (2)C38—O31.438 (3)
C12—C201.522 (2)C38—C411.509 (6)
C13—H130.9300C38—C401.511 (5)
C14—C191.391 (3)C38—C391.536 (4)
C14—C151.401 (2)C38—C40'1.537 (9)
C15—C161.383 (2)C38—C41'1.545 (8)
C15—C201.526 (2)C39—O41.438 (3)
C16—C171.400 (3)C39—C431.518 (4)
C16—H160.9300C39—C42'1.527 (4)
C17—C181.401 (3)C39—C43'1.585 (4)
C17—B21.556 (3)C39—C421.596 (4)
C18—C191.378 (3)C40—H40A0.9600
C18—H180.9300C40—H40B0.9600
C19—H190.9300C40—H40C0.9600
C20—C291.538 (3)C41—H41A0.9600
C20—C211.546 (3)C41—H41B0.9600
C21—C221.512 (3)C41—H41C0.9600
C21—H21A0.9700C42—H42A0.9600
C21—H21B0.9700C42—H42B0.9600
C22—C231.521 (3)C42—H42C0.9600
C22—H22A0.9700C43—H43A0.9600
C22—H22B0.9700C43—H43B0.9600
C23—C241.510 (3)C43—H43C0.9600
C23—H23A0.9700C40'—H40D0.9600
C23—H23B0.9700C40'—H40E0.9600
C24—C251.530 (3)C40'—H40F0.9600
C24—H24A0.9700C41'—H41D0.9600
C24—H24B0.9700C41'—H41E0.9600
C25—C261.501 (4)C41'—H41F0.9600
C25—H25A0.9700C42'—H42D0.9600
C25—H25B0.9700C42'—H42E0.9600
C26—C271.522 (3)C42'—H42F0.9600
C26—H26A0.9700C43'—H43D0.9600
C26—H26B0.9700C43'—H43E0.9600
C27—C281.500 (4)C43'—H43F0.9600
C27—H27A0.9700
C3—C1—H1A109.5H28A—C28—H28B109.5
C3—C1—H1B109.5C27—C28—H28C109.5
H1A—C1—H1B109.5H28A—C28—H28C109.5
C3—C1—H1C109.5H28B—C28—H28C109.5
H1A—C1—H1C109.5C30—C29—C20116.80 (16)
H1B—C1—H1C109.5C30—C29—H29A108.1
C3—C2—H2A109.5C20—C29—H29A108.1
C3—C2—H2B109.5C30—C29—H29B108.1
H2A—C2—H2B109.5C20—C29—H29B108.1
C3—C2—H2C109.5H29A—C29—H29B107.3
H2A—C2—H2C109.5C29—C30—C31111.86 (19)
H2B—C2—H2C109.5C29—C30—H30A109.2
O1—C3—C2108.58 (19)C31—C30—H30A109.2
O1—C3—C1106.07 (19)C29—C30—H30B109.2
C2—C3—C1110.8 (2)C31—C30—H30B109.2
O1—C3—C4102.25 (16)H30A—C30—H30B107.9
C2—C3—C4115.6 (2)C32—C31—C30115.2 (2)
C1—C3—C4112.7 (2)C32—C31—H31A108.5
O2—C4—C6106.18 (19)C30—C31—H31A108.5
O2—C4—C5109.11 (19)C32—C31—H31B108.5
C6—C4—C5110.3 (2)C30—C31—H31B108.5
O2—C4—C3102.21 (15)H31A—C31—H31B107.5
C6—C4—C3113.6 (2)C31—C32—C33114.5 (2)
C5—C4—C3114.7 (2)C31—C32—H32A108.6
C4—C5—H5A109.5C33—C32—H32A108.6
C4—C5—H5B109.5C31—C32—H32B108.6
H5A—C5—H5B109.5C33—C32—H32B108.6
C4—C5—H5C109.5H32A—C32—H32B107.6
H5A—C5—H5C109.5C34—C33—C32113.5 (2)
H5B—C5—H5C109.5C34—C33—H33A108.9
C4—C6—H6A109.5C32—C33—H33A108.9
C4—C6—H6B109.5C34—C33—H33B108.9
H6A—C6—H6B109.5C32—C33—H33B108.9
C4—C6—H6C109.5H33A—C33—H33B107.7
H6A—C6—H6C109.5C33—C34—C35114.8 (2)
H6B—C6—H6C109.5C33—C34—H34A108.6
O1—B1—O2113.09 (17)C35—C34—H34A108.6
O1—B1—C8123.48 (18)C33—C34—H34B108.6
O2—B1—C8123.43 (18)C35—C34—H34B108.6
C13—C8—C9118.03 (17)H34A—C34—H34B107.5
C13—C8—B1121.32 (17)C36—C35—C34113.5 (2)
C9—C8—B1120.64 (17)C36—C35—H35A108.9
C10—C9—C8122.08 (17)C34—C35—H35A108.9
C10—C9—H9119.0C36—C35—H35B108.9
C8—C9—H9119.0C34—C35—H35B108.9
C9—C10—C11119.10 (17)H35A—C35—H35B107.7
C9—C10—H10120.4C35—C36—H36A109.5
C11—C10—H10120.4C35—C36—H36B109.5
C10—C11—C12120.32 (16)H36A—C36—H36B109.5
C10—C11—C14131.25 (16)C35—C36—H36C109.5
C12—C11—C14108.43 (15)H36A—C36—H36C109.5
C13—C12—C11119.79 (16)H36B—C36—H36C109.5
C13—C12—C20129.21 (16)O3—B2—O4112.59 (19)
C11—C12—C20110.98 (15)O3—B2—C17123.8 (2)
C12—C13—C8120.66 (17)O4—B2—C17123.6 (2)
C12—C13—H13119.7O3—C38—C41100.9 (6)
C8—C13—H13119.7O3—C38—C40111.6 (6)
C19—C14—C15120.54 (17)C41—C38—C40111.6 (5)
C19—C14—C11131.07 (17)O3—C38—C39103.50 (17)
C15—C14—C11108.39 (15)C41—C38—C39110.9 (7)
C16—C15—C14119.77 (17)C40—C38—C39116.9 (4)
C16—C15—C20129.12 (16)O3—C38—C40'95.2 (9)
C14—C15—C20111.11 (15)C41—C38—C40'130.8 (8)
C15—C16—C17120.61 (18)C40—C38—C40'21.6 (6)
C15—C16—H16119.7C39—C38—C40'109.9 (10)
C17—C16—H16119.7O3—C38—C41'114.2 (7)
C16—C17—C18118.28 (17)C41—C38—C41'23.4 (4)
C16—C17—B2120.65 (18)C40—C38—C41'88.4 (5)
C18—C17—B2121.05 (18)C39—C38—C41'122.2 (7)
C19—C18—C17121.97 (18)C40'—C38—C41'108.5 (7)
C19—C18—H18119.0O4—C39—C43112.3 (3)
C17—C18—H18119.0O4—C39—C42'116.9 (5)
C18—C19—C14118.83 (18)C43—C39—C42'68.3 (5)
C18—C19—H19120.6O4—C39—C38104.88 (19)
C14—C19—H19120.6C43—C39—C38125.0 (4)
C12—C20—C15101.09 (13)C42'—C39—C38126.3 (5)
C12—C20—C29111.91 (14)O4—C39—C43'97.1 (4)
C15—C20—C29112.12 (15)C43—C39—C43'36.8 (4)
C12—C20—C21111.41 (14)C42'—C39—C43'105.0 (5)
C15—C20—C21111.89 (14)C38—C39—C43'101.5 (4)
C29—C20—C21108.36 (14)O4—C39—C4299.1 (3)
C22—C21—C20116.96 (15)C43—C39—C42104.9 (4)
C22—C21—H21A108.1C42'—C39—C4236.9 (4)
C20—C21—H21A108.1C38—C39—C42107.5 (3)
C22—C21—H21B108.1C43'—C39—C42141.6 (4)
C20—C21—H21B108.1C38—C40—H40A109.5
H21A—C21—H21B107.3C38—C40—H40B109.5
C21—C22—C23112.03 (17)C38—C40—H40C109.5
C21—C22—H22A109.2C38—C41—H41A109.5
C23—C22—H22A109.2C38—C41—H41B109.5
C21—C22—H22B109.2C38—C41—H41C109.5
C23—C22—H22B109.2C39—C42—H42A109.5
H22A—C22—H22B107.9C39—C42—H42B109.5
C24—C23—C22115.48 (18)C39—C42—H42C109.5
C24—C23—H23A108.4C39—C43—H43A109.5
C22—C23—H23A108.4C39—C43—H43B109.5
C24—C23—H23B108.4C39—C43—H43C109.5
C22—C23—H23B108.4C38—C40'—H40D109.5
H23A—C23—H23B107.5C38—C40'—H40E109.5
C23—C24—C25113.9 (2)H40D—C40'—H40E109.5
C23—C24—H24A108.8C38—C40'—H40F109.5
C25—C24—H24A108.8H40D—C40'—H40F109.5
C23—C24—H24B108.8H40E—C40'—H40F109.5
C25—C24—H24B108.8C38—C41'—H41D109.5
H24A—C24—H24B107.7C38—C41'—H41E109.5
C26—C25—C24115.2 (2)H41D—C41'—H41E109.5
C26—C25—H25A108.5C38—C41'—H41F109.5
C24—C25—H25A108.5H41D—C41'—H41F109.5
C26—C25—H25B108.5H41E—C41'—H41F109.5
C24—C25—H25B108.5C39—C42'—H42D109.5
H25A—C25—H25B107.5C39—C42'—H42E109.5
C25—C26—C27114.9 (2)H42D—C42'—H42E109.5
C25—C26—H26A108.6C39—C42'—H42F109.5
C27—C26—H26A108.6H42D—C42'—H42F109.5
C25—C26—H26B108.6H42E—C42'—H42F109.5
C27—C26—H26B108.6C39—C43'—H43D109.5
H26A—C26—H26B107.5C39—C43'—H43E109.5
C28—C27—C26114.1 (2)H43D—C43'—H43E109.5
C28—C27—H27A108.7C39—C43'—H43F109.5
C26—C27—H27A108.7H43D—C43'—H43F109.5
C28—C27—H27B108.7H43E—C43'—H43F109.5
C26—C27—H27B108.7B1—O1—C3107.17 (16)
H27A—C27—H27B107.6B1—O2—C4107.55 (16)
C27—C28—H28A109.5B2—O3—C38109.98 (19)
C27—C28—H28B109.5B2—O4—C39108.92 (19)

Experimental details

Crystal data
Chemical formulaC41H64B2O4
Mr642.54
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)12.8429 (16), 13.4909 (17), 14.1641 (18)
α, β, γ (°)110.369 (2), 90.183 (2), 115.632 (2)
V3)2039.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.917, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
15861, 7119, 5313
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.189, 1.12
No. of reflections7119
No. of parameters476
No. of restraints44
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.39

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author is grateful to Xiangfan University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1999). SAINT.Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheon, C. H., Joo, S. H., Kim, K., Jin, J., Shin, H. W. & Kim, Y. R. (2005). Macromolecules, 38, 6336–6345.  Web of Science CrossRef CAS Google Scholar
First citationPasini, M., Destri, S., Porzio, W., Botta, C. & Giovanella, U. (2003). J. Mater. Chem. 13, 807–813.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsta, H., Lu, G., Facchetti, A. & Marks, T. J. (2006). J. Am. Chem. Soc. 128, 9034–9035.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXie, L., Liu, F., Tang, C., Hou, X., Hua, Y., Fan, Q. & Huang, W. (2006). Org. Lett. 8, 2787–2790.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds