metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chloridobis[diphen­yl(4-vinyl­phen­yl)phosphane-κP]palladium(II)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 20 September 2011; accepted 26 October 2011; online 5 November 2011)

In the title compound, [PdCl2(C20H17P)2], the PdII atom lies on a center of symmetry, resulting in a distorted trans-square-planar geometry. The Pd—P and Pd—Cl bond lengths are 2.3366 (7) and 2.2966 (7) Å, respectively. The vinyl group is disordered over two sets of sites in a 0.696 (15):0.304 (15) ratio.

Related literature

For a review on related compounds, see: Spessard & Miessler (1996[Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131-135. Upper Saddle River, New Jersey, USA: Prentice Hall.]). For the synthesis of the starting materials, see: Drew & Doyle (1990[Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346-349.]). For similar R-P2PdCl2 compounds, see: Ogutu & Meijboom (2011[Ogutu, H. & Meijboom, R. (2011). Acta Cryst. E67, m1662.]); Muller & Meijboom (2010a[Muller, A. & Meijboom, R. (2010a). Acta Cryst. E66, m1420.],b[Muller, A. & Meijboom, R. (2010b). Acta Cryst. E66, m1463.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C20H17P)2]

  • Mr = 753.91

  • Triclinic, [P \overline 1]

  • a = 9.9495 (3) Å

  • b = 9.9512 (3) Å

  • c = 10.4387 (4) Å

  • α = 67.683 (2)°

  • β = 86.366 (2)°

  • γ = 61.979 (2)°

  • V = 835.62 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 100 K

  • 0.24 × 0.18 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.837, Tmax = 0.955

  • 5829 measured reflections

  • 2723 independent reflections

  • 2682 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.105

  • S = 1.07

  • 2723 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 1.66 e Å−3

  • Δρmin = −0.75 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound, were obtained.

[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2{P(4—H2C=CHC6H4)Ph2}2], crystallizes in the triclinic spacegroup P1, with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 85.83 (4)° and P—Pd—Cli = 94.17 (4)°. As required by the crystallographic symmetry, the P—Pd—Pi and Cl—Pd—Cli angles are 180°. No weak intermolecular interactions were observed.

The title compound compares well with other closely related PdII complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry (Muller & Meijboom, 2010a; 2010b). The title compound, having a Pd—Cl bond length of 2.2969 (14) Å and a Pd—P bond length of 2.3367 (12) Å, fits well into the typical range for complexes of this kind. Notably the title compound did not crystallize as a solvated complex; these type of PdII complexes have a tendency to crystallize as solvates (Meijboom & Omondi, 2011).

Large thermal vibrations on the periphery of the molecule results in a poorly defined C=C bond length. Disordered modelling resulted in an unstable refinement.

Related literature top

For a review on related compounds see: Spessard & Miessler (1996). For the synthesis of the starting materials, see: Drew & Doyle (1990). For pseudo-polymorphs of trans-P2PdCl2 compounds, see: Meijboom & Omondi (2011). For the structures of similar P2PdCl2 compounds, see: Muller & Meijboom (2010a,b).

Experimental top

Diphenylphosphinostyrene (0.05 g, 0.35 mmol) was dissolved in acetone (5 cm3). A solution of [Pd(COD)Cl2] (0.05 g, 0.17 mmol) in acetone (5 cm3) was added to the phosphine solution. The mixture was stirred for 5 minutes, after which the solution was left to crystallize. Yellow crystals of the title compound were obtained.

Refinement top

H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound, were obtained.

[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2{P(4—H2C=CHC6H4)Ph2}2], crystallizes in the triclinic spacegroup P1, with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 85.83 (4)° and P—Pd—Cli = 94.17 (4)°. As required by the crystallographic symmetry, the P—Pd—Pi and Cl—Pd—Cli angles are 180°. No weak intermolecular interactions were observed.

The title compound compares well with other closely related PdII complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry (Muller & Meijboom, 2010a; 2010b). The title compound, having a Pd—Cl bond length of 2.2969 (14) Å and a Pd—P bond length of 2.3367 (12) Å, fits well into the typical range for complexes of this kind. Notably the title compound did not crystallize as a solvated complex; these type of PdII complexes have a tendency to crystallize as solvates (Meijboom & Omondi, 2011).

Large thermal vibrations on the periphery of the molecule results in a poorly defined C=C bond length. Disordered modelling resulted in an unstable refinement.

For a review on related compounds see: Spessard & Miessler (1996). For the synthesis of the starting materials, see: Drew & Doyle (1990). For pseudo-polymorphs of trans-P2PdCl2 compounds, see: Meijboom & Omondi (2011). For the structures of similar P2PdCl2 compounds, see: Muller & Meijboom (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Some labels have been omitted for clarity, all rings have been numbered in the same, systematic manner. H atoms are depicted by arbitrary size spheres. Primed atoms are generated by i: –x, –y, 1 – z.
trans-Dichloridobis[diphenyl(4-vinylphenyl)phosphane- κP]palladium(II) top
Crystal data top
[PdCl2(C20H17P)2]Z = 1
Mr = 753.91F(000) = 384
Triclinic, P1Dx = 1.498 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.9495 (3) ÅCell parameters from 5189 reflections
b = 9.9512 (3) Åθ = 4.6–64.1°
c = 10.4387 (4) ŵ = 0.84 mm1
α = 67.683 (2)°T = 100 K
β = 86.366 (2)°Plate, yellow
γ = 61.979 (2)°0.24 × 0.18 × 0.06 mm
V = 835.62 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2723 independent reflections
Radiation source: sealed tube2682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 24.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 118
Tmin = 0.837, Tmax = 0.955k = 119
5829 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0461P)2 + 2.1233P]
where P = (Fo2 + 2Fc2)/3
2723 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 1.66 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[PdCl2(C20H17P)2]γ = 61.979 (2)°
Mr = 753.91V = 835.62 (5) Å3
Triclinic, P1Z = 1
a = 9.9495 (3) ÅMo Kα radiation
b = 9.9512 (3) ŵ = 0.84 mm1
c = 10.4387 (4) ÅT = 100 K
α = 67.683 (2)°0.24 × 0.18 × 0.06 mm
β = 86.366 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2723 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2682 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.955Rint = 0.030
5829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.07Δρmax = 1.66 e Å3
2723 reflectionsΔρmin = 0.75 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.8766 (3)0.2614 (4)0.6548 (3)0.0283 (6)
C120.8919 (4)0.1305 (4)0.6246 (3)0.0364 (7)
H120.960.02170.6830.044*
C130.8047 (4)0.1631 (5)0.5062 (4)0.0441 (9)
H130.81750.07530.48530.053*
C140.6994 (4)0.3238 (5)0.4194 (3)0.0468 (9)
C150.6826 (4)0.4504 (5)0.4536 (3)0.0459 (9)
H150.61070.55890.39810.055*
C160.7708 (4)0.4203 (4)0.5696 (3)0.0355 (7)
H160.75790.50870.58970.043*
C170.5932 (8)0.3815 (11)0.2904 (8)0.0354 (17)0.696 (15)
H170.51210.48960.25510.042*0.696 (15)
C180.6107 (6)0.2857 (8)0.2271 (6)0.046 (2)0.696 (15)
H18A0.69110.17710.26090.056*0.696 (15)
H18B0.5430.32550.1480.056*0.696 (15)
C190.6584 (19)0.292 (2)0.3018 (15)0.034 (4)0.304 (15)
H190.69930.18680.30240.04*0.304 (15)
C200.5616 (16)0.424 (2)0.200 (2)0.050 (5)0.304 (15)
H20A0.52350.52750.20370.06*0.304 (15)
H20B0.52980.4160.12260.06*0.304 (15)
C211.1852 (3)0.1752 (4)0.7390 (3)0.0278 (6)
C221.2089 (3)0.1773 (4)0.6054 (3)0.0312 (6)
H221.12850.20020.54560.037*
C231.3508 (4)0.1456 (4)0.5606 (3)0.0364 (7)
H231.36550.1470.47130.044*
C241.4702 (4)0.1119 (4)0.6490 (4)0.0414 (8)
H241.56590.08930.61970.05*
C251.4476 (4)0.1118 (4)0.7813 (3)0.0380 (7)
H251.52780.09070.84010.046*
C261.3067 (3)0.1429 (4)0.8262 (3)0.0325 (6)
H261.29260.14230.91530.039*
C310.9371 (3)0.4102 (4)0.8217 (3)0.0282 (6)
C320.9929 (4)0.5164 (4)0.7448 (3)0.0331 (7)
H321.0630.48780.68390.04*
C330.9444 (4)0.6660 (4)0.7584 (3)0.0379 (7)
H330.98240.73680.7070.045*
C340.8397 (4)0.7090 (4)0.8483 (3)0.0376 (7)
H340.80650.80910.8570.045*
C350.7847 (4)0.6031 (4)0.9250 (4)0.0404 (8)
H350.71410.63260.98520.048*
C360.8330 (3)0.4529 (4)0.9140 (3)0.0349 (7)
H360.79650.38140.96740.042*
P11.00121 (8)0.21439 (9)0.80338 (7)0.02397 (18)
Cl10.73685 (8)0.14865 (9)0.94644 (8)0.03426 (19)
Pd1010.02362 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0233 (14)0.0424 (16)0.0255 (14)0.0213 (13)0.0092 (11)0.0135 (13)
C120.0306 (16)0.0466 (18)0.0424 (17)0.0231 (15)0.0150 (13)0.0234 (15)
C130.0453 (19)0.077 (3)0.048 (2)0.046 (2)0.0287 (16)0.044 (2)
C140.050 (2)0.083 (3)0.0261 (16)0.052 (2)0.0107 (15)0.0155 (17)
C150.047 (2)0.060 (2)0.0327 (17)0.0375 (18)0.0034 (15)0.0030 (16)
C160.0333 (16)0.0426 (17)0.0327 (16)0.0243 (15)0.0012 (13)0.0088 (14)
C170.029 (3)0.041 (4)0.033 (4)0.016 (3)0.004 (3)0.013 (3)
C180.047 (3)0.050 (4)0.038 (3)0.020 (3)0.006 (2)0.015 (3)
C190.031 (8)0.039 (8)0.036 (8)0.016 (7)0.006 (6)0.022 (6)
C200.052 (8)0.064 (11)0.030 (9)0.026 (7)0.002 (6)0.016 (8)
C210.0251 (14)0.0305 (14)0.0279 (14)0.0158 (12)0.0084 (11)0.0094 (12)
C220.0293 (15)0.0342 (15)0.0303 (15)0.0178 (13)0.0053 (12)0.0099 (12)
C230.0334 (17)0.0416 (17)0.0333 (16)0.0195 (14)0.0155 (13)0.0139 (14)
C240.0271 (16)0.0444 (18)0.049 (2)0.0192 (15)0.0156 (14)0.0136 (16)
C250.0285 (16)0.0414 (17)0.0406 (18)0.0198 (14)0.0000 (13)0.0083 (14)
C260.0316 (16)0.0376 (16)0.0283 (15)0.0197 (13)0.0054 (12)0.0095 (13)
C310.0245 (14)0.0349 (15)0.0241 (14)0.0131 (12)0.0018 (11)0.0119 (12)
C320.0373 (16)0.0405 (17)0.0244 (14)0.0201 (14)0.0083 (12)0.0144 (13)
C330.0447 (18)0.0395 (17)0.0318 (16)0.0231 (15)0.0062 (14)0.0129 (14)
C340.0360 (17)0.0398 (17)0.0356 (17)0.0136 (14)0.0012 (13)0.0186 (14)
C350.0307 (16)0.056 (2)0.0425 (18)0.0186 (15)0.0106 (14)0.0306 (16)
C360.0314 (16)0.0473 (18)0.0334 (16)0.0226 (14)0.0095 (12)0.0194 (14)
P10.0213 (4)0.0307 (4)0.0205 (3)0.0149 (3)0.0058 (3)0.0081 (3)
Cl10.0207 (3)0.0380 (4)0.0347 (4)0.0152 (3)0.0042 (3)0.0039 (3)
Pd0.01846 (18)0.02981 (19)0.02028 (18)0.01383 (14)0.00523 (11)0.00526 (13)
Geometric parameters (Å, º) top
C11—C161.373 (4)C22—H220.93
C11—C121.391 (4)C23—C241.380 (5)
C11—P11.820 (3)C23—H230.93
C12—C131.397 (5)C24—C251.385 (5)
C12—H120.93C24—H240.93
C13—C141.387 (6)C25—C261.378 (4)
C13—H130.93C25—H250.93
C14—C151.371 (5)C26—H260.93
C14—C191.498 (14)C31—C321.385 (4)
C14—C171.511 (8)C31—C361.398 (4)
C15—C161.392 (4)C31—P11.827 (3)
C15—H150.93C32—C331.395 (4)
C16—H160.93C32—H320.93
C17—C181.298 (12)C33—C341.382 (5)
C17—H170.93C33—H330.93
C18—H18A0.93C34—C351.377 (5)
C18—H18B0.93C34—H340.93
C19—C201.29 (3)C35—C361.388 (5)
C19—H190.93C35—H350.93
C20—H20A0.93C36—H360.93
C20—H20B0.93P1—Pd2.3366 (7)
C21—C221.393 (4)Cl1—Pd2.2966 (7)
C21—C261.395 (4)Pd—Cl1i2.2966 (7)
C21—P11.824 (3)Pd—P1i2.3366 (7)
C22—C231.386 (4)
C16—C11—C12118.8 (3)C22—C23—H23120.1
C16—C11—P1122.8 (2)C23—C24—C25120.1 (3)
C12—C11—P1118.4 (2)C23—C24—H24120
C11—C12—C13119.8 (3)C25—C24—H24120
C11—C12—H12120.1C26—C25—C24120.3 (3)
C13—C12—H12120.1C26—C25—H25119.9
C14—C13—C12121.3 (3)C24—C25—H25119.9
C14—C13—H13119.4C25—C26—C21120.5 (3)
C12—C13—H13119.4C25—C26—H26119.8
C15—C14—C13117.9 (3)C21—C26—H26119.8
C15—C14—C19141.5 (8)C32—C31—C36119.7 (3)
C13—C14—C1999.8 (8)C32—C31—P1120.0 (2)
C15—C14—C17113.6 (5)C36—C31—P1120.3 (2)
C13—C14—C17128.5 (4)C31—C32—C33120.2 (3)
C14—C15—C16121.5 (3)C31—C32—H32119.9
C14—C15—H15119.3C33—C32—H32119.9
C16—C15—H15119.3C34—C33—C32120.0 (3)
C11—C16—C15120.7 (3)C34—C33—H33120
C11—C16—H16119.6C32—C33—H33120
C15—C16—H16119.6C35—C34—C33119.8 (3)
C18—C17—C14122.4 (7)C35—C34—H34120.1
C18—C17—H17118.8C33—C34—H34120.1
C14—C17—H17118.8C34—C35—C36121.1 (3)
C17—C18—H18A120C34—C35—H35119.5
C17—C18—H18B120C36—C35—H35119.5
H18A—C18—H18B120C35—C36—C31119.3 (3)
C20—C19—C14114.3 (15)C35—C36—H36120.4
C20—C19—H19122.8C31—C36—H36120.4
C14—C19—H19122.8C11—P1—C21103.88 (13)
C19—C20—H20A120C11—P1—C31106.35 (13)
C19—C20—H20B120C21—P1—C31102.82 (13)
H20A—C20—H20B120C11—P1—Pd110.15 (9)
C22—C21—C26118.6 (3)C21—P1—Pd116.81 (10)
C22—C21—P1122.5 (2)C31—P1—Pd115.66 (9)
C26—C21—P1118.9 (2)Cl1—Pd—Cl1i180
C23—C22—C21120.8 (3)Cl1—Pd—P185.83 (2)
C23—C22—H22119.6Cl1i—Pd—P194.17 (2)
C21—C22—H22119.6Cl1—Pd—P1i94.17 (2)
C24—C23—C22119.7 (3)Cl1i—Pd—P1i85.83 (2)
C24—C23—H23120.1P1—Pd—P1i180
C16—C11—C12—C132.5 (4)C32—C33—C34—C350.5 (5)
P1—C11—C12—C13176.1 (2)C33—C34—C35—C360.2 (5)
C11—C12—C13—C141.7 (4)C34—C35—C36—C311.1 (5)
C12—C13—C14—C150.4 (5)C32—C31—C36—C351.3 (4)
C12—C13—C14—C19171.6 (5)P1—C31—C36—C35179.3 (2)
C12—C13—C14—C17178.2 (4)C16—C11—P1—C21101.2 (3)
C13—C14—C15—C161.6 (5)C12—C11—P1—C2177.3 (2)
C19—C14—C15—C16165.6 (9)C16—C11—P1—C316.9 (3)
C17—C14—C15—C16179.8 (4)C12—C11—P1—C31174.6 (2)
C12—C11—C16—C151.3 (4)C16—C11—P1—Pd132.9 (2)
P1—C11—C16—C15177.2 (2)C12—C11—P1—Pd48.6 (2)
C14—C15—C16—C110.8 (5)C22—C21—P1—C112.7 (3)
C15—C14—C17—C18167.1 (5)C26—C21—P1—C11176.8 (2)
C13—C14—C17—C1815.0 (7)C22—C21—P1—C31113.5 (3)
C19—C14—C17—C185.3 (9)C26—C21—P1—C3166.1 (3)
C15—C14—C19—C209.9 (16)C22—C21—P1—Pd118.8 (2)
C13—C14—C19—C20178.5 (10)C26—C21—P1—Pd61.7 (3)
C17—C14—C19—C2017.6 (9)C32—C31—P1—C1185.8 (2)
C26—C21—C22—C230.9 (4)C36—C31—P1—C1194.9 (2)
P1—C21—C22—C23179.5 (2)C32—C31—P1—C2123.1 (3)
C21—C22—C23—C240.2 (5)C36—C31—P1—C21156.3 (2)
C22—C23—C24—C250.8 (5)C32—C31—P1—Pd151.6 (2)
C23—C24—C25—C260.9 (5)C36—C31—P1—Pd27.8 (3)
C24—C25—C26—C210.2 (5)C11—P1—Pd—Cl148.46 (10)
C22—C21—C26—C250.7 (4)C21—P1—Pd—Cl1166.62 (11)
P1—C21—C26—C25179.7 (2)C31—P1—Pd—Cl172.14 (10)
C36—C31—C32—C330.6 (4)C11—P1—Pd—Cl1i131.54 (10)
P1—C31—C32—C33180.0 (2)C21—P1—Pd—Cl1i13.38 (11)
C31—C32—C33—C340.3 (5)C31—P1—Pd—Cl1i107.86 (10)
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[PdCl2(C20H17P)2]
Mr753.91
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.9495 (3), 9.9512 (3), 10.4387 (4)
α, β, γ (°)67.683 (2), 86.366 (2), 61.979 (2)
V3)835.62 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.24 × 0.18 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.837, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
5829, 2723, 2682
Rint0.030
(sin θ/λ)max1)0.586
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.07
No. of reflections2723
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.66, 0.75

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged. Mr S. Enus is acknowledged for the synthesis of this compound.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMuller, A. & Meijboom, R. (2010a). Acta Cryst. E66, m1420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuller, A. & Meijboom, R. (2010b). Acta Cryst. E66, m1463.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOgutu, H. & Meijboom, R. (2011). Acta Cryst. E67, m1662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. Upper Saddle River, New Jersey, USA: Prentice Hall.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds