inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The matlockite-type praseodymium(III) oxide bromide PrOBr

aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
*Correspondence e-mail: schleid@iac.uni-stuttgart.de

(Received 19 October 2011; accepted 14 November 2011; online 23 November 2011)

The crystal structure of the praseodymium(III) oxide bromide, PrOBr, can be best described with layers of agglomerated square anti­prisms [PrO4Br4]9−. These slabs are stacked along the c axis and linked via two different secondary contacts between Pr3+ and Br. The Pr3+ cations occupy the Wyckoff site 2c with 4mm symmetry and carry four O2− anions as well as four primary Br anions, yielding a coordination number of 8. While the Br anions exhibit the same site symmetry as the Pr3+ cations, the oxide anions are located at the Wyckoff position 2a with site symmetry [\overline{4}]m2 and have four Pr3+ cations as neighbours, defining a tetra­hedron.

Related literature

For prototypic PbFCl (mineral name: matlockite), see: Nieuwenkamp & Bijvoet (1932[Nieuwenkamp, W. & Bijvoet, J. M. (1932). Z. Kristallogr. 81, 469-473.]) and for an early powder study, see: Mayer et al. (1965[Mayer, I., Zolotov, S. & Kassierer, F. (1965). Inorg. Chem. 4, 1637-1639.]). For other PrOX structures, see: Baenziger et al. (1950[Baenziger, N. C., Holden, J. R., Knudson, G. E. & Popov, A. I. (1950). Atti Accad. Lig. Sci. Lett. Genoa, 7, 44-52.]) for X = F, Zachariasen (1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 388-390.]) for X = Cl, and Potapova et al. (1977[Potapova, O. G., Vasil'eva, I. G. & Borisov, S. V. (1977). Zh. Strukt. Khim. 18, 573-577.]) for X = I. For data used for a comparison of the unit-cell dimensions, see: Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) for ionic radii and Biltz (1934[Biltz, W. (1934). Raumchemie fester Stoffe. Leipzig: Verlag von Leopold Voss.]) for volume increments. For a proper classification of primary and secondary contacts, see: MAPLE (Hoppe, 1975[Hoppe, R. (1975). Crystal Structure and Chemical Bonding in Inorganic Chemistry, edited by C. J. M. Rooymans & A. Rabenau. Amsterdam: North-Holland Publishing Company.]) and for the bond-valence method, see: Brown (2002[Brown, I. D. (2002). The Bond Valence Model. Oxford University Press.]). For a comparison of intended synthesis attempts, see: Mattausch & Simon (1996[Mattausch, Hj. & Simon, A. (1996). Z. Kristallogr. New. Cryst. Struct. 211, 397.]); Lulei (1998[Lulei, M. (1998). Inorg. Chem. 37, 777-781.]).

Experimental

Crystal data
  • PrOBr

  • Mr = 236.82

  • Tetragonal, P 4/n m m

  • a = 4.0671 (3) Å

  • c = 7.4669 (5) Å

  • V = 123.51 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 35.52 mm−1

  • T = 293 K

  • 0.11 × 0.07 × 0.02 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.049, Tmax = 0.535

  • 1621 measured reflections

  • 113 independent reflections

  • 111 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.059

  • S = 1.20

  • 113 reflections

  • 10 parameters

  • Δρmax = 1.14 e Å−3

  • Δρmin = −2.52 e Å−3

Table 1
Selected bond lengths (Å)

Pr—O 4× 2.3496 (3)
Pr—Br 4× 3.2457 (8)
Pr—Br 3.6083 (14)
Pr—Br 3.8586 (14)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press, USA.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

With the exception of PrOF (Baenziger et al. 1950) all praseodymium(III) oxide halides of the general composition PrOX (X = Cl – I; Zachariasen 1949, Potapova et al. 1977) crystallize with the matlockite-type structure (Nieuwenkamp & Bijvoet, 1932). The tetragonal crystal structure of the here presented praseodymium(III) oxide bromide PrOBr can be best described with layers of agglomerated square antiprisms [PrO4Br4]9– (d(Pr3+–O2-) = 234.96 (4) pm, d(Pr3+–Br-) = 324.57 (8) pm, d(Pr3+···Br-) = 360.8 (1) and 385.9 (1) pm; Figure 1). These slabs are stacked along the c-axis and linked via two different secondary contacts between Pr3+ and Br- (Figure 2). According to the ionic radii (rCl = 180 pm, rBr = 195 pm, rI = 220 pm; Shannon, 1976) of the halide anions involved the expansion of the unit-cell dimensions occurs in quite an usual range, but the c-axes become significantly longer than the a-axes (a-axes: from 405.3 pm to 408.6 pm; c-axes: from 679.9 pm to 916.2 pm) along the Cl-–Br-–I- track. The lattice parameters of single crystalline PrOBr (a = 406.71 pm, c = 746.69 pm) fit almost perfectly with that from a previous powder diffraction study (a = 407.1 pm, c = 748.7 pm; Mayer et al. 1965). Differences in the molar volumes of the PbFCl-type praseodymium(III) oxide halides (Vm(PrOCl) = 33.6 cm3/mol, Vm(PrOBr) = 37.2 cm3/mol, Vm(PrOI) = 46.1 cm3/mol) correspond well with the differences of the molar volumes of the respective halide anions (Vm(Cl-) = 16.3 cm3/mol, Vm(Br-) = 19.2 cm3/mol, Vm(I-) = 24.5 cm3/mol; Biltz 1934). However, the Pr3+ cations occupy the Wyckoff site 2c (symmetry: 4mm) and bond four O2- anions as well as four+one+one Br- anions ending up with a total coordination number of 8+1+1 (Figure 1). While the Br- anions exhibit the same site symmetry as the Pr3+ cations, the oxide anions are located at Wyckoff position 2a with the site symmetry 4m2. Bond-Valence and MAPLE calculations support the interpretation of one important (d(Pr3+···Br-) = 360.8 (1) pm) and one less important secondary contact (d(Pr3+···Br-) = 385.9 (1) pm): The valency and ECoN for the first bond amounts to values of about 0.08 (with R0 = 267 pm, b = 37 pm; Brown, 2002) and 0.12 (Hoppe, 1975), but almost nil for the second one, since this next nearest contact to bromide has only very low influence on the effective coordination sphere of the Pr3+ cations (ECoN = 0.03).

Related literature top

For prototypic PbFCl (mineral name: matlockite) see Nieuwenkamp & Bijvoet (1932) and for an early powder study, see: Mayer et al. (1965). For other PrOX structures, see: Baenziger et al. (1950) for X = F, Zachariasen (1949) for X = Cl, and Potapova et al. (1977) for X = I. For data used for a comparison of the unit-cell dimensions, see: Shannon (1976) for ionic radii and Biltz (1934) for volume increments. For a proper classification of primary and secondary contacts, see: MAPLE (Hoppe, 1975) andfor the bond-valence method, see: Brown (2002). For a comparison of intended synthesis attempts, see: Mattausch & Simon (1996); Lulei (1998).

Experimental top

Pale green, transparent, plate-shaped single crystals of PrOBr were obtained as by-product from a mixture of 0.06 g Pr, 0.38 g PrBr3 and 0.01 g NaN3, along with 0.30 g NaBr added as a flux. The mixture was kept at 800 °C for 7 days in an evacuated, sealed fused-silica vessel designed to produce the praseodymium(III) nitride bromide Pr3NBr6 in analogy with La3NBr6 (Lulei, 1998) and Ce3NBr6 (Mattausch & Simon, 1996).

Refinement top

The highest peak and the deepest hole in the final difference Fourier map are 95 pm and 84 pm apart from Pr.

Structure description top

With the exception of PrOF (Baenziger et al. 1950) all praseodymium(III) oxide halides of the general composition PrOX (X = Cl – I; Zachariasen 1949, Potapova et al. 1977) crystallize with the matlockite-type structure (Nieuwenkamp & Bijvoet, 1932). The tetragonal crystal structure of the here presented praseodymium(III) oxide bromide PrOBr can be best described with layers of agglomerated square antiprisms [PrO4Br4]9– (d(Pr3+–O2-) = 234.96 (4) pm, d(Pr3+–Br-) = 324.57 (8) pm, d(Pr3+···Br-) = 360.8 (1) and 385.9 (1) pm; Figure 1). These slabs are stacked along the c-axis and linked via two different secondary contacts between Pr3+ and Br- (Figure 2). According to the ionic radii (rCl = 180 pm, rBr = 195 pm, rI = 220 pm; Shannon, 1976) of the halide anions involved the expansion of the unit-cell dimensions occurs in quite an usual range, but the c-axes become significantly longer than the a-axes (a-axes: from 405.3 pm to 408.6 pm; c-axes: from 679.9 pm to 916.2 pm) along the Cl-–Br-–I- track. The lattice parameters of single crystalline PrOBr (a = 406.71 pm, c = 746.69 pm) fit almost perfectly with that from a previous powder diffraction study (a = 407.1 pm, c = 748.7 pm; Mayer et al. 1965). Differences in the molar volumes of the PbFCl-type praseodymium(III) oxide halides (Vm(PrOCl) = 33.6 cm3/mol, Vm(PrOBr) = 37.2 cm3/mol, Vm(PrOI) = 46.1 cm3/mol) correspond well with the differences of the molar volumes of the respective halide anions (Vm(Cl-) = 16.3 cm3/mol, Vm(Br-) = 19.2 cm3/mol, Vm(I-) = 24.5 cm3/mol; Biltz 1934). However, the Pr3+ cations occupy the Wyckoff site 2c (symmetry: 4mm) and bond four O2- anions as well as four+one+one Br- anions ending up with a total coordination number of 8+1+1 (Figure 1). While the Br- anions exhibit the same site symmetry as the Pr3+ cations, the oxide anions are located at Wyckoff position 2a with the site symmetry 4m2. Bond-Valence and MAPLE calculations support the interpretation of one important (d(Pr3+···Br-) = 360.8 (1) pm) and one less important secondary contact (d(Pr3+···Br-) = 385.9 (1) pm): The valency and ECoN for the first bond amounts to values of about 0.08 (with R0 = 267 pm, b = 37 pm; Brown, 2002) and 0.12 (Hoppe, 1975), but almost nil for the second one, since this next nearest contact to bromide has only very low influence on the effective coordination sphere of the Pr3+ cations (ECoN = 0.03).

For prototypic PbFCl (mineral name: matlockite) see Nieuwenkamp & Bijvoet (1932) and for an early powder study, see: Mayer et al. (1965). For other PrOX structures, see: Baenziger et al. (1950) for X = F, Zachariasen (1949) for X = Cl, and Potapova et al. (1977) for X = I. For data used for a comparison of the unit-cell dimensions, see: Shannon (1976) for ionic radii and Biltz (1934) for volume increments. For a proper classification of primary and secondary contacts, see: MAPLE (Hoppe, 1975) andfor the bond-valence method, see: Brown (2002). For a comparison of intended synthesis attempts, see: Mattausch & Simon (1996); Lulei (1998).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View at the square antiprism [PrO4Br4]9– with two different Br- caps in matlockite-type PrOBr. Displacement ellipsoids are drawn at 90 % probability level. Symmetry codes: (i) -x+1, -y, -z; (ii) x-1, y, z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) -x, -y, -z+1; (vi) -x, -y+1, -z+1; (vii) -x+1, -y, -z+1; (viii) x, y, z-1.
[Figure 2] Fig. 2. Polyhedral representation of the matlockite-type PrOBr structure (dotted lines indicate the first of the two kinds of secondary contacts between Pr3+ and Br-).
Praseodymium(III) oxide bromide top
Crystal data top
PrBrODx = 6.368 Mg m3
Mr = 236.82Mo Kα radiation, λ = 0.71069 Å
Tetragonal, P4/nmmCell parameters from 3957 reflections
Hall symbol: -P 4a 2aθ = 0.4–27.9°
a = 4.0671 (3) ŵ = 35.52 mm1
c = 7.4669 (5) ÅT = 293 K
V = 123.51 (2) Å3Plate, pale green
Z = 20.11 × 0.07 × 0.02 mm
F(000) = 204
Data collection top
Bruker–Nonius KappaCCD
diffractometer
113 independent reflections
Radiation source: fine-focus sealed tube111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ω and φ scansθmax = 27.9°, θmin = 5.5°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
h = 55
Tmin = 0.049, Tmax = 0.535k = 55
1621 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0378P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max < 0.001
S = 1.20Δρmax = 1.14 e Å3
113 reflectionsΔρmin = 2.52 e Å3
10 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.032 (5)
Crystal data top
PrBrOZ = 2
Mr = 236.82Mo Kα radiation
Tetragonal, P4/nmmµ = 35.52 mm1
a = 4.0671 (3) ÅT = 293 K
c = 7.4669 (5) Å0.11 × 0.07 × 0.02 mm
V = 123.51 (2) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
113 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
111 reflections with I > 2σ(I)
Tmin = 0.049, Tmax = 0.535Rint = 0.082
1621 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02610 parameters
wR(F2) = 0.0590 restraints
S = 1.20Δρmax = 1.14 e Å3
113 reflectionsΔρmin = 2.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr0.25000.25000.15763 (8)0.0106 (4)
O0.75000.25000.00000.0129 (13)
Br0.25000.25000.64087 (17)0.0153 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr0.0084 (4)0.0084 (4)0.0148 (6)0.0000.0000.000
O0.0114 (17)0.0114 (17)0.016 (3)0.0000.0000.000
Br0.0149 (5)0.0149 (5)0.0160 (7)0.0000.0000.000
Geometric parameters (Å, º) top
Pr—Oi2.3496 (3)Pr—Pri3.7165 (8)
Pr—Oii2.3496 (3)Pr—Prx3.7165 (8)
Pr—Oiii2.3496 (3)Pr—Priii3.7165 (8)
Pr—O2.3496 (3)O—Pri2.3496 (3)
Pr—Briv3.2457 (8)O—Prxi2.3496 (3)
Pr—Brv3.2457 (8)O—Priii2.3496 (3)
Pr—Brvi3.2457 (8)Br—Priv3.2457 (8)
Pr—Brvii3.2457 (8)Br—Prv3.2457 (8)
Pr—Br3.6083 (14)Br—Prvii3.2457 (8)
Pr—Brviii3.8586 (14)Br—Prvi3.2457 (8)
Pr—Prix3.7165 (8)
Oi—Pr—Oii75.466 (11)O—Pr—Pri37.733 (6)
Oi—Pr—Oiii119.87 (3)Briv—Pr—Pri107.075 (12)
Oii—Pr—Oiii75.466 (11)Brv—Pr—Pri107.075 (12)
Oi—Pr—O75.466 (11)Brvi—Pr—Pri168.31 (4)
Oii—Pr—O119.87 (3)Brvii—Pr—Pri66.920 (18)
Oiii—Pr—O75.466 (11)Prix—Pr—Pri66.346 (15)
Oi—Pr—Briv140.758 (5)Oi—Pr—Prx98.99 (2)
Oii—Pr—Briv140.758 (5)Oii—Pr—Prx37.733 (6)
Oiii—Pr—Briv71.938 (15)Oiii—Pr—Prx37.733 (6)
O—Pr—Briv71.938 (15)O—Pr—Prx98.99 (2)
Oi—Pr—Brv71.938 (15)Briv—Pr—Prx107.075 (12)
Oii—Pr—Brv71.938 (15)Brv—Pr—Prx107.075 (12)
Oiii—Pr—Brv140.758 (5)Brvi—Pr—Prx66.920 (18)
O—Pr—Brv140.758 (5)Brvii—Pr—Prx168.31 (4)
Briv—Pr—Brv124.77 (5)Prix—Pr—Prx66.346 (15)
Oi—Pr—Brvi140.758 (5)Pri—Pr—Prx101.39 (3)
Oii—Pr—Brvi71.938 (15)Oi—Pr—Priii98.99 (2)
Oiii—Pr—Brvi71.938 (15)Oii—Pr—Priii98.99 (2)
O—Pr—Brvi140.758 (5)Oiii—Pr—Priii37.733 (6)
Briv—Pr—Brvi77.59 (2)O—Pr—Priii37.733 (6)
Brv—Pr—Brvi77.59 (2)Briv—Pr—Priii66.920 (19)
Oi—Pr—Brvii71.938 (15)Brv—Pr—Priii168.31 (4)
Oii—Pr—Brvii140.758 (5)Brvi—Pr—Priii107.075 (12)
Oiii—Pr—Brvii140.758 (6)Brvii—Pr—Priii107.075 (12)
O—Pr—Brvii71.938 (15)Prix—Pr—Priii101.39 (3)
Briv—Pr—Brvii77.59 (2)Pri—Pr—Priii66.346 (15)
Brv—Pr—Brvii77.59 (2)Prx—Pr—Priii66.346 (15)
Brvi—Pr—Brvii124.77 (5)Pr—O—Pri104.534 (11)
Oi—Pr—Prix37.733 (6)Pr—O—Prxi119.87 (3)
Oii—Pr—Prix37.733 (6)Pri—O—Prxi104.534 (11)
Oiii—Pr—Prix98.99 (2)Pr—O—Priii104.534 (11)
O—Pr—Prix98.99 (2)Pri—O—Priii119.87 (3)
Briv—Pr—Prix168.31 (4)Prxi—O—Priii104.534 (11)
Brv—Pr—Prix66.920 (19)Priv—Br—Prv124.77 (5)
Brvi—Pr—Prix107.075 (12)Priv—Br—Prvii77.59 (2)
Brvii—Pr—Prix107.075 (12)Prv—Br—Prvii77.59 (2)
Oi—Pr—Pri37.733 (6)Priv—Br—Prvi77.59 (2)
Oii—Pr—Pri98.99 (2)Prv—Br—Prvi77.59 (2)
Oiii—Pr—Pri98.99 (2)Prvii—Br—Prvi124.77 (5)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x, y, z+1; (vi) x, y+1, z+1; (vii) x+1, y, z+1; (viii) x, y, z1; (ix) x, y, z; (x) x, y+1, z; (xi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaPrBrO
Mr236.82
Crystal system, space groupTetragonal, P4/nmm
Temperature (K)293
a, c (Å)4.0671 (3), 7.4669 (5)
V3)123.51 (2)
Z2
Radiation typeMo Kα
µ (mm1)35.52
Crystal size (mm)0.11 × 0.07 × 0.02
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1999)
Tmin, Tmax0.049, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
1621, 113, 111
Rint0.082
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.059, 1.20
No. of reflections113
No. of parameters10
Δρmax, Δρmin (e Å3)1.14, 2.52

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Pr—Oi2.3496 (3)Pr—Brv3.2457 (8)
Pr—Oii2.3496 (3)Pr—Brvi3.2457 (8)
Pr—Oiii2.3496 (3)Pr—Brvii3.2457 (8)
Pr—O2.3496 (3)Pr—Br3.6083 (14)
Pr—Briv3.2457 (8)Pr—Brviii3.8586 (14)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x, y, z+1; (vi) x, y+1, z+1; (vii) x+1, y, z+1; (viii) x, y, z1.
 

Acknowledgements

This work was supported by the State of Baden-Württemberg (Stuttgart) and the German Research Foundation (DFG, Bonn) within the funding programme Open Access Publishing. We thank Dr Sabine Strobel for the data collection.

References

First citationBaenziger, N. C., Holden, J. R., Knudson, G. E. & Popov, A. I. (1950). Atti Accad. Lig. Sci. Lett. Genoa, 7, 44–52.  Google Scholar
First citationBiltz, W. (1934). Raumchemie fester Stoffe. Leipzig: Verlag von Leopold Voss.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (2002). The Bond Valence Model. Oxford University Press.  Google Scholar
First citationHoppe, R. (1975). Crystal Structure and Chemical Bonding in Inorganic Chemistry, edited by C. J. M. Rooymans & A. Rabenau. Amsterdam: North-Holland Publishing Company.  Google Scholar
First citationLulei, M. (1998). Inorg. Chem. 37, 777–781.  Web of Science CrossRef CAS Google Scholar
First citationMattausch, Hj. & Simon, A. (1996). Z. Kristallogr. New. Cryst. Struct. 211, 397.  CrossRef Google Scholar
First citationMayer, I., Zolotov, S. & Kassierer, F. (1965). Inorg. Chem. 4, 1637–1639.  CrossRef CAS Web of Science Google Scholar
First citationNieuwenkamp, W. & Bijvoet, J. M. (1932). Z. Kristallogr. 81, 469–473.  CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press, USA.  Google Scholar
First citationPotapova, O. G., Vasil'eva, I. G. & Borisov, S. V. (1977). Zh. Strukt. Khim. 18, 573–577.  CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZachariasen, W. H. (1949). Acta Cryst. 2, 388–390.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds