metal-organic compounds
Ethyl (Z)-4-ferrocenyl-2-(4-hydroxyanilino)-4-oxobutenoate
aDepartment of Chemical Engineering, Nantong Vocational College, Nantong 226007, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Yangzhou University, 180 SiWangTing Road, Yangzhou 225002, People's Republic of China, cTesting Center, Yangzhou University, Yangzhou 225009, People's Republic of China, and dHubei Research Institue of Geophysics Survey and Design, Wuhan 430056, People's Republic of China
*Correspondence e-mail: ycshi@yzu.edu.cn
In the title compound, [Fe(C5H5)(C17H16NO4)], the O=C—C=C—N mean plane is twisted with respect to the mean planes of the benzene and substituted cyclopentadienyl rings by 44.2 (2) and 13.8 (3)°, respectively. Furthermore, the O=C—C=C—N mean plane and the O=C—O(ester) plane make a dihedral angle of 55.5 (6)°. Consistent with this large dihedral angle, the linking C—C bond [1.507 (6) Å] does not show any (delocalized) double-bond character.
Related literature
For background to the use of enaminones and enamine et al. (2001); Elassar & El-Khair (2003); Kascheres (2003); Shi et al. (2004, 2006, 2008). For related structures, see: Prokop et al. (2001).
in coordination chemistry, supramolecular chemistry and organometallic chemistry, see: ProkopExperimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536811047763/fj2460sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811047763/fj2460Isup2.hkl
A mixture of ethyl 4-ferrocenyl-2, 4-dioxobutanate (1.3 g, 4 mmol) and 4-aminophenol (0.43 g, 4 mmol) in 20 ml of absolute ethanol was refluxed for 18 h. After removal of the solvent, the residue was purified by ═C), 1592 and 1562 (vs, s, O═C and C═C) cm-1. UV (λmax, (ε× 104), in DMF): 290 (1.90, B-band), 420 (1.37, K-band), 574 (0.03, CT-band) 1H NMR (600 MHz, CDCl3, p.p.m.): δ 11.52 (s, HN), 6.88-6.90, 6.79-6.81 (d, d, 2H, 2H, C6H4), 5.94 (s, 1H, HC), 4.83, 4.52 (s, s, 2H, 2H, C5H4), 4.23 (s, 5H, C5H5), 4.17-4.20 (q, 2H, OCH2), 1.10-1.13 (t, 3H, CH3).
on silica gel using diethyl ether and dichloromethane (v/v, 1:10) as an eluant to give the title compound as a purple-red solid (m.p. 412.25-413.65 K, yield 62%). Analysis calculated for C22H21FeNO4: C 63.03, H 5.05, N 3.34%; found: C 63.12, H 5.27, N 3.31%. IR (KBr): 3401 (m, HO), 3078 (m, HN),1706 (s, OAll H atoms were placed at geometrically idealized positions and subsequently treated as riding atoms at 295 K, with C–H = 0.93 (aryl and alkenyl), 0.96 (CH3), 0.97 (CH2), N–H = 0.86 Å, or O–H = 0.82Å and Uiso(H) values of 1.2Ueq(C, N) or 1.5Ueq(Cmethyl, O).
Recently enaminones and related compounds have been used as ligands in coordination chemistry and have been extensively used as versatile synthetic intermediates that combine the ambident nucleophilicity of
with the ambident of enones for the preparation of a variety of heterocyclic systems including some natural products and analogues (Elassar & El-Khair, 2003; Kascheres, 2003).It has been shown that primay β-diketones, ArCOCH2COR, to give enaminones, ArCOCH═ C(NHAr')R, in good yields (Shi et al., 2004). As part of an ongoing investigation of the chemistry of ferrocenyl enaminones and related compounds (Shi et al., 2006), the title compound, (C5H5)FeC5H4COCH═C(NHC6H4-4-OH)CO2CH2CH3, has been synthesized via the reaction of 4-aminophenol with (C5H5)FeC5H4COCH2COCO2CH2CH3 and structurally characterized.
Ar'NH2, react smoothly withAs noted in the compounds previously reported, the O═ C–C═C–N moiety is planar and the bond lengths indicate electron delocalization (Shi et al., 2004). The O═C–C═C–N plane is twisted with respect to the benzene and substituted cyclopentadienyl rings by 44.2 (2) and 13.8 (3)° whereas the values in an analogous compound are 38.2 (2) and 2.5 (2)° (Prokop et al., 2001). Furthermore, the O═C–C═C–N plane and the O═ C–O plane make a dihedral angle of 55.5 (6)° which is greater than that (48.1 (4)°) of the analogous compound. Consistent with the large dihedral angle between the O═C–C═C–N plane and ester group, the C13–C14 bond, is typical of a single bond (Csp2–Csp2), and therefore indicates that the ester group is not involved in the conjugation of the O═C–C═C–N moiety. Similarly, the C10–C11 bond suggests that the substituted cyclopentadienyl ring is not involved in the conjugation of the O═ C–C═C–N moiety (Shi et al., 2006).
For background to the use of enaminones and enamine
in coordination chemistry, supramolecular chemistry and organometallic chemistry, see: Prokop et al. (2001); Elassar & El-Khair (2003); Kascheres (2003); Shi et al. (2004, 2006, 2008). For related structures, see: Prokop et al. (2001).Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. |
[Fe(C5H5)(C17H16NO4)] | F(000) = 872 |
Mr = 419.25 | Dx = 1.442 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.398 (2) Å | Cell parameters from 25 reflections |
b = 11.5131 (15) Å | θ = 9–15° |
c = 10.9413 (11) Å | µ = 0.81 mm−1 |
β = 95.43 (2)° | T = 295 K |
V = 1931.0 (4) Å3 | Prism, dark-red |
Z = 4 | 0.24 × 0.21 × 0.12 mm |
Enraf–Nonius CAD-4 diffractometer | 2461 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 26.0°, θmin = 1.3° |
ω/2θ scans | h = −18→18 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→14 |
Tmin = 0.821, Tmax = 0.902 | l = 0→13 |
3787 measured reflections | 3 standard reflections every 200 reflections |
3787 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.172 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0754P)2 + 1.4205P] where P = (Fo2 + 2Fc2)/3 |
3787 reflections | (Δ/σ)max = 0.001 |
237 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.86 e Å−3 |
[Fe(C5H5)(C17H16NO4)] | V = 1931.0 (4) Å3 |
Mr = 419.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.398 (2) Å | µ = 0.81 mm−1 |
b = 11.5131 (15) Å | T = 295 K |
c = 10.9413 (11) Å | 0.24 × 0.21 × 0.12 mm |
β = 95.43 (2)° |
Enraf–Nonius CAD-4 diffractometer | 2461 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.821, Tmax = 0.902 | 3 standard reflections every 200 reflections |
3787 measured reflections | intensity decay: none |
3787 independent reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.172 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.58 e Å−3 |
3787 reflections | Δρmin = −0.86 e Å−3 |
237 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.1956 (4) | 0.6697 (5) | 0.7793 (6) | 0.0691 (18) | |
H1 | 1.2219 | 0.6929 | 0.8554 | 0.083* | |
C2 | 1.1223 (4) | 0.5950 (4) | 0.7610 (5) | 0.0525 (14) | |
H2 | 1.0920 | 0.5600 | 0.8208 | 0.063* | |
C3 | 1.1049 (3) | 0.5853 (4) | 0.6308 (5) | 0.047 | |
H3 | 1.0600 | 0.5425 | 0.5896 | 0.056* | |
C4 | 1.1659 (4) | 0.6499 (5) | 0.5765 (5) | 0.0557 (14) | |
H4 | 1.1687 | 0.6568 | 0.4923 | 0.067* | |
C5 | 1.2226 (4) | 0.7033 (5) | 0.6658 (6) | 0.0630 (16) | |
H5 | 1.2692 | 0.7518 | 0.6527 | 0.076* | |
C6 | 1.0226 (3) | 0.8596 (4) | 0.5648 (4) | 0.0393 (11) | |
H6 | 1.0145 | 0.8506 | 0.4801 | 0.047* | |
C7 | 1.0875 (3) | 0.9262 (4) | 0.6291 (5) | 0.0447 (12) | |
H7 | 1.1294 | 0.9700 | 0.5941 | 0.054* | |
C8 | 1.0791 (3) | 0.9163 (4) | 0.7561 (4) | 0.0375 (11) | |
H8 | 1.1144 | 0.9519 | 0.8189 | 0.045* | |
C9 | 1.0067 (3) | 0.8421 (4) | 0.7710 (4) | 0.0342 (10) | |
H9 | 0.9863 | 0.8197 | 0.8448 | 0.041* | |
C10 | 0.9715 (3) | 0.8086 (4) | 0.6503 (4) | 0.0331 (10) | |
C11 | 0.8947 (3) | 0.7331 (4) | 0.6156 (4) | 0.0321 (10) | |
C12 | 0.8355 (3) | 0.7087 (4) | 0.7078 (4) | 0.0349 (10) | |
H12 | 0.8489 | 0.7360 | 0.7874 | 0.042* | |
C13 | 0.7605 (3) | 0.6466 (4) | 0.6807 (4) | 0.0345 (10) | |
C14 | 0.6966 (3) | 0.6412 (4) | 0.7768 (5) | 0.0410 (11) | |
C15 | 0.6789 (4) | 0.5986 (5) | 0.9858 (5) | 0.058 | |
H15A | 0.7165 | 0.6105 | 1.0611 | 0.070* | |
H15B | 0.6375 | 0.6622 | 0.9774 | 0.070* | |
C16 | 0.6323 (4) | 0.4913 (6) | 0.9946 (6) | 0.073 | |
H16A | 0.5875 | 0.4858 | 0.9276 | 0.109* | |
H16B | 0.6063 | 0.4891 | 1.0709 | 0.109* | |
H16C | 0.6719 | 0.4273 | 0.9911 | 0.109* | |
C17 | 0.6719 (3) | 0.5155 (4) | 0.5385 (4) | 0.0377 (11) | |
C18 | 0.6590 (3) | 0.4246 (4) | 0.6184 (5) | 0.0456 (12) | |
H18 | 0.6915 | 0.4206 | 0.6944 | 0.055* | |
C19 | 0.5973 (3) | 0.3396 (4) | 0.5842 (5) | 0.0527 (14) | |
H19 | 0.5866 | 0.2808 | 0.6391 | 0.063* | |
C20 | 0.5514 (3) | 0.3418 (4) | 0.4682 (5) | 0.0500 (13) | |
C21 | 0.5663 (3) | 0.4315 (4) | 0.3901 (5) | 0.0458 (12) | |
H21 | 0.5362 | 0.4337 | 0.3123 | 0.055* | |
C22 | 0.6257 (3) | 0.5189 (5) | 0.4256 (4) | 0.0455 (12) | |
H22 | 0.6339 | 0.5800 | 0.3723 | 0.055* | |
Fe1 | 1.09728 (4) | 0.75507 (5) | 0.68129 (6) | 0.0320 (2) | |
N1 | 0.7364 (2) | 0.6016 (4) | 0.5704 (4) | 0.0428 (10) | |
H1N | 0.7634 | 0.6281 | 0.5109 | 0.051* | |
O1 | 0.8815 (2) | 0.6984 (3) | 0.5088 (3) | 0.0456 (8) | |
O2 | 0.6228 (2) | 0.6770 (3) | 0.7586 (4) | 0.0609 (10) | |
O3 | 0.7315 (2) | 0.6003 (3) | 0.8827 (3) | 0.0542 (9) | |
O4 | 0.4934 (3) | 0.2556 (3) | 0.4394 (4) | 0.0656 (11) | |
H4O | 0.4609 | 0.2743 | 0.3789 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.067 (4) | 0.059 (4) | 0.075 (4) | 0.026 (3) | −0.028 (3) | −0.021 (3) |
C2 | 0.067 (4) | 0.043 (3) | 0.048 (3) | 0.019 (3) | 0.009 (3) | 0.006 (2) |
C3 | 0.047 | 0.033 | 0.060 | 0.000 | 0.009 | 0.019 |
C4 | 0.060 (3) | 0.059 (4) | 0.050 (3) | 0.008 (3) | 0.019 (3) | −0.011 (3) |
C5 | 0.038 (3) | 0.058 (3) | 0.095 (5) | 0.005 (3) | 0.016 (3) | −0.021 (3) |
C6 | 0.035 (2) | 0.044 (3) | 0.039 (3) | −0.003 (2) | 0.004 (2) | 0.005 (2) |
C7 | 0.038 (3) | 0.036 (3) | 0.060 (3) | −0.008 (2) | 0.004 (2) | 0.011 (2) |
C8 | 0.045 (3) | 0.028 (2) | 0.039 (3) | −0.005 (2) | 0.000 (2) | −0.003 (2) |
C9 | 0.039 (2) | 0.026 (2) | 0.038 (3) | −0.0017 (19) | 0.007 (2) | 0.0042 (19) |
C10 | 0.032 (2) | 0.032 (2) | 0.036 (2) | 0.0021 (19) | 0.0079 (19) | −0.003 (2) |
C11 | 0.025 (2) | 0.036 (3) | 0.035 (2) | −0.0023 (18) | 0.0025 (17) | 0.002 (2) |
C12 | 0.030 (2) | 0.039 (2) | 0.036 (2) | −0.0015 (19) | 0.0020 (19) | −0.001 (2) |
C13 | 0.029 (2) | 0.032 (2) | 0.043 (3) | 0.0004 (19) | 0.010 (2) | 0.005 (2) |
C14 | 0.032 (3) | 0.035 (3) | 0.058 (3) | −0.006 (2) | 0.015 (2) | −0.005 (2) |
C15 | 0.058 | 0.058 | 0.058 | 0.000 | 0.006 | 0.000 |
C16 | 0.073 | 0.073 | 0.073 | 0.000 | 0.007 | 0.000 |
C17 | 0.024 (2) | 0.041 (3) | 0.048 (3) | 0.0017 (19) | 0.004 (2) | −0.004 (2) |
C18 | 0.039 (3) | 0.042 (3) | 0.055 (3) | 0.000 (2) | −0.003 (2) | 0.000 (2) |
C19 | 0.048 (3) | 0.039 (3) | 0.071 (4) | −0.005 (2) | 0.008 (3) | 0.010 (3) |
C20 | 0.028 (2) | 0.040 (3) | 0.081 (4) | −0.003 (2) | 0.001 (3) | −0.009 (3) |
C21 | 0.034 (3) | 0.052 (3) | 0.049 (3) | −0.007 (2) | −0.004 (2) | −0.001 (3) |
C22 | 0.040 (3) | 0.048 (3) | 0.049 (3) | −0.009 (2) | 0.010 (2) | −0.004 (2) |
Fe1 | 0.0290 (3) | 0.0303 (3) | 0.0369 (4) | −0.0022 (3) | 0.0051 (2) | −0.0034 (3) |
N1 | 0.036 (2) | 0.052 (3) | 0.042 (2) | −0.0086 (19) | 0.0096 (18) | −0.0059 (19) |
O1 | 0.0419 (19) | 0.062 (2) | 0.0332 (18) | −0.0151 (17) | 0.0043 (14) | −0.0024 (16) |
O2 | 0.0313 (19) | 0.078 (3) | 0.074 (3) | 0.0073 (19) | 0.0108 (18) | −0.011 (2) |
O3 | 0.049 (2) | 0.060 (2) | 0.057 (2) | 0.0072 (18) | 0.0193 (18) | 0.0076 (19) |
O4 | 0.053 (2) | 0.050 (2) | 0.091 (3) | −0.017 (2) | −0.010 (2) | −0.003 (2) |
C1—C5 | 1.401 (9) | C11—O1 | 1.234 (5) |
C1—C2 | 1.418 (8) | C11—C12 | 1.449 (6) |
C1—Fe1 | 2.025 (6) | C12—C13 | 1.367 (6) |
C1—H1 | 0.9300 | C12—H12 | 0.9300 |
C2—C3 | 1.430 (7) | C13—N1 | 1.333 (6) |
C2—Fe1 | 2.059 (5) | C13—C14 | 1.507 (6) |
C2—H2 | 0.9300 | C14—O2 | 1.208 (6) |
C3—C4 | 1.375 (7) | C14—O3 | 1.318 (6) |
C3—Fe1 | 2.038 (5) | C15—C16 | 1.437 (8) |
C3—H3 | 0.9300 | C15—O3 | 1.450 (6) |
C4—C5 | 1.391 (8) | C15—H15A | 0.9700 |
C4—Fe1 | 2.031 (5) | C15—H15B | 0.9700 |
C4—H4 | 0.9300 | C16—H16A | 0.9600 |
C5—Fe1 | 2.042 (5) | C16—H16B | 0.9600 |
C5—H5 | 0.9300 | C16—H16C | 0.9600 |
C6—C7 | 1.396 (6) | C17—C22 | 1.367 (6) |
C6—C10 | 1.407 (6) | C17—C18 | 1.390 (6) |
C6—Fe1 | 2.029 (5) | C17—N1 | 1.424 (6) |
C6—H6 | 0.9300 | C18—C19 | 1.390 (7) |
C7—C8 | 1.412 (7) | C18—H18 | 0.9300 |
C7—Fe1 | 2.053 (5) | C19—C20 | 1.393 (7) |
C7—H7 | 0.9300 | C19—H19 | 0.9300 |
C8—C9 | 1.426 (6) | C20—O4 | 1.352 (6) |
C8—Fe1 | 2.059 (4) | C20—C21 | 1.373 (7) |
C8—H8 | 0.9300 | C21—C22 | 1.390 (7) |
C9—C10 | 1.432 (6) | C21—H21 | 0.9300 |
C9—Fe1 | 2.043 (4) | C22—H22 | 0.9300 |
C9—H9 | 0.9300 | N1—H1N | 0.8600 |
C10—C11 | 1.487 (6) | O4—H4O | 0.8200 |
C10—Fe1 | 2.031 (4) | ||
C5—C1—C2 | 110.0 (5) | O3—C15—H15B | 109.1 |
C5—C1—Fe1 | 70.5 (3) | H15A—C15—H15B | 107.8 |
C2—C1—Fe1 | 71.0 (3) | C15—C16—H16A | 109.5 |
C5—C1—H1 | 125.0 | C15—C16—H16B | 109.5 |
C2—C1—H1 | 125.0 | H16A—C16—H16B | 109.5 |
Fe1—C1—H1 | 125.1 | C15—C16—H16C | 109.5 |
C1—C2—C3 | 105.0 (5) | H16A—C16—H16C | 109.5 |
C1—C2—Fe1 | 68.4 (3) | H16B—C16—H16C | 109.5 |
C3—C2—Fe1 | 68.8 (3) | C22—C17—C18 | 119.8 (4) |
C1—C2—H2 | 127.5 | C22—C17—N1 | 119.6 (4) |
C3—C2—H2 | 127.5 | C18—C17—N1 | 120.5 (4) |
Fe1—C2—H2 | 126.9 | C19—C18—C17 | 119.7 (5) |
C4—C3—C2 | 108.5 (5) | C19—C18—H18 | 120.2 |
C4—C3—Fe1 | 70.0 (3) | C17—C18—H18 | 120.2 |
C2—C3—Fe1 | 70.4 (3) | C18—C19—C20 | 120.5 (5) |
C4—C3—H3 | 125.7 | C18—C19—H19 | 119.7 |
C2—C3—H3 | 125.7 | C20—C19—H19 | 119.7 |
Fe1—C3—H3 | 125.4 | O4—C20—C21 | 123.5 (5) |
C3—C4—C5 | 110.2 (5) | O4—C20—C19 | 117.8 (5) |
C3—C4—Fe1 | 70.5 (3) | C21—C20—C19 | 118.7 (5) |
C5—C4—Fe1 | 70.4 (3) | C20—C21—C22 | 121.0 (5) |
C3—C4—H4 | 124.9 | C20—C21—H21 | 119.5 |
C5—C4—H4 | 124.9 | C22—C21—H21 | 119.5 |
Fe1—C4—H4 | 125.7 | C17—C22—C21 | 120.3 (5) |
C4—C5—C1 | 106.3 (5) | C17—C22—H22 | 119.9 |
C4—C5—Fe1 | 69.6 (3) | C21—C22—H22 | 119.9 |
C1—C5—Fe1 | 69.2 (3) | C1—Fe1—C6 | 166.2 (3) |
C4—C5—H5 | 126.8 | C1—Fe1—C10 | 152.8 (3) |
C1—C5—H5 | 126.8 | C6—Fe1—C10 | 40.54 (17) |
Fe1—C5—H5 | 125.9 | C1—Fe1—C4 | 66.9 (2) |
C7—C6—C10 | 108.3 (4) | C6—Fe1—C4 | 107.1 (2) |
C7—C6—Fe1 | 70.9 (3) | C10—Fe1—C4 | 128.7 (2) |
C10—C6—Fe1 | 69.8 (3) | C1—Fe1—C3 | 67.6 (2) |
C7—C6—H6 | 125.9 | C6—Fe1—C3 | 116.3 (2) |
C10—C6—H6 | 125.9 | C10—Fe1—C3 | 108.93 (19) |
Fe1—C6—H6 | 125.0 | C4—Fe1—C3 | 39.5 (2) |
C6—C7—C8 | 108.9 (4) | C1—Fe1—C5 | 40.3 (2) |
C6—C7—Fe1 | 69.1 (3) | C6—Fe1—C5 | 127.2 (2) |
C8—C7—Fe1 | 70.1 (3) | C10—Fe1—C5 | 165.7 (2) |
C6—C7—H7 | 125.6 | C4—Fe1—C5 | 39.9 (2) |
C8—C7—H7 | 125.6 | C3—Fe1—C5 | 67.6 (2) |
Fe1—C7—H7 | 126.8 | C1—Fe1—C9 | 119.6 (2) |
C7—C8—C9 | 107.8 (4) | C6—Fe1—C9 | 68.80 (18) |
C7—C8—Fe1 | 69.7 (3) | C10—Fe1—C9 | 41.16 (17) |
C9—C8—Fe1 | 69.0 (2) | C4—Fe1—C9 | 168.2 (2) |
C7—C8—H8 | 126.1 | C3—Fe1—C9 | 131.33 (18) |
C9—C8—H8 | 126.1 | C5—Fe1—C9 | 151.3 (2) |
Fe1—C8—H8 | 126.7 | C1—Fe1—C7 | 130.1 (2) |
C8—C9—C10 | 106.7 (4) | C6—Fe1—C7 | 39.98 (18) |
C8—C9—Fe1 | 70.3 (3) | C10—Fe1—C7 | 67.57 (18) |
C10—C9—Fe1 | 69.0 (2) | C4—Fe1—C7 | 116.4 (2) |
C8—C9—H9 | 126.6 | C3—Fe1—C7 | 148.2 (2) |
C10—C9—H9 | 126.6 | C5—Fe1—C7 | 107.6 (2) |
Fe1—C9—H9 | 125.7 | C9—Fe1—C7 | 68.12 (18) |
C6—C10—C9 | 108.3 (4) | C1—Fe1—C8 | 110.5 (2) |
C6—C10—C11 | 123.8 (4) | C6—Fe1—C8 | 67.93 (19) |
C9—C10—C11 | 128.0 (4) | C10—Fe1—C8 | 68.23 (18) |
C6—C10—Fe1 | 69.7 (3) | C4—Fe1—C8 | 149.3 (2) |
C9—C10—Fe1 | 69.9 (3) | C3—Fe1—C8 | 170.53 (18) |
C11—C10—Fe1 | 126.0 (3) | C5—Fe1—C8 | 117.5 (2) |
O1—C11—C12 | 122.6 (4) | C9—Fe1—C8 | 40.70 (17) |
O1—C11—C10 | 119.1 (4) | C7—Fe1—C8 | 40.17 (19) |
C12—C11—C10 | 118.2 (4) | C1—Fe1—C2 | 40.6 (2) |
C13—C12—C11 | 121.6 (4) | C6—Fe1—C2 | 150.3 (2) |
C13—C12—H12 | 119.2 | C10—Fe1—C2 | 118.6 (2) |
C11—C12—H12 | 119.2 | C4—Fe1—C2 | 67.6 (2) |
N1—C13—C12 | 123.8 (4) | C3—Fe1—C2 | 40.8 (2) |
N1—C13—C14 | 118.1 (4) | C5—Fe1—C2 | 68.5 (2) |
C12—C13—C14 | 117.7 (4) | C9—Fe1—C2 | 110.12 (19) |
O2—C14—O3 | 124.5 (4) | C7—Fe1—C2 | 169.2 (2) |
O2—C14—C13 | 122.5 (5) | C8—Fe1—C2 | 131.7 (2) |
O3—C14—C13 | 112.9 (4) | C13—N1—C17 | 128.3 (4) |
C16—C15—O3 | 112.6 (5) | C13—N1—H1N | 115.8 |
C16—C15—H15A | 109.1 | C17—N1—H1N | 115.8 |
O3—C15—H15A | 109.1 | C14—O3—C15 | 118.5 (4) |
C16—C15—H15B | 109.1 | C20—O4—H4O | 109.5 |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C17H16NO4)] |
Mr | 419.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 15.398 (2), 11.5131 (15), 10.9413 (11) |
β (°) | 95.43 (2) |
V (Å3) | 1931.0 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.81 |
Crystal size (mm) | 0.24 × 0.21 × 0.12 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.821, 0.902 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3787, 3787, 2461 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.172, 1.08 |
No. of reflections | 3787 |
No. of parameters | 237 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.86 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SIR2004 (Burla et al., 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999), publCIF (Westrip, 2010).
Acknowledgements
The authors thank the Natural Science Foundation of China (No. 20572091) and Natural Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elassar, A. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463–8480. Web of Science CrossRef CAS Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kascheres, C. M. (2003). J. Braz. Chem. Soc. 14, 945–969. CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Prokop, P., Gelbrich, T., Sieler, J., Richter, R. & Beyer, L. (2001). Z. Anorg. Allg. Chem. 627, 965–972. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, Y.-C., Cheng, H.-J. & Zhang, S.-H. (2008). Polyhedron, 27, 3331–3336. Web of Science CSD CrossRef CAS Google Scholar
Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. & Hu, X.-Y. (2004). Polyhedron, 23, 15–21. Web of Science CSD CrossRef CAS Google Scholar
Shi, Y.-C., Zhang, S.-H., Cheng, H.-J. & Sun, W.-P. (2006). Acta Cryst. C62, m407–m410. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently enaminones and related compounds have been used as ligands in coordination chemistry and have been extensively used as versatile synthetic intermediates that combine the ambident nucleophilicity of enamines with the ambident electrophilicity of enones for the preparation of a variety of heterocyclic systems including some natural products and analogues (Elassar & El-Khair, 2003; Kascheres, 2003).
It has been shown that primay amines, Ar'NH2, react smoothly with β-diketones, ArCOCH2COR, to give enaminones, ArCOCH═ C(NHAr')R, in good yields (Shi et al., 2004). As part of an ongoing investigation of the chemistry of ferrocenyl enaminones and related compounds (Shi et al., 2006), the title compound, (C5H5)FeC5H4COCH═C(NHC6H4-4-OH)CO2CH2CH3, has been synthesized via the reaction of 4-aminophenol with (C5H5)FeC5H4COCH2COCO2CH2CH3 and structurally characterized.
As noted in the compounds previously reported, the O═ C–C═C–N moiety is planar and the bond lengths indicate electron delocalization (Shi et al., 2004). The O═C–C═C–N plane is twisted with respect to the benzene and substituted cyclopentadienyl rings by 44.2 (2) and 13.8 (3)° whereas the values in an analogous compound are 38.2 (2) and 2.5 (2)° (Prokop et al., 2001). Furthermore, the O═C–C═C–N plane and the O═ C–O plane make a dihedral angle of 55.5 (6)° which is greater than that (48.1 (4)°) of the analogous compound. Consistent with the large dihedral angle between the O═C–C═C–N plane and ester group, the C13–C14 bond, is typical of a single bond (Csp2–Csp2), and therefore indicates that the ester group is not involved in the conjugation of the O═C–C═C–N moiety. Similarly, the C10–C11 bond suggests that the substituted cyclopentadienyl ring is not involved in the conjugation of the O═ C–C═C–N moiety (Shi et al., 2006).