metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (Z)-4-ferrocenyl-2-(4-hy­dr­oxy­anilino)-4-oxobutenoate

aDepartment of Chemical Engineering, Nantong Vocational College, Nantong 226007, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Yangzhou University, 180 SiWangTing Road, Yangzhou 225002, People's Republic of China, cTesting Center, Yangzhou University, Yangzhou 225009, People's Republic of China, and dHubei Research Institue of Geophysics Survey and Design, Wuhan 430056, People's Republic of China
*Correspondence e-mail: ycshi@yzu.edu.cn

(Received 1 October 2011; accepted 10 November 2011; online 16 November 2011)

In the title compound, [Fe(C5H5)(C17H16NO4)], the O=C—C=C—N mean plane is twisted with respect to the mean planes of the benzene and substituted cyclo­penta­dienyl rings by 44.2 (2) and 13.8 (3)°, respectively. Furthermore, the O=C—C=C—N mean plane and the O=C—O(ester) plane make a dihedral angle of 55.5 (6)°. Consistent with this large dihedral angle, the linking C—C bond [1.507 (6) Å] does not show any (delocalized) double-bond character.

Related literature

For background to the use of enamino­nes and enamine esters in coordination chemistry, supra­molecular chemistry and organometallic chemistry, see: Prokop et al. (2001[Prokop, P., Gelbrich, T., Sieler, J., Richter, R. & Beyer, L. (2001). Z. Anorg. Allg. Chem. 627, 965-972.]); Elassar & El-Khair (2003[Elassar, A. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463-8480.]); Kascheres (2003[Kascheres, C. M. (2003). J. Braz. Chem. Soc. 14, 945-969.]); Shi et al. (2004[Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. & Hu, X.-Y. (2004). Polyhedron, 23, 15-21.], 2006[Shi, Y.-C., Zhang, S.-H., Cheng, H.-J. & Sun, W.-P. (2006). Acta Cryst. C62, m407-m410.], 2008[Shi, Y.-C., Cheng, H.-J. & Zhang, S.-H. (2008). Polyhedron, 27, 3331-3336.]). For related structures, see: Prokop et al. (2001[Prokop, P., Gelbrich, T., Sieler, J., Richter, R. & Beyer, L. (2001). Z. Anorg. Allg. Chem. 627, 965-972.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C17H16NO4)]

  • Mr = 419.25

  • Monoclinic, P 21 /c

  • a = 15.398 (2) Å

  • b = 11.5131 (15) Å

  • c = 10.9413 (11) Å

  • β = 95.43 (2)°

  • V = 1931.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 295 K

  • 0.24 × 0.21 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.821, Tmax = 0.902

  • 3787 measured reflections

  • 3787 independent reflections

  • 2461 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.172

  • S = 1.08

  • 3787 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.86 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently enaminones and related compounds have been used as ligands in coordination chemistry and have been extensively used as versatile synthetic intermediates that combine the ambident nucleophilicity of enamines with the ambident electrophilicity of enones for the preparation of a variety of heterocyclic systems including some natural products and analogues (Elassar & El-Khair, 2003; Kascheres, 2003).

It has been shown that primay amines, Ar'NH2, react smoothly with β-diketones, ArCOCH2COR, to give enaminones, ArCOCH C(NHAr')R, in good yields (Shi et al., 2004). As part of an ongoing investigation of the chemistry of ferrocenyl enaminones and related compounds (Shi et al., 2006), the title compound, (C5H5)FeC5H4COCHC(NHC6H4-4-OH)CO2CH2CH3, has been synthesized via the reaction of 4-aminophenol with (C5H5)FeC5H4COCH2COCO2CH2CH3 and structurally characterized.

As noted in the compounds previously reported, the O C–CC–N moiety is planar and the bond lengths indicate electron delocalization (Shi et al., 2004). The OC–CC–N plane is twisted with respect to the benzene and substituted cyclopentadienyl rings by 44.2 (2) and 13.8 (3)° whereas the values in an analogous compound are 38.2 (2) and 2.5 (2)° (Prokop et al., 2001). Furthermore, the OC–CC–N plane and the O C–O plane make a dihedral angle of 55.5 (6)° which is greater than that (48.1 (4)°) of the analogous compound. Consistent with the large dihedral angle between the OC–CC–N plane and ester group, the C13–C14 bond, is typical of a single bond (Csp2–Csp2), and therefore indicates that the ester group is not involved in the conjugation of the OC–CC–N moiety. Similarly, the C10–C11 bond suggests that the substituted cyclopentadienyl ring is not involved in the conjugation of the O C–CC–N moiety (Shi et al., 2006).

Related literature top

For background to the use of enaminones and enamine esters in coordination chemistry, supramolecular chemistry and organometallic chemistry, see: Prokop et al. (2001); Elassar & El-Khair (2003); Kascheres (2003); Shi et al. (2004, 2006, 2008). For related structures, see: Prokop et al. (2001).

Experimental top

A mixture of ethyl 4-ferrocenyl-2, 4-dioxobutanate (1.3 g, 4 mmol) and 4-aminophenol (0.43 g, 4 mmol) in 20 ml of absolute ethanol was refluxed for 18 h. After removal of the solvent, the residue was purified by chromatography on silica gel using diethyl ether and dichloromethane (v/v, 1:10) as an eluant to give the title compound as a purple-red solid (m.p. 412.25-413.65 K, yield 62%). Analysis calculated for C22H21FeNO4: C 63.03, H 5.05, N 3.34%; found: C 63.12, H 5.27, N 3.31%. IR (KBr): 3401 (m, HO), 3078 (m, HN),1706 (s, OC), 1592 and 1562 (vs, s, OC and CC) cm-1. UV (λmax, (ε× 104), in DMF): 290 (1.90, B-band), 420 (1.37, K-band), 574 (0.03, CT-band) 1H NMR (600 MHz, CDCl3, p.p.m.): δ 11.52 (s, HN), 6.88-6.90, 6.79-6.81 (d, d, 2H, 2H, C6H4), 5.94 (s, 1H, HC), 4.83, 4.52 (s, s, 2H, 2H, C5H4), 4.23 (s, 5H, C5H5), 4.17-4.20 (q, 2H, OCH2), 1.10-1.13 (t, 3H, CH3).

Refinement top

All H atoms were placed at geometrically idealized positions and subsequently treated as riding atoms at 295 K, with C–H = 0.93 (aryl and alkenyl), 0.96 (CH3), 0.97 (CH2), N–H = 0.86 Å, or O–H = 0.82Å and Uiso(H) values of 1.2Ueq(C, N) or 1.5Ueq(Cmethyl, O).

Structure description top

Recently enaminones and related compounds have been used as ligands in coordination chemistry and have been extensively used as versatile synthetic intermediates that combine the ambident nucleophilicity of enamines with the ambident electrophilicity of enones for the preparation of a variety of heterocyclic systems including some natural products and analogues (Elassar & El-Khair, 2003; Kascheres, 2003).

It has been shown that primay amines, Ar'NH2, react smoothly with β-diketones, ArCOCH2COR, to give enaminones, ArCOCH C(NHAr')R, in good yields (Shi et al., 2004). As part of an ongoing investigation of the chemistry of ferrocenyl enaminones and related compounds (Shi et al., 2006), the title compound, (C5H5)FeC5H4COCHC(NHC6H4-4-OH)CO2CH2CH3, has been synthesized via the reaction of 4-aminophenol with (C5H5)FeC5H4COCH2COCO2CH2CH3 and structurally characterized.

As noted in the compounds previously reported, the O C–CC–N moiety is planar and the bond lengths indicate electron delocalization (Shi et al., 2004). The OC–CC–N plane is twisted with respect to the benzene and substituted cyclopentadienyl rings by 44.2 (2) and 13.8 (3)° whereas the values in an analogous compound are 38.2 (2) and 2.5 (2)° (Prokop et al., 2001). Furthermore, the OC–CC–N plane and the O C–O plane make a dihedral angle of 55.5 (6)° which is greater than that (48.1 (4)°) of the analogous compound. Consistent with the large dihedral angle between the OC–CC–N plane and ester group, the C13–C14 bond, is typical of a single bond (Csp2–Csp2), and therefore indicates that the ester group is not involved in the conjugation of the OC–CC–N moiety. Similarly, the C10–C11 bond suggests that the substituted cyclopentadienyl ring is not involved in the conjugation of the O C–CC–N moiety (Shi et al., 2006).

For background to the use of enaminones and enamine esters in coordination chemistry, supramolecular chemistry and organometallic chemistry, see: Prokop et al. (2001); Elassar & El-Khair (2003); Kascheres (2003); Shi et al. (2004, 2006, 2008). For related structures, see: Prokop et al. (2001).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Ethyl (Z)-4-ferrocenyl-2-(4-hydroxyanilino)-4-oxobutenoate top
Crystal data top
[Fe(C5H5)(C17H16NO4)]F(000) = 872
Mr = 419.25Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.398 (2) ÅCell parameters from 25 reflections
b = 11.5131 (15) Åθ = 9–15°
c = 10.9413 (11) ŵ = 0.81 mm1
β = 95.43 (2)°T = 295 K
V = 1931.0 (4) Å3Prism, dark-red
Z = 40.24 × 0.21 × 0.12 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2461 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 26.0°, θmin = 1.3°
ω/2θ scansh = 1818
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.821, Tmax = 0.902l = 013
3787 measured reflections3 standard reflections every 200 reflections
3787 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0754P)2 + 1.4205P]
where P = (Fo2 + 2Fc2)/3
3787 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Fe(C5H5)(C17H16NO4)]V = 1931.0 (4) Å3
Mr = 419.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.398 (2) ŵ = 0.81 mm1
b = 11.5131 (15) ÅT = 295 K
c = 10.9413 (11) Å0.24 × 0.21 × 0.12 mm
β = 95.43 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2461 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.821, Tmax = 0.9023 standard reflections every 200 reflections
3787 measured reflections intensity decay: none
3787 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.08Δρmax = 0.58 e Å3
3787 reflectionsΔρmin = 0.86 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1956 (4)0.6697 (5)0.7793 (6)0.0691 (18)
H11.22190.69290.85540.083*
C21.1223 (4)0.5950 (4)0.7610 (5)0.0525 (14)
H21.09200.56000.82080.063*
C31.1049 (3)0.5853 (4)0.6308 (5)0.047
H31.06000.54250.58960.056*
C41.1659 (4)0.6499 (5)0.5765 (5)0.0557 (14)
H41.16870.65680.49230.067*
C51.2226 (4)0.7033 (5)0.6658 (6)0.0630 (16)
H51.26920.75180.65270.076*
C61.0226 (3)0.8596 (4)0.5648 (4)0.0393 (11)
H61.01450.85060.48010.047*
C71.0875 (3)0.9262 (4)0.6291 (5)0.0447 (12)
H71.12940.97000.59410.054*
C81.0791 (3)0.9163 (4)0.7561 (4)0.0375 (11)
H81.11440.95190.81890.045*
C91.0067 (3)0.8421 (4)0.7710 (4)0.0342 (10)
H90.98630.81970.84480.041*
C100.9715 (3)0.8086 (4)0.6503 (4)0.0331 (10)
C110.8947 (3)0.7331 (4)0.6156 (4)0.0321 (10)
C120.8355 (3)0.7087 (4)0.7078 (4)0.0349 (10)
H120.84890.73600.78740.042*
C130.7605 (3)0.6466 (4)0.6807 (4)0.0345 (10)
C140.6966 (3)0.6412 (4)0.7768 (5)0.0410 (11)
C150.6789 (4)0.5986 (5)0.9858 (5)0.058
H15A0.71650.61051.06110.070*
H15B0.63750.66220.97740.070*
C160.6323 (4)0.4913 (6)0.9946 (6)0.073
H16A0.58750.48580.92760.109*
H16B0.60630.48911.07090.109*
H16C0.67190.42730.99110.109*
C170.6719 (3)0.5155 (4)0.5385 (4)0.0377 (11)
C180.6590 (3)0.4246 (4)0.6184 (5)0.0456 (12)
H180.69150.42060.69440.055*
C190.5973 (3)0.3396 (4)0.5842 (5)0.0527 (14)
H190.58660.28080.63910.063*
C200.5514 (3)0.3418 (4)0.4682 (5)0.0500 (13)
C210.5663 (3)0.4315 (4)0.3901 (5)0.0458 (12)
H210.53620.43370.31230.055*
C220.6257 (3)0.5189 (5)0.4256 (4)0.0455 (12)
H220.63390.58000.37230.055*
Fe11.09728 (4)0.75507 (5)0.68129 (6)0.0320 (2)
N10.7364 (2)0.6016 (4)0.5704 (4)0.0428 (10)
H1N0.76340.62810.51090.051*
O10.8815 (2)0.6984 (3)0.5088 (3)0.0456 (8)
O20.6228 (2)0.6770 (3)0.7586 (4)0.0609 (10)
O30.7315 (2)0.6003 (3)0.8827 (3)0.0542 (9)
O40.4934 (3)0.2556 (3)0.4394 (4)0.0656 (11)
H4O0.46090.27430.37890.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.067 (4)0.059 (4)0.075 (4)0.026 (3)0.028 (3)0.021 (3)
C20.067 (4)0.043 (3)0.048 (3)0.019 (3)0.009 (3)0.006 (2)
C30.0470.0330.0600.0000.0090.019
C40.060 (3)0.059 (4)0.050 (3)0.008 (3)0.019 (3)0.011 (3)
C50.038 (3)0.058 (3)0.095 (5)0.005 (3)0.016 (3)0.021 (3)
C60.035 (2)0.044 (3)0.039 (3)0.003 (2)0.004 (2)0.005 (2)
C70.038 (3)0.036 (3)0.060 (3)0.008 (2)0.004 (2)0.011 (2)
C80.045 (3)0.028 (2)0.039 (3)0.005 (2)0.000 (2)0.003 (2)
C90.039 (2)0.026 (2)0.038 (3)0.0017 (19)0.007 (2)0.0042 (19)
C100.032 (2)0.032 (2)0.036 (2)0.0021 (19)0.0079 (19)0.003 (2)
C110.025 (2)0.036 (3)0.035 (2)0.0023 (18)0.0025 (17)0.002 (2)
C120.030 (2)0.039 (2)0.036 (2)0.0015 (19)0.0020 (19)0.001 (2)
C130.029 (2)0.032 (2)0.043 (3)0.0004 (19)0.010 (2)0.005 (2)
C140.032 (3)0.035 (3)0.058 (3)0.006 (2)0.015 (2)0.005 (2)
C150.0580.0580.0580.0000.0060.000
C160.0730.0730.0730.0000.0070.000
C170.024 (2)0.041 (3)0.048 (3)0.0017 (19)0.004 (2)0.004 (2)
C180.039 (3)0.042 (3)0.055 (3)0.000 (2)0.003 (2)0.000 (2)
C190.048 (3)0.039 (3)0.071 (4)0.005 (2)0.008 (3)0.010 (3)
C200.028 (2)0.040 (3)0.081 (4)0.003 (2)0.001 (3)0.009 (3)
C210.034 (3)0.052 (3)0.049 (3)0.007 (2)0.004 (2)0.001 (3)
C220.040 (3)0.048 (3)0.049 (3)0.009 (2)0.010 (2)0.004 (2)
Fe10.0290 (3)0.0303 (3)0.0369 (4)0.0022 (3)0.0051 (2)0.0034 (3)
N10.036 (2)0.052 (3)0.042 (2)0.0086 (19)0.0096 (18)0.0059 (19)
O10.0419 (19)0.062 (2)0.0332 (18)0.0151 (17)0.0043 (14)0.0024 (16)
O20.0313 (19)0.078 (3)0.074 (3)0.0073 (19)0.0108 (18)0.011 (2)
O30.049 (2)0.060 (2)0.057 (2)0.0072 (18)0.0193 (18)0.0076 (19)
O40.053 (2)0.050 (2)0.091 (3)0.017 (2)0.010 (2)0.003 (2)
Geometric parameters (Å, º) top
C1—C51.401 (9)C11—O11.234 (5)
C1—C21.418 (8)C11—C121.449 (6)
C1—Fe12.025 (6)C12—C131.367 (6)
C1—H10.9300C12—H120.9300
C2—C31.430 (7)C13—N11.333 (6)
C2—Fe12.059 (5)C13—C141.507 (6)
C2—H20.9300C14—O21.208 (6)
C3—C41.375 (7)C14—O31.318 (6)
C3—Fe12.038 (5)C15—C161.437 (8)
C3—H30.9300C15—O31.450 (6)
C4—C51.391 (8)C15—H15A0.9700
C4—Fe12.031 (5)C15—H15B0.9700
C4—H40.9300C16—H16A0.9600
C5—Fe12.042 (5)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C6—C71.396 (6)C17—C221.367 (6)
C6—C101.407 (6)C17—C181.390 (6)
C6—Fe12.029 (5)C17—N11.424 (6)
C6—H60.9300C18—C191.390 (7)
C7—C81.412 (7)C18—H180.9300
C7—Fe12.053 (5)C19—C201.393 (7)
C7—H70.9300C19—H190.9300
C8—C91.426 (6)C20—O41.352 (6)
C8—Fe12.059 (4)C20—C211.373 (7)
C8—H80.9300C21—C221.390 (7)
C9—C101.432 (6)C21—H210.9300
C9—Fe12.043 (4)C22—H220.9300
C9—H90.9300N1—H1N0.8600
C10—C111.487 (6)O4—H4O0.8200
C10—Fe12.031 (4)
C5—C1—C2110.0 (5)O3—C15—H15B109.1
C5—C1—Fe170.5 (3)H15A—C15—H15B107.8
C2—C1—Fe171.0 (3)C15—C16—H16A109.5
C5—C1—H1125.0C15—C16—H16B109.5
C2—C1—H1125.0H16A—C16—H16B109.5
Fe1—C1—H1125.1C15—C16—H16C109.5
C1—C2—C3105.0 (5)H16A—C16—H16C109.5
C1—C2—Fe168.4 (3)H16B—C16—H16C109.5
C3—C2—Fe168.8 (3)C22—C17—C18119.8 (4)
C1—C2—H2127.5C22—C17—N1119.6 (4)
C3—C2—H2127.5C18—C17—N1120.5 (4)
Fe1—C2—H2126.9C19—C18—C17119.7 (5)
C4—C3—C2108.5 (5)C19—C18—H18120.2
C4—C3—Fe170.0 (3)C17—C18—H18120.2
C2—C3—Fe170.4 (3)C18—C19—C20120.5 (5)
C4—C3—H3125.7C18—C19—H19119.7
C2—C3—H3125.7C20—C19—H19119.7
Fe1—C3—H3125.4O4—C20—C21123.5 (5)
C3—C4—C5110.2 (5)O4—C20—C19117.8 (5)
C3—C4—Fe170.5 (3)C21—C20—C19118.7 (5)
C5—C4—Fe170.4 (3)C20—C21—C22121.0 (5)
C3—C4—H4124.9C20—C21—H21119.5
C5—C4—H4124.9C22—C21—H21119.5
Fe1—C4—H4125.7C17—C22—C21120.3 (5)
C4—C5—C1106.3 (5)C17—C22—H22119.9
C4—C5—Fe169.6 (3)C21—C22—H22119.9
C1—C5—Fe169.2 (3)C1—Fe1—C6166.2 (3)
C4—C5—H5126.8C1—Fe1—C10152.8 (3)
C1—C5—H5126.8C6—Fe1—C1040.54 (17)
Fe1—C5—H5125.9C1—Fe1—C466.9 (2)
C7—C6—C10108.3 (4)C6—Fe1—C4107.1 (2)
C7—C6—Fe170.9 (3)C10—Fe1—C4128.7 (2)
C10—C6—Fe169.8 (3)C1—Fe1—C367.6 (2)
C7—C6—H6125.9C6—Fe1—C3116.3 (2)
C10—C6—H6125.9C10—Fe1—C3108.93 (19)
Fe1—C6—H6125.0C4—Fe1—C339.5 (2)
C6—C7—C8108.9 (4)C1—Fe1—C540.3 (2)
C6—C7—Fe169.1 (3)C6—Fe1—C5127.2 (2)
C8—C7—Fe170.1 (3)C10—Fe1—C5165.7 (2)
C6—C7—H7125.6C4—Fe1—C539.9 (2)
C8—C7—H7125.6C3—Fe1—C567.6 (2)
Fe1—C7—H7126.8C1—Fe1—C9119.6 (2)
C7—C8—C9107.8 (4)C6—Fe1—C968.80 (18)
C7—C8—Fe169.7 (3)C10—Fe1—C941.16 (17)
C9—C8—Fe169.0 (2)C4—Fe1—C9168.2 (2)
C7—C8—H8126.1C3—Fe1—C9131.33 (18)
C9—C8—H8126.1C5—Fe1—C9151.3 (2)
Fe1—C8—H8126.7C1—Fe1—C7130.1 (2)
C8—C9—C10106.7 (4)C6—Fe1—C739.98 (18)
C8—C9—Fe170.3 (3)C10—Fe1—C767.57 (18)
C10—C9—Fe169.0 (2)C4—Fe1—C7116.4 (2)
C8—C9—H9126.6C3—Fe1—C7148.2 (2)
C10—C9—H9126.6C5—Fe1—C7107.6 (2)
Fe1—C9—H9125.7C9—Fe1—C768.12 (18)
C6—C10—C9108.3 (4)C1—Fe1—C8110.5 (2)
C6—C10—C11123.8 (4)C6—Fe1—C867.93 (19)
C9—C10—C11128.0 (4)C10—Fe1—C868.23 (18)
C6—C10—Fe169.7 (3)C4—Fe1—C8149.3 (2)
C9—C10—Fe169.9 (3)C3—Fe1—C8170.53 (18)
C11—C10—Fe1126.0 (3)C5—Fe1—C8117.5 (2)
O1—C11—C12122.6 (4)C9—Fe1—C840.70 (17)
O1—C11—C10119.1 (4)C7—Fe1—C840.17 (19)
C12—C11—C10118.2 (4)C1—Fe1—C240.6 (2)
C13—C12—C11121.6 (4)C6—Fe1—C2150.3 (2)
C13—C12—H12119.2C10—Fe1—C2118.6 (2)
C11—C12—H12119.2C4—Fe1—C267.6 (2)
N1—C13—C12123.8 (4)C3—Fe1—C240.8 (2)
N1—C13—C14118.1 (4)C5—Fe1—C268.5 (2)
C12—C13—C14117.7 (4)C9—Fe1—C2110.12 (19)
O2—C14—O3124.5 (4)C7—Fe1—C2169.2 (2)
O2—C14—C13122.5 (5)C8—Fe1—C2131.7 (2)
O3—C14—C13112.9 (4)C13—N1—C17128.3 (4)
C16—C15—O3112.6 (5)C13—N1—H1N115.8
C16—C15—H15A109.1C17—N1—H1N115.8
O3—C15—H15A109.1C14—O3—C15118.5 (4)
C16—C15—H15B109.1C20—O4—H4O109.5

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C17H16NO4)]
Mr419.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.398 (2), 11.5131 (15), 10.9413 (11)
β (°) 95.43 (2)
V3)1931.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.24 × 0.21 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.821, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
3787, 3787, 2461
Rint0.000
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.172, 1.08
No. of reflections3787
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.86

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SIR2004 (Burla et al., 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Natural Science Foundation of China (No. 20572091) and Natural Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElassar, A. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463–8480.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKascheres, C. M. (2003). J. Braz. Chem. Soc. 14, 945–969.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationProkop, P., Gelbrich, T., Sieler, J., Richter, R. & Beyer, L. (2001). Z. Anorg. Allg. Chem. 627, 965–972.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y.-C., Cheng, H.-J. & Zhang, S.-H. (2008). Polyhedron, 27, 3331–3336.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. & Hu, X.-Y. (2004). Polyhedron, 23, 15–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, Y.-C., Zhang, S.-H., Cheng, H.-J. & Sun, W.-P. (2006). Acta Cryst. C62, m407–m410.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds