metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Ferrocen-1-yl)meth­yl]-3-(naphthalen-1-yl)thio­urea

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, People's Republic of China
*Correspondence e-mail: lixia@hncj.edu.cn

(Received 10 October 2011; accepted 5 November 2011; online 12 November 2011)

In the title compound, [Fe(C5H5)(C17H15N2S)], the cyclo­penta­dienyl (Cp) rings are almost parallel and essentially eclipsed, with a dihedral angle between the Cp ring planes of 0.807 (11)°. The Fe atom is slightly closer to the substituted cyclo­penta­dienyl ring, with an Fe–centroid distance of 1.6510 (8) Å, compared with 1.6597 (8) Å for the unsubstituted ring. The bridging unit between the substituted Cp ring and the naphthyl ring system is planar within 0.0174 Å and makes dihedral angles of 59.032 (10) and 66.02 (2)°, respectively, with these two rings. The angle between the substituted Cp ring and the naphthyl ring system is 72.094 (18)°. The H atoms of the NH groups of the thio­urea moiety are positioned anti with respect to each other. In the crystal, mol­ecules form centrosymmetric dimers via pairs of N—H⋯S hydrogen bonds.

Related literature

For applications of thio­urea in the field of medicine, see: Di Grandi et al. (2004[Di Grandi, M. J., Curran, K. J., Feigelson, G., Prashad, A., Ross, A. A., Visalli, R., Fairhurst, J., Feld, B. & Bloom, J. D. (2004). Bioorg. Med. Chem. Lett. 14, 4157-4160.]); Suh et al. (2005[Suh et al. (2005). J. Med. Chem. 48, 5823-5836.]); Kaymakcioglu et al. (2005[Kaymakcioglu, B. K., Rollas, S., Korcegez, E. & Aricioglu, F. (2005). Eur. J. Pharm. Sci. 26, 97-103.]); Han et al. (2006[Han, T., Cho, J. H. & Oh, C. H. (2006). Eur. J. Med. Chem. 41, 825-832.]), in bioorganic chemistry, see: Rostom (2006[Rostom, S. A. F. (2006). Bioorg. Med. Chem. 14, 6475-6485.]) and in supra­molecular chemistry, see: Henderson et al. (2001[Henderson, W., Nicholson, B. K. & Rickard, C. E. F. (2001). Inorg. Chim. Acta, 320, 101-109.]); Heck & Marsura (2003[Heck, R. & Marsura, A. (2003). Tetrahedron Lett. 44, 1533-1536.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C17H15N2S)]

  • Mr = 400.31

  • Triclinic, [P \overline 1]

  • a = 7.958 (3) Å

  • b = 10.890 (5) Å

  • c = 12.357 (5) Å

  • α = 66.886 (6)°

  • β = 78.637 (8)°

  • γ = 73.306 (8)°

  • V = 939.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 296 K

  • 0.39 × 0.24 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.755, Tmax = 0.867

  • 5178 measured reflections

  • 3645 independent reflections

  • 2741 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.04

  • 3645 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1i 0.90 (3) 2.45 (3) 3.326 (3) 167 (2)
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiourea and its derivatives have attracted great attention because of their potential applications in the field of medicine (Di Grandi et al., 2004; Suh et al., 2005; Kaymakcioglu et al., 2005; Han et al., 2006), bioorganic (Rostom et al., 2006) and supramolecular chemistry (Henderson et al., 2001; Heck et al., 2003). Detailed information on their molecular and crystal structures is necessary to understand their biologic activity and coordination possibility. Here we want to report the crystal structure of a new ferrocene-containing thiourea, 1-((ferroecen-1-yl)methyl)-3-(naphthalen-1-yl)thiourea.

The molecular structure of the title compound is composed of a (ferroecen-1-yl)methyl group and a naphthalen group joined by an organic thiourea spacer. The Fe—C bond distances within the ferrocene group are in the range of 2.043 (3)–2.048 (3) Å for the substituted cyclopentadienyl (Cp) ring [C1—C5] and 2.033 (3)–2.048 (3) Å for the unsubstituted Cp ring [C6—C10]. The Cp rings are almost parallel and are essentially eclipsed, and the dihedral angle between the Cp ring planes is 0.807 (11) °. The Fe atom is slightly closer to the substituted cyclopentadienyl ring, with a Fe-centroid distance of 1.6510 (8) Å, compared with 1.6597 (8) Å for the unsubstituted ring. The bridging unit between the substituted Cp ring and naphthyl rings is planar within 0.0174 Å and makes dihedral angles of 59.032 (10) ° and 66.019 (21) °, respectively, with these two rings, while the angle between the substituted Cp ring and naphthyl rings is 72.094 (18) °. The H atoms of the NH groups of thiourea are positioned anti to each other. In the crystal, the molecules form centrosymmetric dimers via intermolecular N—H···S hydrogen bonds.

Related literature top

For applications of thiourea in the field of medicine, see: Di Grandi et al. (2004); Suh et al. (2005); Kaymakcioglu et al. (2005); Han et al. (2006), in bioorganic chemistry, see: Rostom (2006) and in supramolecular chemistry, see: Henderson et al. (2001); Heck & Marsura (2003).

Experimental top

To a solution of (ferrocene-1-yl)methanamine (1.075 g, 5 mmol) in MeOH (30 ml), 1-naphthyl isothiocyanate (0.925 g, 5 mmol) was added. The reaction mixture was stirred at room temperature for 12 h. The resulting solution was concentrated to about 10 ml and then cooled at ice-bath. The yellow precipitate was collected by filtration and washed with Ether several times. The crude product was purified by recrystallization from CH2Cl2 / MeOH to give 1-((ferroecen-1-yl)methyl)-3-(naphthalen-1-yl)thiourea as yellow block crystals.

Refinement top

H atoms on both the N and C atoms were positioned geometrically with N—H = 0.86 Å, C—H = 0.93 and 0.97 Å for aromatic and methyl H, and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(parent atom).

Structure description top

Thiourea and its derivatives have attracted great attention because of their potential applications in the field of medicine (Di Grandi et al., 2004; Suh et al., 2005; Kaymakcioglu et al., 2005; Han et al., 2006), bioorganic (Rostom et al., 2006) and supramolecular chemistry (Henderson et al., 2001; Heck et al., 2003). Detailed information on their molecular and crystal structures is necessary to understand their biologic activity and coordination possibility. Here we want to report the crystal structure of a new ferrocene-containing thiourea, 1-((ferroecen-1-yl)methyl)-3-(naphthalen-1-yl)thiourea.

The molecular structure of the title compound is composed of a (ferroecen-1-yl)methyl group and a naphthalen group joined by an organic thiourea spacer. The Fe—C bond distances within the ferrocene group are in the range of 2.043 (3)–2.048 (3) Å for the substituted cyclopentadienyl (Cp) ring [C1—C5] and 2.033 (3)–2.048 (3) Å for the unsubstituted Cp ring [C6—C10]. The Cp rings are almost parallel and are essentially eclipsed, and the dihedral angle between the Cp ring planes is 0.807 (11) °. The Fe atom is slightly closer to the substituted cyclopentadienyl ring, with a Fe-centroid distance of 1.6510 (8) Å, compared with 1.6597 (8) Å for the unsubstituted ring. The bridging unit between the substituted Cp ring and naphthyl rings is planar within 0.0174 Å and makes dihedral angles of 59.032 (10) ° and 66.019 (21) °, respectively, with these two rings, while the angle between the substituted Cp ring and naphthyl rings is 72.094 (18) °. The H atoms of the NH groups of thiourea are positioned anti to each other. In the crystal, the molecules form centrosymmetric dimers via intermolecular N—H···S hydrogen bonds.

For applications of thiourea in the field of medicine, see: Di Grandi et al. (2004); Suh et al. (2005); Kaymakcioglu et al. (2005); Han et al. (2006), in bioorganic chemistry, see: Rostom (2006) and in supramolecular chemistry, see: Henderson et al. (2001); Heck & Marsura (2003).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids.
1-[(Ferrocen-1-yl)methyl]-3-(naphthalen-1-yl)thiourea top
Crystal data top
[Fe(C5H5)(C17H15N2S)]V = 939.1 (7) Å3
Mr = 400.31Z = 2
Triclinic, P1F(000) = 416
Hall symbol: -P 1Dx = 1.416 Mg m3
a = 7.958 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.890 (5) Åθ = 1.8–28.2°
c = 12.357 (5) ŵ = 0.92 mm1
α = 66.886 (6)°T = 296 K
β = 78.637 (8)°Block, orange
γ = 73.306 (8)°0.39 × 0.24 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3645 independent reflections
Radiation source: fine-focus sealed tube2741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 99
Tmin = 0.755, Tmax = 0.867k = 913
5178 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.1883P]
where P = (Fo2 + 2Fc2)/3
3645 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Fe(C5H5)(C17H15N2S)]γ = 73.306 (8)°
Mr = 400.31V = 939.1 (7) Å3
Triclinic, P1Z = 2
a = 7.958 (3) ÅMo Kα radiation
b = 10.890 (5) ŵ = 0.92 mm1
c = 12.357 (5) ÅT = 296 K
α = 66.886 (6)°0.39 × 0.24 × 0.16 mm
β = 78.637 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3645 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2741 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.867Rint = 0.018
5178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.35 e Å3
3645 reflectionsΔρmin = 0.32 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.28952 (5)0.28154 (4)0.44361 (3)0.04797 (15)
S10.81798 (10)0.59967 (7)0.11000 (7)0.0553 (2)
N10.6093 (3)0.4257 (2)0.2183 (2)0.0559 (7)
N20.8196 (3)0.3739 (2)0.0768 (2)0.0513 (6)
C10.4345 (4)0.4236 (3)0.4046 (2)0.0500 (7)
C20.2684 (4)0.4629 (3)0.4647 (3)0.0558 (7)
H20.18440.54430.43580.067*
C30.2523 (5)0.3575 (3)0.5759 (3)0.0645 (8)
H30.15560.35700.63220.077*
C40.4083 (5)0.2533 (4)0.5866 (3)0.0689 (9)
H40.43260.17210.65120.083*
C50.5222 (4)0.2936 (3)0.4814 (3)0.0602 (8)
H50.63430.24380.46550.072*
C60.2304 (5)0.2825 (4)0.2899 (3)0.0716 (9)
H60.25580.34360.21460.086*
C70.0759 (4)0.3020 (4)0.3636 (3)0.0747 (10)
H70.01900.37780.34580.090*
C80.0883 (6)0.1880 (5)0.4690 (4)0.0851 (12)
H80.00400.17390.53380.102*
C90.2543 (6)0.0979 (4)0.4579 (4)0.0871 (12)
H90.29870.01370.51470.104*
C100.3395 (5)0.1579 (4)0.3468 (4)0.0780 (10)
H100.45010.12040.31660.094*
C110.5046 (4)0.5097 (3)0.2864 (3)0.0634 (8)
H11A0.40710.57460.24290.076*
H11B0.57700.56150.29680.076*
C120.7436 (3)0.4578 (3)0.1373 (2)0.0433 (6)
C130.7688 (3)0.2533 (3)0.0865 (2)0.0445 (6)
C140.6119 (4)0.2638 (3)0.0504 (3)0.0550 (7)
H140.53620.34970.02150.066*
C150.5630 (4)0.1469 (4)0.0563 (3)0.0646 (9)
H150.45410.15530.03400.078*
C160.6750 (4)0.0220 (4)0.0946 (3)0.0623 (8)
H160.64290.05460.09680.075*
C170.8410 (4)0.0057 (3)0.1316 (2)0.0492 (7)
C180.9628 (5)0.1220 (3)0.1691 (3)0.0666 (9)
H180.93600.19940.16860.080*
C191.1183 (5)0.1343 (3)0.2060 (3)0.0779 (10)
H191.19660.21980.23030.093*
C201.1618 (4)0.0202 (4)0.2079 (3)0.0700 (9)
H201.26780.03050.23510.084*
C211.0513 (4)0.1059 (3)0.1705 (3)0.0562 (7)
H211.08280.18140.17140.067*
C220.8878 (3)0.1236 (3)0.1299 (2)0.0426 (6)
H1A0.577 (4)0.357 (3)0.230 (2)0.051*
H2A0.921 (4)0.389 (3)0.033 (2)0.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0496 (2)0.0505 (3)0.0520 (3)0.01930 (18)0.00125 (18)0.02317 (19)
S10.0595 (4)0.0442 (4)0.0712 (5)0.0267 (3)0.0129 (4)0.0287 (4)
N10.0636 (15)0.0482 (14)0.0679 (16)0.0311 (12)0.0227 (12)0.0341 (13)
N20.0472 (13)0.0477 (14)0.0668 (16)0.0240 (11)0.0165 (11)0.0298 (12)
C10.0560 (16)0.0482 (16)0.0578 (17)0.0207 (13)0.0047 (13)0.0301 (14)
C20.0613 (18)0.0536 (17)0.0584 (18)0.0166 (14)0.0067 (14)0.0298 (15)
C30.074 (2)0.076 (2)0.0555 (19)0.0343 (18)0.0120 (16)0.0334 (17)
C40.091 (3)0.072 (2)0.0521 (19)0.0320 (19)0.0182 (18)0.0162 (17)
C50.0537 (17)0.063 (2)0.078 (2)0.0135 (14)0.0135 (16)0.0362 (17)
C60.083 (2)0.090 (3)0.063 (2)0.039 (2)0.0065 (19)0.036 (2)
C70.058 (2)0.089 (3)0.096 (3)0.0177 (18)0.0148 (19)0.049 (2)
C80.087 (3)0.119 (3)0.081 (3)0.069 (3)0.015 (2)0.048 (3)
C90.113 (3)0.055 (2)0.107 (3)0.035 (2)0.040 (3)0.019 (2)
C100.076 (2)0.086 (3)0.104 (3)0.026 (2)0.004 (2)0.064 (3)
C110.076 (2)0.0511 (18)0.070 (2)0.0252 (15)0.0233 (16)0.0351 (16)
C120.0441 (14)0.0395 (14)0.0496 (15)0.0149 (11)0.0004 (12)0.0178 (12)
C130.0486 (15)0.0469 (15)0.0494 (15)0.0234 (12)0.0082 (12)0.0267 (13)
C140.0532 (17)0.0577 (18)0.0621 (18)0.0174 (14)0.0050 (14)0.0269 (15)
C150.0611 (19)0.088 (3)0.068 (2)0.0358 (18)0.0002 (16)0.0422 (19)
C160.079 (2)0.072 (2)0.0627 (19)0.0482 (18)0.0104 (16)0.0378 (17)
C170.0658 (18)0.0450 (16)0.0458 (15)0.0278 (14)0.0115 (13)0.0232 (13)
C180.097 (3)0.0452 (18)0.0589 (19)0.0302 (17)0.0167 (18)0.0212 (15)
C190.090 (3)0.0484 (19)0.074 (2)0.0020 (18)0.003 (2)0.0143 (17)
C200.0595 (19)0.067 (2)0.075 (2)0.0083 (16)0.0095 (17)0.0198 (18)
C210.0570 (17)0.0568 (18)0.0623 (18)0.0237 (14)0.0004 (14)0.0247 (15)
C220.0479 (15)0.0470 (15)0.0425 (14)0.0238 (12)0.0093 (12)0.0233 (12)
Geometric parameters (Å, º) top
Fe1—C92.033 (3)C6—H60.9300
Fe1—C62.040 (3)C7—C81.400 (5)
Fe1—C102.042 (3)C7—H70.9300
Fe1—C42.043 (3)C8—C91.420 (6)
Fe1—C32.043 (3)C8—H80.9300
Fe1—C12.044 (3)C9—C101.398 (5)
Fe1—C72.046 (3)C9—H90.9300
Fe1—C82.047 (3)C10—H100.9300
Fe1—C52.047 (3)C11—H11A0.9700
Fe1—C22.048 (3)C11—H11B0.9700
S1—C121.699 (3)C13—C141.366 (4)
N1—C121.336 (3)C13—C221.420 (4)
N1—C111.458 (3)C14—C151.407 (4)
N1—H1A0.81 (3)C14—H140.9300
N2—C121.342 (3)C15—C161.354 (5)
N2—C131.437 (3)C15—H150.9300
N2—H2A0.90 (3)C16—C171.423 (4)
C1—C21.421 (4)C16—H160.9300
C1—C51.425 (4)C17—C181.409 (4)
C1—C111.493 (4)C17—C221.428 (3)
C2—C31.414 (4)C18—C191.355 (5)
C2—H20.9300C18—H180.9300
C3—C41.409 (5)C19—C201.393 (5)
C3—H30.9300C19—H190.9300
C4—C51.421 (4)C20—C211.357 (4)
C4—H40.9300C20—H200.9300
C5—H50.9300C21—C221.421 (4)
C6—C101.380 (5)C21—H210.9300
C6—C71.396 (5)
C9—Fe1—C666.95 (16)C4—C5—C1108.0 (3)
C9—Fe1—C1040.13 (16)C4—C5—Fe169.49 (17)
C6—Fe1—C1039.51 (14)C1—C5—Fe169.49 (16)
C9—Fe1—C4108.65 (15)C4—C5—H5126.0
C6—Fe1—C4165.75 (15)C1—C5—H5126.0
C10—Fe1—C4128.50 (16)Fe1—C5—H5126.6
C9—Fe1—C3127.08 (16)C10—C6—C7108.9 (3)
C6—Fe1—C3153.19 (15)C10—C6—Fe170.3 (2)
C10—Fe1—C3165.09 (16)C7—C6—Fe170.26 (19)
C4—Fe1—C340.33 (13)C10—C6—H6125.6
C9—Fe1—C1154.07 (16)C7—C6—H6125.6
C6—Fe1—C1109.02 (13)Fe1—C6—H6125.4
C10—Fe1—C1120.19 (14)C6—C7—C8108.3 (4)
C4—Fe1—C168.58 (12)C6—C7—Fe169.80 (19)
C3—Fe1—C168.53 (12)C8—C7—Fe170.0 (2)
C9—Fe1—C767.36 (16)C6—C7—H7125.8
C6—Fe1—C739.94 (13)C8—C7—H7125.8
C10—Fe1—C767.04 (15)Fe1—C7—H7125.9
C4—Fe1—C7152.63 (15)C7—C8—C9106.7 (3)
C3—Fe1—C7118.87 (14)C7—C8—Fe169.98 (19)
C1—Fe1—C7127.19 (14)C9—C8—Fe169.1 (2)
C9—Fe1—C840.73 (16)C7—C8—H8126.6
C6—Fe1—C867.34 (15)C9—C8—H8126.6
C10—Fe1—C867.84 (15)Fe1—C8—H8125.8
C4—Fe1—C8118.94 (15)C10—C9—C8108.1 (4)
C3—Fe1—C8107.16 (14)C10—C9—Fe170.29 (19)
C1—Fe1—C8163.82 (16)C8—C9—Fe170.2 (2)
C7—Fe1—C839.99 (15)C10—C9—H9125.9
C9—Fe1—C5120.16 (15)C8—C9—H9125.9
C6—Fe1—C5128.50 (13)Fe1—C9—H9125.2
C10—Fe1—C5109.68 (14)C6—C10—C9108.0 (4)
C4—Fe1—C540.66 (13)C6—C10—Fe170.17 (19)
C3—Fe1—C568.15 (13)C9—C10—Fe169.6 (2)
C1—Fe1—C540.76 (12)C6—C10—H10126.0
C7—Fe1—C5165.29 (15)C9—C10—H10126.0
C8—Fe1—C5153.72 (17)Fe1—C10—H10125.8
C9—Fe1—C2164.22 (17)N1—C11—C1111.5 (2)
C6—Fe1—C2120.10 (14)N1—C11—H11A109.3
C10—Fe1—C2153.81 (15)C1—C11—H11A109.3
C4—Fe1—C267.90 (13)N1—C11—H11B109.3
C3—Fe1—C240.44 (12)C1—C11—H11B109.3
C1—Fe1—C240.65 (11)H11A—C11—H11B108.0
C7—Fe1—C2108.15 (14)N1—C12—N2117.7 (2)
C8—Fe1—C2126.17 (15)N1—C12—S1122.01 (19)
C5—Fe1—C268.03 (12)N2—C12—S1120.24 (19)
C12—N1—C11125.0 (2)C14—C13—C22120.7 (2)
C12—N1—H1A120 (2)C14—C13—N2120.6 (3)
C11—N1—H1A115 (2)C22—C13—N2118.7 (2)
C12—N2—C13127.0 (2)C13—C14—C15121.1 (3)
C12—N2—H2A115.8 (17)C13—C14—H14119.4
C13—N2—H2A116.7 (17)C15—C14—H14119.4
C2—C1—C5107.2 (3)C16—C15—C14119.8 (3)
C2—C1—C11125.1 (3)C16—C15—H15120.1
C5—C1—C11127.6 (3)C14—C15—H15120.1
C2—C1—Fe169.82 (16)C15—C16—C17121.3 (3)
C5—C1—Fe169.75 (16)C15—C16—H16119.4
C11—C1—Fe1128.7 (2)C17—C16—H16119.4
C3—C2—C1108.5 (3)C18—C17—C16122.9 (3)
C3—C2—Fe169.61 (17)C18—C17—C22118.2 (3)
C1—C2—Fe169.53 (15)C16—C17—C22119.0 (3)
C3—C2—H2125.7C19—C18—C17121.4 (3)
C1—C2—H2125.7C19—C18—H18119.3
Fe1—C2—H2126.7C17—C18—H18119.3
C4—C3—C2108.1 (3)C18—C19—C20120.5 (3)
C4—C3—Fe169.82 (18)C18—C19—H19119.7
C2—C3—Fe169.96 (16)C20—C19—H19119.7
C4—C3—H3126.0C21—C20—C19120.7 (3)
C2—C3—H3126.0C21—C20—H20119.6
Fe1—C3—H3125.8C19—C20—H20119.6
C3—C4—C5108.2 (3)C20—C21—C22120.5 (3)
C3—C4—Fe169.85 (18)C20—C21—H21119.7
C5—C4—Fe169.85 (17)C22—C21—H21119.7
C3—C4—H4125.9C13—C22—C21123.2 (2)
C5—C4—H4125.9C13—C22—C17118.1 (2)
Fe1—C4—H4126.0C21—C22—C17118.6 (3)
C9—Fe1—C1—C2169.4 (3)C10—Fe1—C6—C7119.6 (3)
C6—Fe1—C1—C2114.4 (2)C4—Fe1—C6—C7156.5 (5)
C10—Fe1—C1—C2156.4 (2)C3—Fe1—C6—C745.9 (4)
C4—Fe1—C1—C280.6 (2)C1—Fe1—C6—C7125.7 (2)
C3—Fe1—C1—C237.12 (19)C8—Fe1—C6—C737.4 (2)
C7—Fe1—C1—C273.5 (2)C5—Fe1—C6—C7167.2 (2)
C8—Fe1—C1—C240.3 (5)C2—Fe1—C6—C782.4 (2)
C5—Fe1—C1—C2118.1 (2)C10—C6—C7—C80.3 (4)
C9—Fe1—C1—C551.2 (4)Fe1—C6—C7—C859.7 (2)
C6—Fe1—C1—C5127.48 (19)C10—C6—C7—Fe159.9 (2)
C10—Fe1—C1—C585.5 (2)C9—Fe1—C7—C680.6 (3)
C4—Fe1—C1—C537.54 (18)C10—Fe1—C7—C636.9 (2)
C3—Fe1—C1—C581.0 (2)C4—Fe1—C7—C6167.7 (3)
C7—Fe1—C1—C5168.33 (19)C3—Fe1—C7—C6158.3 (2)
C8—Fe1—C1—C5158.4 (4)C1—Fe1—C7—C674.4 (3)
C2—Fe1—C1—C5118.1 (2)C8—Fe1—C7—C6119.3 (3)
C9—Fe1—C1—C1171.3 (4)C5—Fe1—C7—C643.1 (6)
C6—Fe1—C1—C114.9 (3)C2—Fe1—C7—C6115.5 (2)
C10—Fe1—C1—C1137.0 (3)C9—Fe1—C7—C838.7 (2)
C4—Fe1—C1—C11160.1 (3)C6—Fe1—C7—C8119.3 (3)
C3—Fe1—C1—C11156.4 (3)C10—Fe1—C7—C882.4 (3)
C7—Fe1—C1—C1145.8 (3)C4—Fe1—C7—C848.3 (4)
C8—Fe1—C1—C1179.0 (5)C3—Fe1—C7—C882.4 (3)
C5—Fe1—C1—C11122.5 (3)C1—Fe1—C7—C8166.3 (2)
C2—Fe1—C1—C11119.3 (3)C5—Fe1—C7—C8162.4 (5)
C5—C1—C2—C31.2 (3)C2—Fe1—C7—C8125.1 (2)
C11—C1—C2—C3177.4 (3)C6—C7—C8—C90.1 (4)
Fe1—C1—C2—C358.9 (2)Fe1—C7—C8—C959.6 (2)
C5—C1—C2—Fe160.01 (18)C6—C7—C8—Fe159.5 (2)
C11—C1—C2—Fe1123.7 (3)C9—Fe1—C8—C7117.8 (3)
C9—Fe1—C2—C342.7 (6)C6—Fe1—C8—C737.3 (2)
C6—Fe1—C2—C3155.5 (2)C10—Fe1—C8—C780.2 (2)
C10—Fe1—C2—C3171.8 (3)C4—Fe1—C8—C7156.9 (2)
C4—Fe1—C2—C337.6 (2)C3—Fe1—C8—C7114.7 (2)
C1—Fe1—C2—C3120.0 (3)C1—Fe1—C8—C742.8 (6)
C7—Fe1—C2—C3113.5 (2)C5—Fe1—C8—C7170.0 (3)
C8—Fe1—C2—C372.9 (3)C2—Fe1—C8—C774.3 (3)
C5—Fe1—C2—C381.6 (2)C6—Fe1—C8—C980.5 (3)
C9—Fe1—C2—C1162.8 (5)C10—Fe1—C8—C937.6 (2)
C6—Fe1—C2—C184.4 (2)C4—Fe1—C8—C985.3 (3)
C10—Fe1—C2—C151.8 (4)C3—Fe1—C8—C9127.5 (2)
C4—Fe1—C2—C182.4 (2)C1—Fe1—C8—C9160.6 (4)
C3—Fe1—C2—C1120.0 (3)C7—Fe1—C8—C9117.8 (3)
C7—Fe1—C2—C1126.5 (2)C5—Fe1—C8—C952.2 (4)
C8—Fe1—C2—C1167.1 (2)C2—Fe1—C8—C9167.9 (2)
C5—Fe1—C2—C138.38 (18)C7—C8—C9—C100.1 (4)
C1—C2—C3—C40.8 (3)Fe1—C8—C9—C1060.3 (2)
Fe1—C2—C3—C459.6 (2)C7—C8—C9—Fe160.2 (2)
C1—C2—C3—Fe158.80 (19)C6—Fe1—C9—C1037.2 (2)
C9—Fe1—C3—C474.3 (3)C4—Fe1—C9—C10128.2 (2)
C6—Fe1—C3—C4171.7 (3)C3—Fe1—C9—C10169.4 (2)
C10—Fe1—C3—C446.7 (6)C1—Fe1—C9—C1049.0 (4)
C1—Fe1—C3—C481.8 (2)C7—Fe1—C9—C1080.7 (2)
C7—Fe1—C3—C4156.6 (2)C8—Fe1—C9—C10118.7 (3)
C8—Fe1—C3—C4114.8 (2)C5—Fe1—C9—C1085.1 (3)
C5—Fe1—C3—C437.76 (19)C2—Fe1—C9—C10157.2 (5)
C2—Fe1—C3—C4119.1 (3)C6—Fe1—C9—C881.5 (3)
C9—Fe1—C3—C2166.6 (2)C10—Fe1—C9—C8118.7 (3)
C6—Fe1—C3—C252.6 (4)C4—Fe1—C9—C8113.0 (3)
C10—Fe1—C3—C2165.8 (5)C3—Fe1—C9—C871.9 (3)
C4—Fe1—C3—C2119.1 (3)C1—Fe1—C9—C8167.8 (3)
C1—Fe1—C3—C237.31 (18)C7—Fe1—C9—C838.0 (2)
C7—Fe1—C3—C284.3 (2)C5—Fe1—C9—C8156.1 (2)
C8—Fe1—C3—C2126.2 (2)C2—Fe1—C9—C838.4 (6)
C5—Fe1—C3—C281.3 (2)C7—C6—C10—C90.4 (4)
C2—C3—C4—C50.2 (3)Fe1—C6—C10—C959.6 (2)
Fe1—C3—C4—C559.5 (2)C7—C6—C10—Fe159.9 (2)
C2—C3—C4—Fe159.7 (2)C8—C9—C10—C60.3 (4)
C9—Fe1—C4—C3125.8 (2)Fe1—C9—C10—C659.9 (2)
C6—Fe1—C4—C3164.6 (5)C8—C9—C10—Fe160.2 (2)
C10—Fe1—C4—C3166.1 (2)C9—Fe1—C10—C6118.9 (3)
C1—Fe1—C4—C381.6 (2)C4—Fe1—C10—C6169.1 (2)
C7—Fe1—C4—C349.2 (4)C3—Fe1—C10—C6153.9 (5)
C8—Fe1—C4—C382.5 (2)C1—Fe1—C10—C683.5 (2)
C5—Fe1—C4—C3119.3 (3)C7—Fe1—C10—C637.3 (2)
C2—Fe1—C4—C337.71 (18)C8—Fe1—C10—C680.8 (2)
C9—Fe1—C4—C5114.9 (2)C5—Fe1—C10—C6127.3 (2)
C6—Fe1—C4—C545.3 (6)C2—Fe1—C10—C647.2 (4)
C10—Fe1—C4—C574.6 (2)C6—Fe1—C10—C9118.9 (3)
C3—Fe1—C4—C5119.3 (3)C4—Fe1—C10—C972.0 (3)
C1—Fe1—C4—C537.63 (18)C3—Fe1—C10—C934.9 (6)
C7—Fe1—C4—C5168.5 (3)C1—Fe1—C10—C9157.5 (2)
C8—Fe1—C4—C5158.2 (2)C7—Fe1—C10—C981.6 (3)
C2—Fe1—C4—C581.55 (19)C8—Fe1—C10—C938.1 (2)
C3—C4—C5—C10.5 (3)C5—Fe1—C10—C9113.8 (2)
Fe1—C4—C5—C159.01 (19)C2—Fe1—C10—C9166.2 (3)
C3—C4—C5—Fe159.5 (2)C12—N1—C11—C1150.6 (3)
C2—C1—C5—C41.0 (3)C2—C1—C11—N1145.3 (3)
C11—C1—C5—C4177.2 (3)C5—C1—C11—N139.2 (4)
Fe1—C1—C5—C459.02 (19)Fe1—C1—C11—N154.1 (4)
C2—C1—C5—Fe160.05 (19)C11—N1—C12—N2175.8 (3)
C11—C1—C5—Fe1123.8 (3)C11—N1—C12—S14.0 (4)
C9—Fe1—C5—C483.8 (2)C13—N2—C12—N12.1 (4)
C6—Fe1—C5—C4167.1 (2)C13—N2—C12—S1177.7 (2)
C10—Fe1—C5—C4126.8 (2)C12—N2—C13—C1467.5 (4)
C3—Fe1—C5—C437.46 (19)C12—N2—C13—C22115.0 (3)
C1—Fe1—C5—C4119.5 (3)C22—C13—C14—C150.7 (4)
C7—Fe1—C5—C4158.9 (5)N2—C13—C14—C15178.1 (2)
C8—Fe1—C5—C447.2 (4)C13—C14—C15—C162.2 (4)
C2—Fe1—C5—C481.2 (2)C14—C15—C16—C171.3 (5)
C9—Fe1—C5—C1156.8 (2)C15—C16—C17—C18178.4 (3)
C6—Fe1—C5—C173.5 (2)C15—C16—C17—C221.1 (4)
C10—Fe1—C5—C1113.8 (2)C16—C17—C18—C19178.7 (3)
C4—Fe1—C5—C1119.5 (3)C22—C17—C18—C191.9 (4)
C3—Fe1—C5—C182.01 (19)C17—C18—C19—C200.1 (5)
C7—Fe1—C5—C139.4 (6)C18—C19—C20—C211.4 (5)
C8—Fe1—C5—C1166.6 (3)C19—C20—C21—C220.7 (5)
C2—Fe1—C5—C138.27 (16)C14—C13—C22—C21178.9 (2)
C9—Fe1—C6—C1037.8 (2)N2—C13—C22—C213.6 (4)
C4—Fe1—C6—C1036.9 (6)C14—C13—C22—C171.7 (4)
C3—Fe1—C6—C10165.4 (3)N2—C13—C22—C17175.8 (2)
C1—Fe1—C6—C10114.7 (2)C20—C21—C22—C13178.2 (3)
C7—Fe1—C6—C10119.6 (3)C20—C21—C22—C171.2 (4)
C8—Fe1—C6—C1082.2 (3)C18—C17—C22—C13177.0 (2)
C5—Fe1—C6—C1073.2 (3)C16—C17—C22—C132.5 (4)
C2—Fe1—C6—C10158.0 (2)C18—C17—C22—C212.5 (4)
C9—Fe1—C6—C781.8 (3)C16—C17—C22—C21178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.90 (3)2.45 (3)3.326 (3)167 (2)
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C17H15N2S)]
Mr400.31
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.958 (3), 10.890 (5), 12.357 (5)
α, β, γ (°)66.886 (6), 78.637 (8), 73.306 (8)
V3)939.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.39 × 0.24 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.755, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
5178, 3645, 2741
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.04
No. of reflections3645
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.32

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.90 (3)2.45 (3)3.326 (3)167 (2)
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

We gratefully acknowledge financial support from the Foundation of Henan Educational Committee (2011B150001) and the Foundation of Henan University of Urban Construction (2010JYB007).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationDi Grandi, M. J., Curran, K. J., Feigelson, G., Prashad, A., Ross, A. A., Visalli, R., Fairhurst, J., Feld, B. & Bloom, J. D. (2004). Bioorg. Med. Chem. Lett. 14, 4157–4160.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, T., Cho, J. H. & Oh, C. H. (2006). Eur. J. Med. Chem. 41, 825–832.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHeck, R. & Marsura, A. (2003). Tetrahedron Lett. 44, 1533–1536.  Web of Science CrossRef CAS Google Scholar
First citationHenderson, W., Nicholson, B. K. & Rickard, C. E. F. (2001). Inorg. Chim. Acta, 320, 101–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaymakcioglu, B. K., Rollas, S., Korcegez, E. & Aricioglu, F. (2005). Eur. J. Pharm. Sci. 26, 97–103.  Web of Science PubMed CAS Google Scholar
First citationRostom, S. A. F. (2006). Bioorg. Med. Chem. 14, 6475–6485.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuh et al. (2005). J. Med. Chem. 48, 5823–5836.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds