organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4,4′′-Di­fluoro-5′-meth­­oxy-1,1′:3′,1′′-terphenyl-4′-yl)-3-(4-nitro­phen­yl)prop-2-en-1-one

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, bMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, and cUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 12 October 2011; accepted 31 October 2011; online 5 November 2011)

In the title compound, C28H19F2NO4, a polysubstituted terphenyl derivative bearing a Michael system, the C=C double bond has an E configuration. Two C—H⋯F contacts connect mol­ecules into inversion dimers. In addition, a C–H⋯π as well as a C–F⋯π contact can be identified. The shortest centroid–centroid distance between two aromatic rings is 3.9535 (8) Å, between one of the para-fluoro­benzene rings and its symmetry-generated equivalent.

Related literature

For the pharmacological importance of terphenyls, see: Liu (2006[Liu, J. K. (2006). Chem. Rev. 106, 2209-2223.]) and of chalcones, see: Dhar (1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]); Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Satyanarayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883-887.]). For our work on the synthesis of different chalcone derivatives, see: Samshuddin et al. (2011a[Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011a). Der Pharma Chem. 3, 232-240.],b[Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o1954-o1955.]); Fun et al. (2010a[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582-o583.],b[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864-o865.]); Jasinski et al. (2010a[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948-o1949.],b[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o2018.]); Baktır et al. (2011a[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262-o1263.],b[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292-o1293.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H19F2NO4

  • Mr = 471.44

  • Monoclinic, P 21 /c

  • a = 23.3751 (7) Å

  • b = 6.9098 (2) Å

  • c = 13.7879 (5) Å

  • β = 99.243 (2)°

  • V = 2198.07 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.58 × 0.44 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 37111 measured reflections

  • 5462 independent reflections

  • 4899 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.114

  • S = 1.05

  • 5462 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯F1i 0.95 2.54 3.2165 (17) 129
C33—H33⋯Cg1ii 0.95 2.91 3.4748 (15) 119
C24—F1⋯Cg1iii 1.36 (1) 3.95 (1) 4.8373 (15) 123 (1)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y-1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones constitute an important family of substances belonging to flavonoids, a large group of natural and synthetic products with interesting physicochemical properties, biological activity and structural characteristics. They have been reported to possess many interesting pharmacological activities (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). In recent years, it has been reported that some terphenyls exhibit considerable biological activities (e.g. being potent anticoagulants, immunosuppressants, antithrombotics, neuroprotectives, specific 5-lipoxygenase inhibitors) and showing cytotoxic activities (Liu, 2006). In view of the pharmacological importance of terphenyls and chalcones, and in continuation of our work on synthesis of various derivatives of 4,4'-difluoro chalcone (Samshuddin et al., 2011a/b, Fun et al., 2010a/b, Jasinski et al., 2010a/b, Baktır et al., 2011a/b), the molecular and crystal structure of the title compound is reported.

The C=C double of the Michael system is (E)-configured. The least-squares planes defined by the carbon atoms of the para-fluoro phenyl rings of the terphenyl moiety and its central phenyl ring enclose angles of 40.43 (6)° and 43.99 (6)°, respectively. The plane defined by the atoms of the nitro group is tilted by 13.56 (19)° with respect to the plane of the aromatic system it is bonded to (Fig. 1).

In the crystal, C–H···F contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the corresponding atoms are observed. These are supported by one of the hydrogen atoms in ortho position to a fluorine atom whose symmetry-generated equivalent acts as acceptor for this type of contact. In total, the molecules are connected to centrosymmetric dimers (Fig. 2). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C–H···F contacts is R22(8) on the unitary level. In addition, a C–H···π as well as a C–F···π contact can be identified. The shortest intercentroid distance between two aromatic systems is apparent between two of the para-fluoro phenyl moieties that are also part of the C–H···F contacts and was measured at 3.9535 (8) Å. Details about metrical parameters of the intermolecular contacts and their symmetry can be found in Table 1.

The packing of the title compound in the crystal is shown in Figure 3.

Related literature top

For the pharmacological importance of terphenyls, see: Liu (2006) and of chalcones, see: Dhar (1981); Dimmock et al. (1999); Satyanarayana et al. (2004). For our work on the synthesis of different chalcone derivatives, see: Samshuddin et al. (2011a,b); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktır et al. (2011a,b). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a mixture of 1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl) ethanone (3.38 g, 0.01 mol) and 4-nitrobenzaldehyde (1.51 g, 0.01 mol) in 40 ml of ethanol, 10 ml of 10% sodium hydroxide solution was added and stirred at 5–10 °C for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol (yield: 80%). Single crystals suitable for the X-ray diffraction study were grown from DMF–ethanol (v:v 1:1) by slow evaporation at room temperature.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic and vinylic carbon atoms, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C).

Structure description top

Chalcones constitute an important family of substances belonging to flavonoids, a large group of natural and synthetic products with interesting physicochemical properties, biological activity and structural characteristics. They have been reported to possess many interesting pharmacological activities (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). In recent years, it has been reported that some terphenyls exhibit considerable biological activities (e.g. being potent anticoagulants, immunosuppressants, antithrombotics, neuroprotectives, specific 5-lipoxygenase inhibitors) and showing cytotoxic activities (Liu, 2006). In view of the pharmacological importance of terphenyls and chalcones, and in continuation of our work on synthesis of various derivatives of 4,4'-difluoro chalcone (Samshuddin et al., 2011a/b, Fun et al., 2010a/b, Jasinski et al., 2010a/b, Baktır et al., 2011a/b), the molecular and crystal structure of the title compound is reported.

The C=C double of the Michael system is (E)-configured. The least-squares planes defined by the carbon atoms of the para-fluoro phenyl rings of the terphenyl moiety and its central phenyl ring enclose angles of 40.43 (6)° and 43.99 (6)°, respectively. The plane defined by the atoms of the nitro group is tilted by 13.56 (19)° with respect to the plane of the aromatic system it is bonded to (Fig. 1).

In the crystal, C–H···F contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the corresponding atoms are observed. These are supported by one of the hydrogen atoms in ortho position to a fluorine atom whose symmetry-generated equivalent acts as acceptor for this type of contact. In total, the molecules are connected to centrosymmetric dimers (Fig. 2). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C–H···F contacts is R22(8) on the unitary level. In addition, a C–H···π as well as a C–F···π contact can be identified. The shortest intercentroid distance between two aromatic systems is apparent between two of the para-fluoro phenyl moieties that are also part of the C–H···F contacts and was measured at 3.9535 (8) Å. Details about metrical parameters of the intermolecular contacts and their symmetry can be found in Table 1.

The packing of the title compound in the crystal is shown in Figure 3.

For the pharmacological importance of terphenyls, see: Liu (2006) and of chalcones, see: Dhar (1981); Dimmock et al. (1999); Satyanarayana et al. (2004). For our work on the synthesis of different chalcone derivatives, see: Samshuddin et al. (2011a,b); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktır et al. (2011a,b). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 1 0]. Symmetry operator: i -x + 1, -y + 2, -z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
(E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)- 3-(4-nitrophenyl)prop-2-en-1-one top
Crystal data top
C28H19F2NO4F(000) = 976
Mr = 471.44Dx = 1.425 Mg m3
Monoclinic, P21/cMelting point: 489 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 23.3751 (7) ÅCell parameters from 9792 reflections
b = 6.9098 (2) Åθ = 2.7–28.4°
c = 13.7879 (5) ŵ = 0.11 mm1
β = 99.243 (2)°T = 200 K
V = 2198.07 (12) Å3Block, yellow
Z = 40.58 × 0.44 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
4899 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.4°, θmin = 1.8°
φ and ω scansh = 3131
37111 measured reflectionsk = 99
5462 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0442P)2 + 1.0552P]
where P = (Fo2 + 2Fc2)/3
5462 reflections(Δ/σ)max < 0.001
317 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C28H19F2NO4V = 2198.07 (12) Å3
Mr = 471.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 23.3751 (7) ŵ = 0.11 mm1
b = 6.9098 (2) ÅT = 200 K
c = 13.7879 (5) Å0.58 × 0.44 × 0.17 mm
β = 99.243 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4899 reflections with I > 2σ(I)
37111 measured reflectionsRint = 0.026
5462 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
5462 reflectionsΔρmin = 0.24 e Å3
317 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.54918 (4)0.89243 (16)0.09405 (8)0.0577 (3)
F20.14304 (5)0.02099 (15)0.26896 (8)0.0585 (3)
O10.25621 (5)0.57681 (15)0.56774 (8)0.0428 (2)
O20.32555 (5)1.02608 (15)0.54905 (8)0.0426 (2)
O30.01724 (6)1.5042 (2)0.61968 (11)0.0651 (4)
O40.06990 (5)1.2537 (2)0.63545 (13)0.0765 (5)
N10.02455 (6)1.3295 (2)0.62244 (10)0.0480 (3)
C10.25169 (5)0.72612 (19)0.52066 (9)0.0310 (3)
C20.20726 (6)0.8734 (2)0.53077 (10)0.0346 (3)
H20.20950.99690.50130.042*
C30.16442 (6)0.8363 (2)0.58026 (10)0.0348 (3)
H30.16500.71420.61210.042*
C40.35123 (8)1.2132 (2)0.55848 (11)0.0460 (3)
H4A0.39351.20060.56820.069*
H4B0.33971.27980.61510.069*
H4C0.33821.28820.49870.069*
C110.29155 (5)0.76687 (18)0.44743 (9)0.0291 (2)
C120.33024 (6)0.92135 (18)0.46656 (9)0.0314 (3)
C130.37199 (5)0.95644 (19)0.40751 (9)0.0314 (3)
H130.39901.05910.42280.038*
C140.37401 (5)0.83985 (18)0.32563 (9)0.0287 (2)
C150.33356 (5)0.69187 (18)0.30343 (9)0.0284 (2)
H150.33380.61700.24570.034*
C160.29257 (5)0.65097 (17)0.36424 (9)0.0274 (2)
C210.41994 (5)0.86685 (17)0.26396 (9)0.0292 (2)
C220.47750 (6)0.89612 (19)0.30685 (10)0.0338 (3)
H220.48700.90870.37620.041*
C230.52104 (6)0.9071 (2)0.24956 (11)0.0386 (3)
H230.56020.92770.27870.046*
C240.50613 (6)0.8877 (2)0.14999 (11)0.0394 (3)
C250.45022 (7)0.8625 (2)0.10411 (11)0.0410 (3)
H250.44130.85240.03460.049*
C260.40697 (6)0.8522 (2)0.16222 (10)0.0356 (3)
H260.36780.83480.13190.043*
C310.25194 (5)0.48643 (18)0.33831 (9)0.0278 (2)
C320.27220 (6)0.31378 (19)0.30383 (10)0.0331 (3)
H320.31190.30380.29680.040*
C330.23598 (6)0.1566 (2)0.27957 (10)0.0384 (3)
H330.25010.03990.25560.046*
C340.17884 (6)0.1751 (2)0.29133 (11)0.0390 (3)
C350.15653 (6)0.3426 (2)0.32347 (10)0.0381 (3)
H350.11680.35100.33000.046*
C360.19314 (5)0.4991 (2)0.34611 (10)0.0329 (3)
H360.17810.61680.36720.039*
C410.11626 (6)0.9660 (2)0.59044 (9)0.0334 (3)
C420.11732 (6)1.1622 (2)0.56648 (11)0.0388 (3)
H420.15001.21400.54230.047*
C430.07152 (6)1.2819 (2)0.57750 (11)0.0407 (3)
H430.07251.41580.56230.049*
C440.02418 (6)1.2015 (2)0.61122 (10)0.0378 (3)
C450.02118 (6)1.0089 (2)0.63473 (11)0.0414 (3)
H450.01220.95740.65680.050*
C460.06796 (6)0.8922 (2)0.62547 (11)0.0395 (3)
H460.06720.75950.64330.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0536 (6)0.0593 (6)0.0704 (6)0.0013 (5)0.0407 (5)0.0106 (5)
F20.0576 (6)0.0439 (5)0.0721 (7)0.0193 (4)0.0047 (5)0.0043 (5)
O10.0448 (5)0.0411 (5)0.0462 (6)0.0121 (4)0.0186 (4)0.0126 (4)
O20.0513 (6)0.0372 (5)0.0438 (5)0.0048 (4)0.0208 (5)0.0128 (4)
O30.0632 (8)0.0562 (8)0.0811 (9)0.0269 (6)0.0276 (7)0.0082 (7)
O40.0345 (6)0.0864 (11)0.1117 (12)0.0079 (6)0.0207 (7)0.0264 (9)
N10.0370 (6)0.0639 (9)0.0438 (7)0.0154 (6)0.0084 (5)0.0087 (6)
C10.0300 (6)0.0330 (6)0.0312 (6)0.0043 (5)0.0084 (5)0.0003 (5)
C20.0362 (6)0.0341 (6)0.0355 (6)0.0077 (5)0.0118 (5)0.0020 (5)
C30.0340 (6)0.0346 (7)0.0373 (6)0.0057 (5)0.0102 (5)0.0005 (5)
C40.0619 (9)0.0356 (7)0.0392 (7)0.0010 (7)0.0041 (7)0.0078 (6)
C110.0281 (5)0.0288 (6)0.0316 (6)0.0060 (5)0.0085 (4)0.0021 (5)
C120.0337 (6)0.0283 (6)0.0331 (6)0.0051 (5)0.0082 (5)0.0022 (5)
C130.0303 (6)0.0278 (6)0.0368 (6)0.0015 (5)0.0071 (5)0.0007 (5)
C140.0266 (5)0.0281 (6)0.0322 (6)0.0056 (4)0.0076 (4)0.0032 (5)
C150.0287 (5)0.0277 (6)0.0300 (5)0.0044 (4)0.0076 (4)0.0005 (4)
C160.0259 (5)0.0254 (5)0.0313 (6)0.0057 (4)0.0063 (4)0.0019 (4)
C210.0293 (6)0.0244 (5)0.0353 (6)0.0026 (4)0.0099 (5)0.0021 (5)
C220.0324 (6)0.0314 (6)0.0383 (6)0.0004 (5)0.0078 (5)0.0018 (5)
C230.0304 (6)0.0328 (7)0.0544 (8)0.0012 (5)0.0123 (6)0.0049 (6)
C240.0419 (7)0.0304 (6)0.0522 (8)0.0017 (5)0.0264 (6)0.0075 (6)
C250.0490 (8)0.0402 (7)0.0370 (7)0.0005 (6)0.0166 (6)0.0052 (6)
C260.0344 (6)0.0365 (7)0.0367 (7)0.0003 (5)0.0082 (5)0.0047 (5)
C310.0278 (5)0.0292 (6)0.0270 (5)0.0034 (4)0.0061 (4)0.0025 (4)
C320.0338 (6)0.0314 (6)0.0354 (6)0.0047 (5)0.0093 (5)0.0008 (5)
C330.0464 (8)0.0290 (6)0.0400 (7)0.0031 (5)0.0074 (6)0.0016 (5)
C340.0422 (7)0.0347 (7)0.0389 (7)0.0082 (6)0.0026 (5)0.0026 (5)
C350.0297 (6)0.0443 (8)0.0402 (7)0.0026 (5)0.0057 (5)0.0018 (6)
C360.0287 (6)0.0341 (6)0.0364 (6)0.0039 (5)0.0071 (5)0.0005 (5)
C410.0314 (6)0.0382 (7)0.0322 (6)0.0051 (5)0.0100 (5)0.0004 (5)
C420.0365 (7)0.0412 (7)0.0420 (7)0.0062 (6)0.0164 (5)0.0044 (6)
C430.0423 (7)0.0414 (7)0.0405 (7)0.0105 (6)0.0124 (6)0.0039 (6)
C440.0307 (6)0.0505 (8)0.0324 (6)0.0105 (6)0.0055 (5)0.0059 (6)
C450.0319 (6)0.0518 (9)0.0433 (7)0.0012 (6)0.0142 (5)0.0064 (6)
C460.0383 (7)0.0389 (7)0.0440 (7)0.0006 (6)0.0146 (6)0.0018 (6)
Geometric parameters (Å, º) top
F1—C241.3630 (15)C22—C231.3870 (18)
F2—C341.3586 (16)C22—H220.9500
O1—C11.2145 (16)C23—C241.368 (2)
O2—C121.3673 (15)C23—H230.9500
O2—C41.4230 (18)C24—C251.368 (2)
O3—N11.221 (2)C25—C261.3889 (18)
O4—N11.2209 (19)C25—H250.9500
N1—C441.4698 (18)C26—H260.9500
C1—C21.4764 (17)C31—C321.3949 (17)
C1—C111.5063 (16)C31—C361.3985 (17)
C2—C31.3243 (18)C32—C331.3848 (19)
C2—H20.9500C32—H320.9500
C3—C411.4630 (17)C33—C341.377 (2)
C3—H30.9500C33—H330.9500
C4—H4A0.9800C34—C351.372 (2)
C4—H4B0.9800C35—C361.3832 (19)
C4—H4C0.9800C35—H350.9500
C11—C121.3965 (18)C36—H360.9500
C11—C161.4022 (17)C41—C461.3939 (19)
C12—C131.3890 (17)C41—C421.397 (2)
C13—C141.3939 (17)C42—C431.3802 (19)
C13—H130.9500C42—H420.9500
C14—C151.3930 (17)C43—C441.384 (2)
C14—C211.4844 (16)C43—H430.9500
C15—C161.3997 (16)C44—C451.374 (2)
C15—H150.9500C45—C461.381 (2)
C16—C311.4877 (17)C45—H450.9500
C21—C261.3905 (18)C46—H460.9500
C21—C221.3948 (18)
C12—O2—C4117.90 (11)F1—C24—C23118.25 (14)
O4—N1—O3123.89 (14)F1—C24—C25118.59 (14)
O4—N1—C44117.61 (15)C23—C24—C25123.16 (12)
O3—N1—C44118.49 (14)C24—C25—C26118.00 (13)
O1—C1—C2122.49 (12)C24—C25—H25121.0
O1—C1—C11120.47 (11)C26—C25—H25121.0
C2—C1—C11117.04 (11)C25—C26—C21121.16 (13)
C3—C2—C1121.13 (13)C25—C26—H26119.4
C3—C2—H2119.4C21—C26—H26119.4
C1—C2—H2119.4C32—C31—C36118.13 (12)
C2—C3—C41126.04 (13)C32—C31—C16119.80 (11)
C2—C3—H3117.0C36—C31—C16122.07 (11)
C41—C3—H3117.0C33—C32—C31121.69 (12)
O2—C4—H4A109.5C33—C32—H32119.2
O2—C4—H4B109.5C31—C32—H32119.2
H4A—C4—H4B109.5C34—C33—C32117.75 (13)
O2—C4—H4C109.5C34—C33—H33121.1
H4A—C4—H4C109.5C32—C33—H33121.1
H4B—C4—H4C109.5F2—C34—C35118.84 (13)
C12—C11—C16119.70 (11)F2—C34—C33118.30 (13)
C12—C11—C1117.89 (11)C35—C34—C33122.85 (13)
C16—C11—C1122.35 (11)C34—C35—C36118.63 (12)
O2—C12—C13123.57 (12)C34—C35—H35120.7
O2—C12—C11115.19 (11)C36—C35—H35120.7
C13—C12—C11121.16 (11)C35—C36—C31120.91 (12)
C12—C13—C14119.49 (12)C35—C36—H36119.5
C12—C13—H13120.3C31—C36—H36119.5
C14—C13—H13120.3C46—C41—C42118.89 (12)
C15—C14—C13119.48 (11)C46—C41—C3119.20 (13)
C15—C14—C21119.62 (11)C42—C41—C3121.91 (12)
C13—C14—C21120.87 (11)C43—C42—C41120.79 (13)
C14—C15—C16121.49 (11)C43—C42—H42119.6
C14—C15—H15119.3C41—C42—H42119.6
C16—C15—H15119.3C42—C43—C44118.22 (14)
C15—C16—C11118.55 (11)C42—C43—H43120.9
C15—C16—C31118.84 (11)C44—C43—H43120.9
C11—C16—C31122.61 (11)C45—C44—C43122.82 (13)
C26—C21—C22118.52 (12)C45—C44—N1119.22 (13)
C26—C21—C14120.55 (11)C43—C44—N1117.96 (14)
C22—C21—C14120.83 (11)C44—C45—C46118.19 (13)
C23—C22—C21120.84 (13)C44—C45—H45120.9
C23—C22—H22119.6C46—C45—H45120.9
C21—C22—H22119.6C45—C46—C41121.07 (14)
C24—C23—C22118.31 (13)C45—C46—H46119.5
C24—C23—H23120.8C41—C46—H46119.5
C22—C23—H23120.8
O1—C1—C2—C310.8 (2)C23—C24—C25—C261.4 (2)
C11—C1—C2—C3168.41 (13)C24—C25—C26—C210.0 (2)
C1—C2—C3—C41176.23 (13)C22—C21—C26—C251.2 (2)
O1—C1—C11—C12114.27 (15)C14—C21—C26—C25175.06 (12)
C2—C1—C11—C1266.55 (15)C15—C16—C31—C3241.00 (16)
O1—C1—C11—C1662.98 (18)C11—C16—C31—C32138.88 (12)
C2—C1—C11—C16116.20 (13)C15—C16—C31—C36138.17 (12)
C4—O2—C12—C1320.49 (19)C11—C16—C31—C3641.95 (17)
C4—O2—C12—C11162.74 (12)C36—C31—C32—C331.30 (19)
C16—C11—C12—O2179.64 (11)C16—C31—C32—C33179.50 (12)
C1—C11—C12—O23.03 (17)C31—C32—C33—C340.5 (2)
C16—C11—C12—C133.51 (18)C32—C33—C34—F2179.18 (12)
C1—C11—C12—C13173.82 (11)C32—C33—C34—C351.6 (2)
O2—C12—C13—C14178.94 (12)F2—C34—C35—C36179.97 (12)
C11—C12—C13—C142.35 (19)C33—C34—C35—C360.7 (2)
C12—C13—C14—C151.00 (18)C34—C35—C36—C311.2 (2)
C12—C13—C14—C21176.80 (11)C32—C31—C36—C352.18 (19)
C13—C14—C15—C163.23 (18)C16—C31—C36—C35178.64 (12)
C21—C14—C15—C16174.59 (11)C2—C3—C41—C46165.67 (14)
C14—C15—C16—C112.07 (17)C2—C3—C41—C4214.6 (2)
C14—C15—C16—C31177.81 (11)C46—C41—C42—C430.2 (2)
C12—C11—C16—C151.28 (17)C3—C41—C42—C43179.47 (13)
C1—C11—C16—C15175.93 (11)C41—C42—C43—C441.1 (2)
C12—C11—C16—C31178.84 (11)C42—C43—C44—C450.5 (2)
C1—C11—C16—C313.96 (18)C42—C43—C44—N1179.77 (13)
C15—C14—C21—C2641.97 (17)O4—N1—C44—C4512.8 (2)
C13—C14—C21—C26140.23 (13)O3—N1—C44—C45166.21 (15)
C15—C14—C21—C22134.25 (13)O4—N1—C44—C43167.52 (15)
C13—C14—C21—C2243.55 (17)O3—N1—C44—C4313.5 (2)
C26—C21—C22—C231.07 (19)C43—C44—C45—C461.0 (2)
C14—C21—C22—C23175.23 (12)N1—C44—C45—C46178.73 (13)
C21—C22—C23—C240.3 (2)C44—C45—C46—C411.9 (2)
C22—C23—C24—F1177.96 (12)C42—C41—C46—C451.3 (2)
C22—C23—C24—C251.6 (2)C3—C41—C46—C45178.97 (13)
F1—C24—C25—C26178.13 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C25—H25···F1i0.952.543.2165 (17)129
C33—H33···Cg1ii0.952.913.4748 (15)119
C24—F1···Cg1iii1.36 (1)3.95 (1)4.8373 (15)123 (1)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H19F2NO4
Mr471.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)23.3751 (7), 6.9098 (2), 13.7879 (5)
β (°) 99.243 (2)
V3)2198.07 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.58 × 0.44 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
37111, 5462, 4899
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.05
No. of reflections5462
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C25—H25···F1i0.952.543.2165 (17)129
C33—H33···Cg1ii0.952.913.4748 (15)119
C24—F1···Cg1iii1.3630 (15)3.9512 (12)4.8373 (15)123.40 (8)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y1, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

BN thanks the UGC for financial assistance through SAP and BSR one-time grants for the purchase of chemicals. SS thanks Mangalore University for research facilities.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262–o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.  Google Scholar
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o2018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J. K. (2006). Chem. Rev. 106, 2209–2223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o1954–o1955.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011a). Der Pharma Chem. 3, 232–240.  CAS Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–887.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds