metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[η5-1,3-Bis(tri­methyl­sil­yl)cyclo­penta­dien­yl]di­chlorido[η5-(tri­methyl­sil­yl)cyclo­penta­dien­yl]titanium(IV)

aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SI-1000 Ljubljana, Slovenia, and CO EN–FIST, Dunajska 156, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: franc.perdih@fkkt.uni-lj.si

(Received 21 October 2011; accepted 2 November 2011; online 5 November 2011)

In the title compound, [Ti(C8H13Si)(C11H21Si2)Cl2], the TiIV atom is bonded to two Cl atoms, one 1,3-bis­(trimethyl­sil­yl)cyclo­penta­dienyl (Si2Cp) and one (trimethyl­sil­yl)cyclo­penta­dienyl ring (SiCp). The Si2Cp centroid–titanium distance is 2.0763 (10) Å and the SiCp centroid–titanium distance is 2.0793 (10) Å. The angle subtended at the Ti atom by the centroids of both cyclo­penta­dienyl rings is 131.22 (4)° and the Cl—Ti—Cl angle is 94.14 (2)°.

Related literature

For background to metallocene catalysts, see: Kaminsky et al. (2006[Kaminsky, W., Sperber, O. & Werner, R. (2006). Coord. Chem. Rev. 250, 110-117.]); Erker et al. (2006[Erker, G., Kehr, G. & Fröhlich, R. (2006). Coord. Chem. Rev. 250, 36-46.]); Alt et al. (2006[Alt, H. G., Licht, E. H., Licht, A. I. & Schneider, K. J. (2006). Coord. Chem. Rev. 250, 2-17.]); Zhu et al. (2010[Zhu, F., Qin, Y., Lei, J., Zhang, L. & Yin, Q. (2010). Acta Cryst. E66, m769-m770.]); Luo et al. (2011[Luo, X., Wu, Q. & Mu, Y. (2011). Acta Cryst. E67, m1355.]); Winter et al. (1992[Winter, C. H., Zhou, X.-X. & Heeg, M. J. (1992). Inorg. Chem. 31, 1808-1815.]); Möhring & Coville (2006[Möhring, P. C. & Coville, N. J. (2006). Coord. Chem. Rev. 250, 18-35.]). For related structures, see: Klouras & Nastopoulos (1991[Klouras, N. & Nastopoulos, V. (1991). Monatsh. Chem. 122, 551-556.]); Clearfield et al. (1975[Clearfield, A., Warner, D. K., Saldarriaga-Molina, C. H., Ropal, R. & Bernal, I. (1975). Can. J. Chem. 53, 1622-1629.]); McKenzie et al. (1975[McKenzie, T. C., Sanner, R. D. & Bercaw, J. E. (1975). J. Organomet. Chem. 102, 457-466.]); Winter et al. (1992[Winter, C. H., Zhou, X.-X. & Heeg, M. J. (1992). Inorg. Chem. 31, 1808-1815.]). For synthetic procedures, see: Winter et al. (1992[Winter, C. H., Zhou, X.-X. & Heeg, M. J. (1992). Inorg. Chem. 31, 1808-1815.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C8H13Si)(C11H21Si2)Cl2]

  • Mr = 465.53

  • Monoclinic, P 21 /c

  • a = 10.2588 (2) Å

  • b = 18.6417 (4) Å

  • c = 13.3061 (2) Å

  • β = 105.2380 (12)°

  • V = 2455.21 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 150 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.870, Tmax = 0.870

  • 10555 measured reflections

  • 5586 independent reflections

  • 4437 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.091

  • S = 1.03

  • 5586 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metallocene-based catalysts for homogeneous polymerization have developed markedly over the last three decades (Kaminsky et al., 2006; Erker et al., 2006; Alt et al., 2006; for recent related XRD studies, see: Zhu et al., 2010; Luo et al., 2011). Metallocenes bearing bulky substituents often exhibit properties very different from those of the corresponding unsubstituted analogues. Although pentamethylcyclopentadienyl ligand is one among most often used, other bulky cyclopentadienyl ligands have also been employed (Winter et al., 1992; Möhring & Coville, 2006).

In the title compound [Ti(C11H21Si2)(C8H13Si)Cl2] or [Ti{C5H3(SiMe3)2}{C5H4(SiMe3)}Cl2] titanium atom is bonded to two chlorine atoms, one 1,3-bis(trimethylsilyl)cyclopentadienyl and one (trimethylsilyl)cyclopentadienyl ring (Figs. 1–2). The Si2Cp centroid–titanium distance is 2.0763 (10) Å and the SiCp centroid–titanium distance is 2.0793 (10) Å. The Cg1–Ti–Cg2 angle between the cyclopentadienyl ligands of 131.22 (4)° is similar to the value of 131.02° in [Ti{C5H4(SiMe3)}2Cl2] (Klouras & Nastopoulos, 1991) but slightly larger than the value of 130.89° and 131.04° in the C5H5 case (Clearfield et al., 1975) and smaller than the value of 137.4° in the C5Me5 case (McKenzie et al., 1975).

One measure of steric interactions in substituted cyclopentadienyl compounds is the degree to which the cyclopenadienyl substituents are bent out of the plane of the cyclopentadienyl ligand. The angle between the Si–C(Cp) bond and the plane of the Cp ring for Si1, Si2 and Si3 are 9.10 (11)°, 7.85 (11)° and 9.25 (11)°, respectively. For comparison, this values in related [Ti{C5H3(SiMe3)2}2F2] are from 0.6° to 6.6°, while in [Ti{C5H2(SiMe3)3}{C5H4(SiMe3)}F2] are from 1.0° to 6.9° (Winter et al., 1992).

In the crystal structure there are no hydrogen bonds or ππ interactions.

Related literature top

For background to metallocene catalysts, see: Kaminsky et al. (2006); Erker et al. (2006); Alt et al. (2006); Zhu et al. (2010); Luo et al. (2011); Winter et al. (1992); Möhring & Coville (2006). For related structures, see: Klouras & Nastopoulos (1991); Clearfield et al. (1975); McKenzie et al. (1975); Winter et al. (1992). For synthetic procedures, see: Winter et al. (1992).

Experimental top

1,1',3-Tris(trimethylsilyl)titanocene dichloride was prepared according to the published procedure (Winter et al., 1992). Red crystals suitable for single-crystal X– ray diffraction were grown at -5°C from hexane.

Refinement top

All H atoms were initially located in a difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic) or 0.98 Å (CH3), and with Uiso(H) = kUeq(C), where k = 1.5 for methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms.

Structure description top

Metallocene-based catalysts for homogeneous polymerization have developed markedly over the last three decades (Kaminsky et al., 2006; Erker et al., 2006; Alt et al., 2006; for recent related XRD studies, see: Zhu et al., 2010; Luo et al., 2011). Metallocenes bearing bulky substituents often exhibit properties very different from those of the corresponding unsubstituted analogues. Although pentamethylcyclopentadienyl ligand is one among most often used, other bulky cyclopentadienyl ligands have also been employed (Winter et al., 1992; Möhring & Coville, 2006).

In the title compound [Ti(C11H21Si2)(C8H13Si)Cl2] or [Ti{C5H3(SiMe3)2}{C5H4(SiMe3)}Cl2] titanium atom is bonded to two chlorine atoms, one 1,3-bis(trimethylsilyl)cyclopentadienyl and one (trimethylsilyl)cyclopentadienyl ring (Figs. 1–2). The Si2Cp centroid–titanium distance is 2.0763 (10) Å and the SiCp centroid–titanium distance is 2.0793 (10) Å. The Cg1–Ti–Cg2 angle between the cyclopentadienyl ligands of 131.22 (4)° is similar to the value of 131.02° in [Ti{C5H4(SiMe3)}2Cl2] (Klouras & Nastopoulos, 1991) but slightly larger than the value of 130.89° and 131.04° in the C5H5 case (Clearfield et al., 1975) and smaller than the value of 137.4° in the C5Me5 case (McKenzie et al., 1975).

One measure of steric interactions in substituted cyclopentadienyl compounds is the degree to which the cyclopenadienyl substituents are bent out of the plane of the cyclopentadienyl ligand. The angle between the Si–C(Cp) bond and the plane of the Cp ring for Si1, Si2 and Si3 are 9.10 (11)°, 7.85 (11)° and 9.25 (11)°, respectively. For comparison, this values in related [Ti{C5H3(SiMe3)2}2F2] are from 0.6° to 6.6°, while in [Ti{C5H2(SiMe3)3}{C5H4(SiMe3)}F2] are from 1.0° to 6.9° (Winter et al., 1992).

In the crystal structure there are no hydrogen bonds or ππ interactions.

For background to metallocene catalysts, see: Kaminsky et al. (2006); Erker et al. (2006); Alt et al. (2006); Zhu et al. (2010); Luo et al. (2011); Winter et al. (1992); Möhring & Coville (2006). For related structures, see: Klouras & Nastopoulos (1991); Clearfield et al. (1975); McKenzie et al. (1975); Winter et al. (1992). For synthetic procedures, see: Winter et al. (1992).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Top view of the molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity.
[η5-1,3-Bis(trimethylsilyl)cyclopentadienyl]dichlorido[η5- (trimethylsilyl)cyclopentadienyl]titanium(IV) top
Crystal data top
[Ti(C8H13Si)(C11H21Si2)Cl2]F(000) = 984
Mr = 465.53Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5741 reflections
a = 10.2588 (2) Åθ = 2.6–27.5°
b = 18.6417 (4) ŵ = 0.72 mm1
c = 13.3061 (2) ÅT = 150 K
β = 105.2380 (12)°Cube, red
V = 2455.21 (8) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
5586 independent reflections
Graphite monochromator4437 reflections with I > 2σ(I)
Detector resolution: 0.055 pixels mm-1Rint = 0.024
ω scansθmax = 27.4°, θmin = 3.6°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.870, Tmax = 0.870k = 2424
10555 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0373P)2 + 1.6583P]
where P = (Fo2 + 2Fc2)/3
5586 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ti(C8H13Si)(C11H21Si2)Cl2]V = 2455.21 (8) Å3
Mr = 465.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2588 (2) ŵ = 0.72 mm1
b = 18.6417 (4) ÅT = 150 K
c = 13.3061 (2) Å0.2 × 0.2 × 0.2 mm
β = 105.2380 (12)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5586 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
4437 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.870Rint = 0.024
10555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
5586 reflectionsΔρmin = 0.37 e Å3
235 parameters
Special details top

Experimental. 224 frames in 6 sets of ω scans. Rotation/frame = 1.8 °. Crystal-detector distance = 31.0 mm. Measuring time = 190 s/°.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.92494 (3)0.234506 (19)0.42358 (3)0.02364 (10)
Cl10.71504 (5)0.24806 (3)0.46198 (4)0.03426 (13)
Cl21.01487 (6)0.15818 (3)0.56780 (4)0.03435 (13)
Si11.30658 (6)0.27181 (4)0.45355 (5)0.03322 (15)
Si20.78071 (6)0.42245 (3)0.33826 (5)0.03503 (15)
Si30.71083 (7)0.05471 (3)0.35754 (5)0.03846 (16)
C11.0327 (2)0.33664 (11)0.37062 (15)0.0275 (4)
H11.03920.34160.3010.033*
C21.1309 (2)0.30217 (11)0.45156 (15)0.0284 (4)
C31.0828 (2)0.31075 (12)0.54242 (15)0.0300 (4)
H31.12850.29470.61030.036*
C40.9591 (2)0.34617 (11)0.51647 (15)0.0291 (4)
H40.90670.35760.56350.035*
C50.9235 (2)0.36265 (11)0.40747 (15)0.0280 (4)
C60.7751 (2)0.18915 (12)0.26451 (15)0.0334 (5)
H60.68380.20460.24240.04*
C70.8836 (2)0.22377 (13)0.24119 (16)0.0362 (5)
H70.87950.26630.20120.043*
C81.0014 (2)0.18388 (13)0.28814 (16)0.0368 (5)
H81.09090.1950.28570.044*
C90.9620 (2)0.12503 (12)0.33887 (16)0.0350 (5)
H91.02110.08910.3760.042*
C100.8207 (2)0.12731 (11)0.32631 (15)0.0310 (4)
C110.7207 (3)0.02067 (16)0.2689 (3)0.0641 (8)
H11A0.69250.0040.19650.096*
H11B0.6610.05950.27880.096*
H11C0.81390.03830.28440.096*
C120.7701 (4)0.02490 (18)0.4949 (2)0.0724 (10)
H12A0.70920.01220.50850.109*
H12B0.77080.06580.54130.109*
H12C0.86160.00530.50760.109*
C130.5332 (3)0.08662 (16)0.3299 (3)0.0618 (8)
H13A0.49860.09610.25510.093*
H13B0.52980.13080.3690.093*
H13C0.47750.04980.35090.093*
C141.3327 (2)0.27575 (16)0.32045 (19)0.0469 (6)
H14A1.28670.3180.28390.07*
H14B1.29560.23240.28180.07*
H14C1.42960.27890.32560.07*
C151.3414 (3)0.18025 (18)0.5086 (3)0.0638 (9)
H15A1.29160.14510.45820.096*
H15B1.31260.17690.57310.096*
H15C1.43850.17040.52370.096*
C161.4201 (3)0.3360 (2)0.5413 (3)0.0824 (12)
H16A1.51410.32060.55190.124*
H16B1.39780.33740.60850.124*
H16C1.40840.38390.50990.124*
C170.8614 (3)0.49936 (15)0.2878 (2)0.0541 (7)
H17A0.91040.48160.23870.081*
H17B0.92460.52360.3460.081*
H17C0.79160.53330.25210.081*
C180.6585 (3)0.37676 (14)0.2286 (2)0.0508 (7)
H18A0.61490.33720.25580.076*
H18B0.70660.35790.17960.076*
H18C0.58980.41120.19260.076*
C190.6945 (3)0.45443 (17)0.4363 (3)0.0675 (9)
H19A0.61680.48420.40190.101*
H19B0.75770.48280.48940.101*
H19C0.66340.41310.46920.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.02510 (18)0.02871 (19)0.01821 (16)0.00288 (14)0.00763 (13)0.00125 (14)
Cl10.0271 (2)0.0417 (3)0.0371 (3)0.0018 (2)0.0138 (2)0.0020 (2)
Cl20.0404 (3)0.0375 (3)0.0245 (2)0.0065 (2)0.0073 (2)0.0061 (2)
Si10.0254 (3)0.0444 (4)0.0301 (3)0.0038 (3)0.0077 (2)0.0004 (3)
Si20.0319 (3)0.0316 (3)0.0409 (3)0.0044 (2)0.0085 (3)0.0080 (3)
Si30.0456 (4)0.0308 (3)0.0402 (3)0.0033 (3)0.0135 (3)0.0001 (3)
C10.0278 (10)0.0312 (11)0.0243 (9)0.0008 (8)0.0083 (8)0.0015 (8)
C20.0268 (10)0.0334 (11)0.0255 (9)0.0005 (8)0.0078 (8)0.0007 (8)
C30.0326 (11)0.0353 (11)0.0212 (9)0.0002 (9)0.0056 (8)0.0022 (8)
C40.0334 (11)0.0310 (11)0.0254 (10)0.0000 (9)0.0120 (8)0.0029 (8)
C50.0275 (10)0.0290 (10)0.0273 (10)0.0010 (8)0.0070 (8)0.0021 (8)
C60.0394 (12)0.0343 (12)0.0230 (10)0.0023 (9)0.0020 (9)0.0017 (9)
C70.0526 (14)0.0381 (12)0.0180 (9)0.0084 (10)0.0092 (9)0.0025 (9)
C80.0384 (12)0.0495 (14)0.0269 (10)0.0067 (10)0.0164 (9)0.0117 (10)
C90.0432 (13)0.0355 (12)0.0282 (10)0.0055 (10)0.0129 (10)0.0067 (9)
C100.0394 (12)0.0292 (11)0.0252 (10)0.0007 (9)0.0102 (9)0.0021 (8)
C110.076 (2)0.0430 (16)0.077 (2)0.0130 (14)0.0278 (17)0.0178 (14)
C120.098 (3)0.061 (2)0.0527 (17)0.0260 (18)0.0103 (17)0.0199 (15)
C130.0491 (16)0.0462 (16)0.093 (2)0.0067 (13)0.0235 (16)0.0016 (16)
C140.0336 (12)0.0719 (18)0.0394 (13)0.0101 (12)0.0168 (10)0.0136 (12)
C150.0499 (16)0.076 (2)0.0739 (19)0.0297 (15)0.0312 (15)0.0387 (17)
C160.0327 (14)0.114 (3)0.100 (3)0.0141 (17)0.0159 (16)0.061 (2)
C170.0524 (16)0.0399 (14)0.0620 (17)0.0081 (12)0.0010 (13)0.0171 (13)
C180.0360 (13)0.0431 (14)0.0625 (17)0.0001 (11)0.0059 (12)0.0117 (12)
C190.073 (2)0.065 (2)0.074 (2)0.0377 (17)0.0348 (17)0.0128 (16)
Geometric parameters (Å, º) top
Ti1—C82.344 (2)C6—H60.95
Ti1—Cl12.3537 (6)C7—C81.416 (3)
Ti1—C72.360 (2)C7—H70.95
Ti1—Cl22.3723 (6)C8—C91.402 (3)
Ti1—C52.398 (2)C8—H80.95
Ti1—C12.399 (2)C9—C101.416 (3)
Ti1—C42.399 (2)C9—H90.95
Ti1—C22.404 (2)C11—H11A0.98
Ti1—C32.408 (2)C11—H11B0.98
Ti1—C92.410 (2)C11—H11C0.98
Ti1—C62.418 (2)C12—H12A0.98
Ti1—C102.467 (2)C12—H12B0.98
Si1—C161.854 (3)C12—H12C0.98
Si1—C151.855 (3)C13—H13A0.98
Si1—C141.861 (2)C13—H13B0.98
Si1—C21.883 (2)C13—H13C0.98
Si2—C191.856 (3)C14—H14A0.98
Si2—C181.862 (3)C14—H14B0.98
Si2—C171.867 (3)C14—H14C0.98
Si2—C51.878 (2)C15—H15A0.98
Si3—C121.853 (3)C15—H15B0.98
Si3—C111.855 (3)C15—H15C0.98
Si3—C131.860 (3)C16—H16A0.98
Si3—C101.876 (2)C16—H16B0.98
C1—C21.420 (3)C16—H16C0.98
C1—C51.421 (3)C17—H17A0.98
C1—H10.95C17—H17B0.98
C2—C31.430 (3)C17—H17C0.98
C3—C41.391 (3)C18—H18A0.98
C3—H30.95C18—H18B0.98
C4—C51.433 (3)C18—H18C0.98
C4—H40.95C19—H19A0.98
C6—C71.391 (3)C19—H19B0.98
C6—C101.422 (3)C19—H19C0.98
C8—Ti1—Cl1136.06 (6)C4—C3—H3125.1
C8—Ti1—C735.04 (8)C2—C3—H3125.1
Cl1—Ti1—C7107.76 (6)Ti1—C3—H3121.1
C8—Ti1—Cl2104.05 (6)C3—C4—C5109.03 (18)
Cl1—Ti1—Cl294.14 (2)C3—C4—Ti173.52 (12)
C7—Ti1—Cl2135.04 (6)C5—C4—Ti172.58 (12)
C8—Ti1—C5109.13 (8)C3—C4—H4125.5
Cl1—Ti1—C585.88 (5)C5—C4—H4125.5
C7—Ti1—C589.85 (7)Ti1—C4—H4120.1
Cl2—Ti1—C5131.43 (5)C1—C5—C4105.19 (17)
C8—Ti1—C179.66 (8)C1—C5—Si2128.13 (15)
Cl1—Ti1—C1119.82 (5)C4—C5—Si2125.58 (16)
C7—Ti1—C174.77 (7)C1—C5—Ti172.79 (12)
Cl2—Ti1—C1127.05 (5)C4—C5—Ti172.67 (12)
C5—Ti1—C134.46 (7)Si2—C5—Ti1128.36 (10)
C8—Ti1—C4135.41 (8)C7—C6—C10110.2 (2)
Cl1—Ti1—C479.24 (5)C7—C6—Ti170.79 (12)
C7—Ti1—C4124.46 (8)C10—C6—Ti174.96 (12)
Cl2—Ti1—C497.50 (5)C7—C6—H6124.9
C5—Ti1—C434.75 (7)C10—C6—H6124.9
C1—Ti1—C456.39 (7)Ti1—C6—H6120.9
C8—Ti1—C282.67 (8)C6—C7—C8107.3 (2)
Cl1—Ti1—C2136.63 (5)C6—C7—Ti175.40 (12)
C7—Ti1—C296.71 (8)C8—C7—Ti171.89 (12)
Cl2—Ti1—C292.88 (5)C6—C7—H7126.3
C5—Ti1—C258.37 (7)C8—C7—H7126.3
C1—Ti1—C234.40 (7)Ti1—C7—H7118.4
C4—Ti1—C257.42 (7)C9—C8—C7107.6 (2)
C8—Ti1—C3116.06 (8)C9—C8—Ti175.41 (12)
Cl1—Ti1—C3106.85 (5)C7—C8—Ti173.07 (12)
C7—Ti1—C3129.31 (8)C9—C8—H8126.2
Cl2—Ti1—C376.78 (5)C7—C8—H8126.2
C5—Ti1—C357.17 (7)Ti1—C8—H8117.4
C1—Ti1—C356.08 (7)C8—C9—C10109.6 (2)
C4—Ti1—C333.64 (7)C8—C9—Ti170.32 (12)
C2—Ti1—C334.57 (7)C10—C9—Ti175.35 (12)
C8—Ti1—C934.27 (8)C8—C9—H9125.2
Cl1—Ti1—C9117.28 (6)C10—C9—H9125.2
C7—Ti1—C956.96 (8)Ti1—C9—H9120.8
Cl2—Ti1—C978.16 (6)C9—C10—C6105.27 (19)
C5—Ti1—C9143.12 (7)C9—C10—Si3127.46 (17)
C1—Ti1—C9113.16 (7)C6—C10—Si3125.99 (17)
C4—Ti1—C9162.98 (8)C9—C10—Ti170.91 (12)
C2—Ti1—C9106.05 (8)C6—C10—Ti171.21 (12)
C3—Ti1—C9130.21 (8)Si3—C10—Ti1132.15 (10)
C8—Ti1—C656.67 (8)Si3—C11—H11A109.5
Cl1—Ti1—C679.64 (6)Si3—C11—H11B109.5
C7—Ti1—C633.81 (8)H11A—C11—H11B109.5
Cl2—Ti1—C6121.39 (6)Si3—C11—H11C109.5
C5—Ti1—C6106.42 (7)H11A—C11—H11C109.5
C1—Ti1—C6104.86 (7)H11B—C11—H11C109.5
C4—Ti1—C6136.68 (7)Si3—C12—H12A109.5
C2—Ti1—C6130.51 (7)Si3—C12—H12B109.5
C3—Ti1—C6160.80 (7)H12A—C12—H12B109.5
C9—Ti1—C655.71 (8)Si3—C12—H12C109.5
C8—Ti1—C1057.12 (8)H12A—C12—H12C109.5
Cl1—Ti1—C1084.58 (5)H12B—C12—H12C109.5
C7—Ti1—C1057.03 (7)Si3—C13—H13A109.5
Cl2—Ti1—C1087.78 (5)Si3—C13—H13B109.5
C5—Ti1—C10140.22 (7)H13A—C13—H13B109.5
C1—Ti1—C10131.20 (7)Si3—C13—H13C109.5
C4—Ti1—C10163.27 (7)H13A—C13—H13C109.5
C2—Ti1—C10138.47 (7)H13B—C13—H13C109.5
C3—Ti1—C10161.24 (7)Si1—C14—H14A109.5
C9—Ti1—C1033.74 (7)Si1—C14—H14B109.5
C6—Ti1—C1033.82 (7)H14A—C14—H14B109.5
C16—Si1—C15108.75 (19)Si1—C14—H14C109.5
C16—Si1—C14110.49 (16)H14A—C14—H14C109.5
C15—Si1—C14110.56 (14)H14B—C14—H14C109.5
C16—Si1—C2104.80 (12)Si1—C15—H15A109.5
C15—Si1—C2111.50 (11)Si1—C15—H15B109.5
C14—Si1—C2110.59 (10)H15A—C15—H15B109.5
C19—Si2—C18110.54 (16)Si1—C15—H15C109.5
C19—Si2—C17110.16 (15)H15A—C15—H15C109.5
C18—Si2—C17109.88 (13)H15B—C15—H15C109.5
C19—Si2—C5107.49 (12)Si1—C16—H16A109.5
C18—Si2—C5112.99 (11)Si1—C16—H16B109.5
C17—Si2—C5105.65 (11)H16A—C16—H16B109.5
C12—Si3—C11109.97 (17)Si1—C16—H16C109.5
C12—Si3—C13109.98 (17)H16A—C16—H16C109.5
C11—Si3—C13109.33 (15)H16B—C16—H16C109.5
C12—Si3—C10111.98 (12)Si2—C17—H17A109.5
C11—Si3—C10105.61 (12)Si2—C17—H17B109.5
C13—Si3—C10109.86 (12)H17A—C17—H17B109.5
C2—C1—C5111.03 (17)Si2—C17—H17C109.5
C2—C1—Ti173.01 (12)H17A—C17—H17C109.5
C5—C1—Ti172.75 (12)H17B—C17—H17C109.5
C2—C1—H1124.5Si2—C18—H18A109.5
C5—C1—H1124.5Si2—C18—H18B109.5
Ti1—C1—H1121.3H18A—C18—H18B109.5
C1—C2—C3104.91 (17)Si2—C18—H18C109.5
C1—C2—Si1129.21 (15)H18A—C18—H18C109.5
C3—C2—Si1124.29 (15)H18B—C18—H18C109.5
C1—C2—Ti172.59 (11)Si2—C19—H19A109.5
C3—C2—Ti172.86 (12)Si2—C19—H19B109.5
Si1—C2—Ti1130.06 (11)H19A—C19—H19B109.5
C4—C3—C2109.76 (18)Si2—C19—H19C109.5
C4—C3—Ti172.84 (12)H19A—C19—H19C109.5
C2—C3—Ti172.57 (12)H19B—C19—H19C109.5
C8—Ti1—C1—C292.10 (13)C10—Ti1—C5—C4153.45 (12)
Cl1—Ti1—C1—C2130.24 (10)C8—Ti1—C5—Si292.64 (13)
C7—Ti1—C1—C2127.73 (13)Cl1—Ti1—C5—Si245.01 (12)
Cl2—Ti1—C1—C27.78 (14)C7—Ti1—C5—Si262.81 (13)
C5—Ti1—C1—C2119.20 (17)Cl2—Ti1—C5—Si2136.90 (9)
C4—Ti1—C1—C279.99 (13)C1—Ti1—C5—Si2125.39 (19)
C3—Ti1—C1—C239.25 (11)C4—Ti1—C5—Si2122.03 (19)
C9—Ti1—C1—C284.70 (13)C2—Ti1—C5—Si2160.79 (16)
C6—Ti1—C1—C2143.33 (12)C3—Ti1—C5—Si2158.12 (16)
C10—Ti1—C1—C2118.84 (13)C9—Ti1—C5—Si287.04 (17)
C8—Ti1—C1—C5148.70 (13)C6—Ti1—C5—Si232.91 (14)
Cl1—Ti1—C1—C511.05 (13)C10—Ti1—C5—Si231.42 (19)
C7—Ti1—C1—C5113.08 (13)C8—Ti1—C6—C738.83 (14)
Cl2—Ti1—C1—C5111.42 (11)Cl1—Ti1—C6—C7146.12 (14)
C4—Ti1—C1—C539.20 (11)Cl2—Ti1—C6—C7125.34 (13)
C2—Ti1—C1—C5119.20 (17)C5—Ti1—C6—C763.59 (15)
C3—Ti1—C1—C579.94 (13)C1—Ti1—C6—C727.80 (15)
C9—Ti1—C1—C5156.11 (12)C4—Ti1—C6—C784.20 (17)
C6—Ti1—C1—C597.47 (12)C2—Ti1—C6—C71.45 (18)
C10—Ti1—C1—C5121.96 (12)C3—Ti1—C6—C734.3 (3)
C5—C1—C2—C33.0 (2)C9—Ti1—C6—C780.35 (15)
Ti1—C1—C2—C366.23 (14)C10—Ti1—C6—C7118.1 (2)
C5—C1—C2—Si1168.80 (16)C8—Ti1—C6—C1079.29 (14)
Ti1—C1—C2—Si1127.93 (18)Cl1—Ti1—C6—C1095.75 (12)
C5—C1—C2—Ti163.27 (15)C7—Ti1—C6—C10118.1 (2)
C16—Si1—C2—C1107.6 (2)Cl2—Ti1—C6—C107.22 (15)
C15—Si1—C2—C1134.9 (2)C5—Ti1—C6—C10178.29 (12)
C14—Si1—C2—C111.4 (2)C1—Ti1—C6—C10145.92 (13)
C16—Si1—C2—C355.7 (2)C4—Ti1—C6—C10157.68 (12)
C15—Si1—C2—C361.7 (2)C2—Ti1—C6—C10119.58 (13)
C14—Si1—C2—C3174.82 (19)C3—Ti1—C6—C10152.5 (2)
C16—Si1—C2—Ti1151.92 (18)C9—Ti1—C6—C1037.77 (13)
C15—Si1—C2—Ti134.44 (19)C10—C6—C7—C80.2 (2)
C14—Si1—C2—Ti189.01 (16)Ti1—C6—C7—C865.30 (14)
C8—Ti1—C2—C182.40 (13)C10—C6—C7—Ti165.13 (15)
Cl1—Ti1—C2—C174.67 (13)C8—Ti1—C7—C6114.2 (2)
C7—Ti1—C2—C150.21 (13)Cl1—Ti1—C7—C635.16 (15)
Cl2—Ti1—C2—C1173.79 (11)Cl2—Ti1—C7—C680.19 (16)
C5—Ti1—C2—C135.46 (11)C5—Ti1—C7—C6120.78 (14)
C4—Ti1—C2—C176.73 (13)C1—Ti1—C7—C6152.15 (15)
C3—Ti1—C2—C1112.26 (17)C4—Ti1—C7—C6124.12 (14)
C9—Ti1—C2—C1107.71 (12)C2—Ti1—C7—C6178.89 (14)
C6—Ti1—C2—C149.40 (15)C3—Ti1—C7—C6166.13 (13)
C10—Ti1—C2—C196.29 (14)C9—Ti1—C7—C676.30 (15)
C8—Ti1—C2—C3165.34 (13)C10—Ti1—C7—C635.82 (13)
Cl1—Ti1—C2—C337.60 (15)Cl1—Ti1—C7—C8149.32 (12)
C7—Ti1—C2—C3162.47 (13)Cl2—Ti1—C7—C833.97 (17)
Cl2—Ti1—C2—C361.53 (12)C5—Ti1—C7—C8125.06 (14)
C5—Ti1—C2—C376.81 (13)C1—Ti1—C7—C893.69 (14)
C1—Ti1—C2—C3112.26 (17)C4—Ti1—C7—C8121.71 (14)
C4—Ti1—C2—C335.53 (12)C2—Ti1—C7—C866.95 (14)
C9—Ti1—C2—C3140.03 (12)C3—Ti1—C7—C879.71 (16)
C6—Ti1—C2—C3161.66 (12)C9—Ti1—C7—C837.86 (13)
C10—Ti1—C2—C3151.44 (12)C6—Ti1—C7—C8114.2 (2)
C8—Ti1—C2—Si144.60 (13)C10—Ti1—C7—C878.35 (14)
Cl1—Ti1—C2—Si1158.33 (8)C6—C7—C8—C90.4 (2)
C7—Ti1—C2—Si176.79 (14)Ti1—C7—C8—C968.09 (14)
Cl2—Ti1—C2—Si159.20 (12)C6—C7—C8—Ti167.66 (15)
C5—Ti1—C2—Si1162.46 (16)Cl1—Ti1—C8—C969.53 (16)
C1—Ti1—C2—Si1127.00 (19)C7—Ti1—C8—C9113.98 (19)
C4—Ti1—C2—Si1156.26 (16)Cl2—Ti1—C8—C942.00 (14)
C3—Ti1—C2—Si1120.73 (19)C5—Ti1—C8—C9174.02 (13)
C9—Ti1—C2—Si119.30 (15)C1—Ti1—C8—C9167.85 (15)
C6—Ti1—C2—Si177.61 (16)C4—Ti1—C8—C9158.46 (13)
C10—Ti1—C2—Si130.71 (19)C2—Ti1—C8—C9133.15 (14)
C1—C2—C3—C42.2 (2)C3—Ti1—C8—C9123.95 (13)
Si1—C2—C3—C4168.97 (16)C6—Ti1—C8—C976.56 (14)
Ti1—C2—C3—C463.81 (15)C10—Ti1—C8—C935.92 (13)
C1—C2—C3—Ti166.04 (14)Cl1—Ti1—C8—C744.45 (17)
Si1—C2—C3—Ti1127.22 (16)Cl2—Ti1—C8—C7155.98 (12)
C8—Ti1—C3—C4134.12 (13)C5—Ti1—C8—C760.04 (14)
Cl1—Ti1—C3—C436.15 (12)C1—Ti1—C8—C778.17 (14)
C7—Ti1—C3—C495.15 (14)C4—Ti1—C8—C787.56 (16)
Cl2—Ti1—C3—C4126.51 (12)C2—Ti1—C8—C7112.87 (14)
C5—Ti1—C3—C437.31 (12)C3—Ti1—C8—C7122.07 (13)
C1—Ti1—C3—C478.83 (13)C9—Ti1—C8—C7113.98 (19)
C2—Ti1—C3—C4117.89 (18)C6—Ti1—C8—C737.42 (13)
C9—Ti1—C3—C4171.82 (12)C10—Ti1—C8—C778.06 (14)
C6—Ti1—C3—C471.2 (3)C7—C8—C9—C100.9 (2)
C10—Ti1—C3—C4161.9 (2)Ti1—C8—C9—C1065.64 (15)
C8—Ti1—C3—C216.23 (15)C7—C8—C9—Ti166.51 (14)
Cl1—Ti1—C3—C2154.04 (11)Cl1—Ti1—C9—C8132.99 (12)
C7—Ti1—C3—C222.74 (16)C7—Ti1—C9—C838.74 (13)
Cl2—Ti1—C3—C2115.60 (12)Cl2—Ti1—C9—C8138.45 (14)
C5—Ti1—C3—C280.58 (13)C5—Ti1—C9—C89.4 (2)
C1—Ti1—C3—C239.06 (12)C1—Ti1—C9—C813.02 (16)
C4—Ti1—C3—C2117.89 (18)C4—Ti1—C9—C861.7 (3)
C9—Ti1—C3—C253.93 (15)C2—Ti1—C9—C848.84 (15)
C6—Ti1—C3—C246.7 (3)C3—Ti1—C9—C877.35 (16)
C10—Ti1—C3—C280.2 (3)C6—Ti1—C9—C879.62 (14)
C2—C3—C4—C50.7 (2)C10—Ti1—C9—C8117.49 (19)
Ti1—C3—C4—C564.39 (15)C8—Ti1—C9—C10117.49 (19)
C2—C3—C4—Ti163.64 (15)Cl1—Ti1—C9—C1015.50 (14)
C8—Ti1—C4—C366.74 (16)C7—Ti1—C9—C1078.75 (14)
Cl1—Ti1—C4—C3144.92 (12)Cl2—Ti1—C9—C10104.06 (12)
C7—Ti1—C4—C3110.83 (13)C5—Ti1—C9—C10108.06 (15)
Cl2—Ti1—C4—C352.11 (12)C1—Ti1—C9—C10130.51 (12)
C5—Ti1—C4—C3116.70 (17)C4—Ti1—C9—C10179.2 (2)
C1—Ti1—C4—C377.84 (13)C2—Ti1—C9—C10166.34 (12)
C2—Ti1—C4—C336.52 (12)C3—Ti1—C9—C10165.16 (12)
C9—Ti1—C4—C321.8 (3)C6—Ti1—C9—C1037.87 (12)
C6—Ti1—C4—C3153.01 (13)C8—C9—C10—C60.9 (2)
C10—Ti1—C4—C3159.7 (2)Ti1—C9—C10—C663.40 (14)
C8—Ti1—C4—C549.96 (17)C8—C9—C10—Si3168.54 (15)
Cl1—Ti1—C4—C598.38 (11)Ti1—C9—C10—Si3129.01 (16)
C7—Ti1—C4—C55.87 (16)C8—C9—C10—Ti162.45 (15)
Cl2—Ti1—C4—C5168.81 (11)C7—C6—C10—C90.7 (2)
C1—Ti1—C4—C538.85 (11)Ti1—C6—C10—C963.20 (14)
C2—Ti1—C4—C580.18 (13)C7—C6—C10—Si3168.51 (15)
C3—Ti1—C4—C5116.70 (17)Ti1—C6—C10—Si3128.97 (16)
C9—Ti1—C4—C594.9 (3)C7—C6—C10—Ti162.52 (15)
C6—Ti1—C4—C536.31 (17)C12—Si3—C10—C955.8 (2)
C10—Ti1—C4—C583.6 (3)C11—Si3—C10—C963.8 (2)
C2—C1—C5—C42.5 (2)C13—Si3—C10—C9178.4 (2)
Ti1—C1—C5—C465.97 (14)C12—Si3—C10—C6139.0 (2)
C2—C1—C5—Si2170.91 (16)C11—Si3—C10—C6101.3 (2)
Ti1—C1—C5—Si2125.65 (17)C13—Si3—C10—C616.5 (2)
C2—C1—C5—Ti163.44 (15)C12—Si3—C10—Ti142.1 (2)
C3—C4—C5—C11.1 (2)C11—Si3—C10—Ti1161.77 (16)
Ti1—C4—C5—C166.06 (14)C13—Si3—C10—Ti180.43 (18)
C3—C4—C5—Si2169.83 (16)C8—Ti1—C10—C936.50 (13)
Ti1—C4—C5—Si2125.18 (16)Cl1—Ti1—C10—C9166.20 (12)
C3—C4—C5—Ti164.99 (15)C7—Ti1—C10—C978.53 (14)
C19—Si2—C5—C1167.0 (2)Cl2—Ti1—C10—C971.83 (12)
C18—Si2—C5—C170.8 (2)C5—Ti1—C10—C9116.91 (14)
C17—Si2—C5—C149.4 (2)C1—Ti1—C10—C968.30 (15)
C19—Si2—C5—C40.8 (2)C4—Ti1—C10—C9179.2 (2)
C18—Si2—C5—C4123.0 (2)C2—Ti1—C10—C920.02 (17)
C17—Si2—C5—C4116.8 (2)C3—Ti1—C10—C937.4 (3)
C19—Si2—C5—Ti194.86 (17)C6—Ti1—C10—C9114.34 (18)
C18—Si2—C5—Ti127.36 (17)C8—Ti1—C10—C677.84 (14)
C17—Si2—C5—Ti1147.53 (14)Cl1—Ti1—C10—C679.46 (13)
C8—Ti1—C5—C132.75 (13)C7—Ti1—C10—C635.80 (13)
Cl1—Ti1—C5—C1170.40 (11)Cl2—Ti1—C10—C6173.84 (13)
C7—Ti1—C5—C162.58 (12)C5—Ti1—C10—C62.57 (19)
Cl2—Ti1—C5—C197.70 (12)C1—Ti1—C10—C646.04 (16)
C4—Ti1—C5—C1112.58 (17)C4—Ti1—C10—C664.9 (3)
C2—Ti1—C5—C135.39 (11)C2—Ti1—C10—C694.31 (15)
C3—Ti1—C5—C176.49 (12)C3—Ti1—C10—C6151.8 (2)
C9—Ti1—C5—C138.36 (18)C9—Ti1—C10—C6114.34 (18)
C6—Ti1—C5—C192.48 (12)C8—Ti1—C10—Si3160.20 (18)
C10—Ti1—C5—C193.97 (15)Cl1—Ti1—C10—Si342.50 (14)
C8—Ti1—C5—C4145.33 (12)C7—Ti1—C10—Si3157.76 (18)
Cl1—Ti1—C5—C477.02 (11)Cl2—Ti1—C10—Si351.88 (14)
C7—Ti1—C5—C4175.16 (13)C5—Ti1—C10—Si3119.39 (14)
Cl2—Ti1—C5—C414.87 (14)C1—Ti1—C10—Si3168.00 (12)
C1—Ti1—C5—C4112.58 (17)C4—Ti1—C10—Si357.1 (3)
C2—Ti1—C5—C477.18 (12)C2—Ti1—C10—Si3143.73 (13)
C3—Ti1—C5—C436.09 (12)C3—Ti1—C10—Si386.3 (3)
C9—Ti1—C5—C4150.93 (14)C9—Ti1—C10—Si3123.7 (2)
C6—Ti1—C5—C4154.94 (12)C6—Ti1—C10—Si3122.0 (2)

Experimental details

Crystal data
Chemical formula[Ti(C8H13Si)(C11H21Si2)Cl2]
Mr465.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)10.2588 (2), 18.6417 (4), 13.3061 (2)
β (°) 105.2380 (12)
V3)2455.21 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.870, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
10555, 5586, 4437
Rint0.024
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.03
No. of reflections5586
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.37

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

 

Acknowledgements

The author thanks the Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 and X-2000.

References

First citationAlt, H. G., Licht, E. H., Licht, A. I. & Schneider, K. J. (2006). Coord. Chem. Rev. 250, 2–17.  Web of Science CrossRef CAS Google Scholar
First citationClearfield, A., Warner, D. K., Saldarriaga-Molina, C. H., Ropal, R. & Bernal, I. (1975). Can. J. Chem. 53, 1622–1629.  CrossRef CAS Web of Science Google Scholar
First citationErker, G., Kehr, G. & Fröhlich, R. (2006). Coord. Chem. Rev. 250, 36–46.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKaminsky, W., Sperber, O. & Werner, R. (2006). Coord. Chem. Rev. 250, 110–117.  Web of Science CrossRef CAS Google Scholar
First citationKlouras, N. & Nastopoulos, V. (1991). Monatsh. Chem. 122, 551–556.  CSD CrossRef CAS Web of Science Google Scholar
First citationLuo, X., Wu, Q. & Mu, Y. (2011). Acta Cryst. E67, m1355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKenzie, T. C., Sanner, R. D. & Bercaw, J. E. (1975). J. Organomet. Chem. 102, 457–466.  CSD CrossRef CAS Web of Science Google Scholar
First citationMöhring, P. C. & Coville, N. J. (2006). Coord. Chem. Rev. 250, 18–35.  Web of Science CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinter, C. H., Zhou, X.-X. & Heeg, M. J. (1992). Inorg. Chem. 31, 1808–1815.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhu, F., Qin, Y., Lei, J., Zhang, L. & Yin, Q. (2010). Acta Cryst. E66, m769–m770.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds