metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­methyl sulfoxide-κO)bis­(saccharinato-κN)­zinc(II)

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: vanzylw@ukzn.ac.za

(Received 21 October 2011; accepted 31 October 2011; online 5 November 2011)

The title compound, [Zn(C7H4N2O3S)2(C2H6OS)2], is a neutral four-coordinate complex with a tetra­hedral geometry. The metal atom is surrounded by the two dimethyl sulfoxide (DMSO) ligands, each coordinating through the O atom, and two anionic saccharinate (1,1,3-trioxo-2,3-dihydro-1λ6,2-benzo­thia­zol-2-ide) ligands coordinating through the N atom. The tetra­hedral geometry is slightly distorted as is evident from the N—Zn—N bond angle of 113.85 (6)°, the O—Zn—O bond angle of 98.92 (6)° and O—Zn—N bond angles of 116.96 (6) and 103.93 (6)°. The Zn—N bond lengths are 1.9742 (15) and 2.0025 (16) Å. The Zn—O bond lengths are 1.9806 (14) Å and 1.9468 (14) Å. The DMSO ligand coordinates through the lone pair of electrons on the O atom, as can be seen from the Zn—O—S bond angle of 131.30 (8)°.

Related literature

For a general review article on the coordination chemistry of saccharinate ligands, see: Baran & Yilmaz (2006[Baran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980-1999.]). For a zinc(II) complex with saccharinate as a polyfunctional ligand, see: Yilmaz et al. (2006[Yilmaz, V. T., Kars, V. & Kazak, C. (2006). J. Coord. Chem. 59, 1937-1944.]) and for zinc(II) complexes with saccharinate as a non-coordinating ligand, see: Batsanov et al. (2011[Batsanov, A. S., Bilton, C., Deng, R. M. K., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Shepherd, H. J., Simon, S. & Tembwe, I. (2011). Inorg. Chim. Acta, 365, 225-231.]). For the general preparation of saccharinate precursor complexes, see: Haider et al. (1985[Haider, S. Z., Malik, K. M. A., Ahmed, K. J., Kauffman, G. B. & Karbassi, M. (1985). Inorg. Synth. 23, 47-51.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4N2O3S)2(C2H6OS)2]

  • Mr = 585.97

  • Monoclinic, P 21 /c

  • a = 19.2506 (7) Å

  • b = 8.2855 (3) Å

  • c = 14.8880 (5) Å

  • β = 103.460 (1)°

  • V = 2309.42 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 173 K

  • 0.14 × 0.11 × 0.05 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.820, Tmax = 0.930

  • 44984 measured reflections

  • 5730 independent reflections

  • 4739 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.067

  • S = 1.02

  • 5730 reflections

  • 302 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Saccharin (o-sulfobenzimide; 1,2-benzothiazole-3(2H)-one 1,1-dioxide; Hsac) is a widely used artificial sweetening agent. The imino hydrogen is acidic and can be readily deprotonated. The coordination chemistry of this anion is versatile due to the different coordination sites to metallic centers it can accommodate, i.e., one N, one O (carbonylic) and two O (sulfonic) atoms. These donor atoms of the anion can thus readily generate either N– or O-monodentate or bidentate (N, O) coordination. Saccharin is normally used as the sodium or calcium salt which dramatically improves water solubility. Most metal complexes contain the deprotonated form of saccharin, and this saccharinate anion (sac) is commercially available as the sodium salt, used in the present study. The reaction of sodium saccharinate with a variety of divalent transition metal ions results in coordination complexes with general formula [M(sac)2(H2O)4].2H2O, (M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd), which all show a clear preference to bind through the deprotonated anionic N-atom (Baran and Yilmaz, 2006). These octahedral complexes contain two N-bonded sac ligands in trans positions, and complexes of the type [M(sac)2(H2O)4].2H2O are thus commonly used as precursors in the synthesis of mixed-ligand saccharinate complexes. The aqua ligands in these metal complexes are labile and readily displaced by direct reaction of neutral ligands. The addition of strongly donating ligands to the solutions of the complexes usually results in the substitution of all four aqua ligands, thereby forming stable new mixed-ligand complexes. In cases where the incoming neutral ligand is relatively bulky, as in the present study, it causes steric hindrance and once all four aqua ligands become displaced, the Zn center adopts a tetrahedral geometry, rather than octahedral. Although there are a number of Zn(II) saccharinate complexes previously reported (Batsanov et al., 2011, and refs. therein), we are unaware of any report where both saccharinate and DMSO ligands are present in a structurally characterized Zn(II) complex.

Related literature top

For a general review article on the coordination chemistry of saccharinate ligands, see: Baran & Yilmaz (2006). For a zinc(II) complex with saccharinate as a polyfunctional ligand, see: Yilmaz et al. (2006) and for zinc(II) complexes with saccharinate as a non-coordinating ligand, see: Batsanov et al. (2011). For the general preparation of saccharinate precursor complexes, see: Haider et al. (1985).

Experimental top

[Zn(sac)2(H2O)4].2H2O was prepared as per literature method (Haider et al., 1985). Colorless crystals of [Zn(sac)2(H2O)4].2H2O (1.60 g; 2.82 mmol) was placed in a 100 ml beaker and dissolved in excess amount of dimethyl sulfoxide (DMSO) (20 ml). The reaction mixture was gently heated on a heating mantle with stirring to reduce the volume of DMSO to ~7 ml. The beaker was removed from the heat source and allowed to stand for 6 days during which time large colorless blocky crystals of the title compound were obtained. Yield (1.51 g, 92%); Mp 190°C; 13C NMR (CD3OD, 101 MHz) δ(p.p.m.): 40.37 (CH3-DMSO), 121.23 (C6-ring), 124.89 (C6-ring), 133.32 (C6-ring), 134.21 (C6-ring), 134.27 (C6-ring), 144.80 (C6-ring) 171.57 (C=O); IR (ATR) 1687 ν(C=O), 1596, 1419 ν(C=C), 1274, 1245 ν(O=S=O); 1138, 955 ν(S=O).

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms could be found in the difference electron density maps and but were placed in idealized positions refining in riding models with Uiso set at 1.2 or 1.5 times those of their parent atoms and bond length of C—H ranging from 0.95 Å to 0.98 Å. The structure was refined to R factor of 0.0269.

Structure description top

Saccharin (o-sulfobenzimide; 1,2-benzothiazole-3(2H)-one 1,1-dioxide; Hsac) is a widely used artificial sweetening agent. The imino hydrogen is acidic and can be readily deprotonated. The coordination chemistry of this anion is versatile due to the different coordination sites to metallic centers it can accommodate, i.e., one N, one O (carbonylic) and two O (sulfonic) atoms. These donor atoms of the anion can thus readily generate either N– or O-monodentate or bidentate (N, O) coordination. Saccharin is normally used as the sodium or calcium salt which dramatically improves water solubility. Most metal complexes contain the deprotonated form of saccharin, and this saccharinate anion (sac) is commercially available as the sodium salt, used in the present study. The reaction of sodium saccharinate with a variety of divalent transition metal ions results in coordination complexes with general formula [M(sac)2(H2O)4].2H2O, (M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd), which all show a clear preference to bind through the deprotonated anionic N-atom (Baran and Yilmaz, 2006). These octahedral complexes contain two N-bonded sac ligands in trans positions, and complexes of the type [M(sac)2(H2O)4].2H2O are thus commonly used as precursors in the synthesis of mixed-ligand saccharinate complexes. The aqua ligands in these metal complexes are labile and readily displaced by direct reaction of neutral ligands. The addition of strongly donating ligands to the solutions of the complexes usually results in the substitution of all four aqua ligands, thereby forming stable new mixed-ligand complexes. In cases where the incoming neutral ligand is relatively bulky, as in the present study, it causes steric hindrance and once all four aqua ligands become displaced, the Zn center adopts a tetrahedral geometry, rather than octahedral. Although there are a number of Zn(II) saccharinate complexes previously reported (Batsanov et al., 2011, and refs. therein), we are unaware of any report where both saccharinate and DMSO ligands are present in a structurally characterized Zn(II) complex.

For a general review article on the coordination chemistry of saccharinate ligands, see: Baran & Yilmaz (2006). For a zinc(II) complex with saccharinate as a polyfunctional ligand, see: Yilmaz et al. (2006) and for zinc(II) complexes with saccharinate as a non-coordinating ligand, see: Batsanov et al. (2011). For the general preparation of saccharinate precursor complexes, see: Haider et al. (1985).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure (ORTEP) of the title complex drawn at 50% ellipsoid probablility.
Bis(dimethyl sulfoxide-κO)bis(1,1,3-trioxo-2,3-dihydro-1λ6,2- benzothiazol-2-ido)zinc(II) top
Crystal data top
[Zn(C7H4N2O3S)2(C2H6OS)2]F(000) = 1200
Mr = 585.97Dx = 1.685 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 44984 reflections
a = 19.2506 (7) Åθ = 2.2–28.4°
b = 8.2855 (3) ŵ = 1.47 mm1
c = 14.8880 (5) ÅT = 173 K
β = 103.460 (1)°Plate, colourless
V = 2309.42 (14) Å30.14 × 0.11 × 0.05 mm
Z = 4
Data collection top
Bruker Kappa DUO APEXII
diffractometer
5730 independent reflections
Radiation source: fine-focus sealed tube4739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
0.5° φ scans and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 2525
Tmin = 0.820, Tmax = 0.930k = 1111
44984 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0289P)2 + 1.4252P]
where P = (Fo2 + 2Fc2)/3
5730 reflections(Δ/σ)max = 0.001
302 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Zn(C7H4N2O3S)2(C2H6OS)2]V = 2309.42 (14) Å3
Mr = 585.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.2506 (7) ŵ = 1.47 mm1
b = 8.2855 (3) ÅT = 173 K
c = 14.8880 (5) Å0.14 × 0.11 × 0.05 mm
β = 103.460 (1)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
5730 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
4739 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.930Rint = 0.047
44984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
5730 reflectionsΔρmin = 0.30 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.262359 (11)0.60399 (3)0.400931 (15)0.01948 (6)
S10.35238 (2)0.41221 (6)0.57598 (3)0.02170 (10)
S20.11081 (2)0.42199 (6)0.34334 (3)0.02120 (10)
S30.26721 (3)0.48184 (6)0.20501 (3)0.02117 (10)
S40.22966 (3)0.98355 (6)0.38273 (3)0.02200 (10)
O10.36505 (8)0.54605 (18)0.63895 (10)0.0320 (3)
O20.29500 (8)0.30549 (18)0.58307 (10)0.0311 (3)
O30.40031 (8)0.44123 (19)0.35058 (10)0.0315 (3)
O40.06265 (8)0.52127 (18)0.27742 (10)0.0320 (3)
O50.14742 (8)0.29900 (17)0.30376 (10)0.0303 (3)
O60.18678 (8)0.60520 (18)0.56992 (10)0.0289 (3)
O70.24945 (8)0.61720 (16)0.26750 (9)0.0263 (3)
O80.27128 (7)0.83728 (16)0.43039 (9)0.0236 (3)
N10.34324 (8)0.47292 (19)0.46907 (11)0.0213 (3)
N20.16708 (8)0.53038 (19)0.41761 (11)0.0213 (3)
C10.43194 (10)0.3045 (2)0.58191 (14)0.0239 (4)
C20.47356 (11)0.2218 (3)0.65600 (15)0.0307 (5)
H20.46020.21400.71340.037*
C30.53551 (12)0.1510 (3)0.64251 (17)0.0355 (5)
H30.56560.09330.69170.043*
C40.55447 (11)0.1632 (3)0.55787 (17)0.0343 (5)
H40.59720.11340.55030.041*
C50.51199 (10)0.2470 (2)0.48461 (16)0.0286 (4)
H50.52510.25520.42710.034*
C60.45011 (10)0.3180 (2)0.49758 (14)0.0224 (4)
C70.39693 (10)0.4160 (2)0.42994 (14)0.0226 (4)
C80.06604 (10)0.3411 (2)0.42394 (13)0.0208 (4)
C90.00967 (10)0.2333 (2)0.41005 (15)0.0280 (4)
H90.01050.18860.35100.034*
C100.01597 (11)0.1938 (2)0.48726 (16)0.0306 (5)
H100.05460.12010.48080.037*
C110.01342 (11)0.2592 (3)0.57333 (15)0.0298 (5)
H110.00480.22820.62490.036*
C120.06915 (10)0.3695 (2)0.58516 (14)0.0252 (4)
H120.08890.41560.64400.030*
C130.09509 (9)0.4103 (2)0.50915 (13)0.0196 (4)
C140.15383 (10)0.5259 (2)0.50515 (13)0.0208 (4)
C150.33065 (11)0.5740 (3)0.15131 (14)0.0284 (4)
H15A0.31280.67960.12670.043*
H15B0.33810.50520.10080.043*
H15C0.37600.58770.19690.043*
C160.19112 (11)0.4860 (3)0.11028 (14)0.0283 (4)
H16A0.14870.45300.13140.042*
H16B0.19850.41160.06220.042*
H16C0.18430.59570.08510.042*
C170.26648 (13)1.0286 (3)0.28680 (16)0.0345 (5)
H17A0.31521.06980.30890.052*
H17B0.23701.11040.24810.052*
H17C0.26750.93040.25040.052*
C180.14491 (11)0.9084 (3)0.32281 (18)0.0385 (6)
H18A0.15130.83310.27460.058*
H18B0.11460.99850.29450.058*
H18C0.12210.85240.36630.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02243 (11)0.01899 (11)0.01713 (11)0.00229 (8)0.00485 (8)0.00187 (8)
S10.0249 (2)0.0211 (2)0.0195 (2)0.00290 (18)0.00603 (17)0.00380 (18)
S20.0267 (2)0.0198 (2)0.0162 (2)0.00174 (17)0.00311 (17)0.00012 (17)
S30.0283 (2)0.0189 (2)0.0171 (2)0.00189 (17)0.00686 (18)0.00173 (17)
S40.0286 (2)0.0183 (2)0.0203 (2)0.00216 (18)0.00797 (18)0.00039 (18)
O10.0395 (8)0.0306 (8)0.0257 (8)0.0059 (6)0.0072 (6)0.0040 (6)
O20.0297 (7)0.0308 (8)0.0356 (9)0.0000 (6)0.0130 (6)0.0106 (7)
O30.0321 (8)0.0423 (9)0.0211 (7)0.0063 (7)0.0084 (6)0.0047 (6)
O40.0386 (8)0.0332 (8)0.0202 (7)0.0066 (7)0.0010 (6)0.0061 (6)
O50.0415 (8)0.0250 (7)0.0265 (8)0.0044 (6)0.0121 (6)0.0041 (6)
O60.0295 (7)0.0319 (8)0.0240 (7)0.0069 (6)0.0037 (6)0.0076 (6)
O70.0401 (8)0.0228 (7)0.0168 (7)0.0076 (6)0.0078 (6)0.0010 (6)
O80.0278 (7)0.0202 (6)0.0204 (7)0.0017 (5)0.0011 (5)0.0013 (5)
N10.0238 (8)0.0227 (8)0.0178 (8)0.0035 (6)0.0053 (6)0.0051 (6)
N20.0231 (8)0.0222 (8)0.0185 (8)0.0017 (6)0.0043 (6)0.0001 (6)
C10.0243 (9)0.0210 (9)0.0247 (10)0.0008 (7)0.0021 (8)0.0023 (8)
C20.0336 (11)0.0295 (11)0.0262 (11)0.0014 (9)0.0010 (9)0.0053 (9)
C30.0290 (11)0.0324 (11)0.0383 (13)0.0035 (9)0.0060 (9)0.0074 (10)
C40.0228 (10)0.0287 (11)0.0491 (14)0.0050 (8)0.0035 (9)0.0020 (10)
C50.0247 (10)0.0263 (10)0.0351 (12)0.0007 (8)0.0077 (8)0.0023 (9)
C60.0219 (9)0.0196 (9)0.0244 (10)0.0007 (7)0.0027 (7)0.0005 (8)
C70.0231 (9)0.0216 (9)0.0234 (10)0.0004 (7)0.0058 (7)0.0003 (8)
C80.0235 (9)0.0189 (9)0.0192 (9)0.0029 (7)0.0031 (7)0.0007 (7)
C90.0274 (10)0.0224 (9)0.0307 (11)0.0023 (8)0.0002 (8)0.0056 (8)
C100.0243 (10)0.0236 (10)0.0438 (13)0.0038 (8)0.0076 (9)0.0004 (9)
C110.0266 (10)0.0311 (11)0.0348 (12)0.0001 (8)0.0132 (9)0.0068 (9)
C120.0240 (9)0.0301 (10)0.0217 (10)0.0000 (8)0.0062 (7)0.0004 (8)
C130.0193 (8)0.0186 (8)0.0200 (9)0.0022 (7)0.0030 (7)0.0014 (7)
C140.0206 (9)0.0195 (9)0.0216 (9)0.0018 (7)0.0037 (7)0.0007 (7)
C150.0348 (11)0.0280 (10)0.0242 (10)0.0046 (8)0.0103 (8)0.0030 (8)
C160.0312 (10)0.0311 (11)0.0208 (10)0.0000 (8)0.0022 (8)0.0006 (8)
C170.0431 (13)0.0335 (11)0.0331 (12)0.0056 (10)0.0214 (10)0.0122 (10)
C180.0265 (10)0.0307 (11)0.0544 (15)0.0024 (9)0.0017 (10)0.0137 (11)
Geometric parameters (Å, º) top
Zn1—O71.9468 (14)C4—C51.387 (3)
Zn1—N11.9742 (15)C4—H40.9500
Zn1—O81.9806 (14)C5—C61.382 (3)
Zn1—N22.0025 (16)C5—H50.9500
S1—O11.4358 (15)C6—C71.497 (3)
S1—O21.4379 (15)C8—C91.383 (3)
S1—N11.6392 (16)C8—C131.386 (3)
S1—C11.757 (2)C9—C101.391 (3)
S2—O51.4407 (14)C9—H90.9500
S2—O41.4408 (14)C10—C111.385 (3)
S2—N21.6265 (16)C10—H100.9500
S2—C81.765 (2)C11—C121.389 (3)
S3—O71.5454 (14)C11—H110.9500
S3—C151.780 (2)C12—C131.381 (3)
S3—C161.782 (2)C12—H120.9500
S4—O81.5328 (14)C13—C141.494 (3)
S4—C171.776 (2)C15—H15A0.9800
S4—C181.780 (2)C15—H15B0.9800
O3—C71.216 (2)C15—H15C0.9800
O6—C141.216 (2)C16—H16A0.9800
N1—C71.382 (2)C16—H16B0.9800
N2—C141.385 (2)C16—H16C0.9800
C1—C61.384 (3)C17—H17A0.9800
C1—C21.384 (3)C17—H17B0.9800
C2—C31.385 (3)C17—H17C0.9800
C2—H20.9500C18—H18A0.9800
C3—C41.395 (3)C18—H18B0.9800
C3—H30.9500C18—H18C0.9800
O7—Zn1—N1116.96 (6)C1—C6—C7112.12 (17)
O7—Zn1—O898.92 (6)O3—C7—N1124.39 (18)
N1—Zn1—O8113.93 (6)O3—C7—C6124.33 (18)
O7—Zn1—N2103.92 (6)N1—C7—C6111.28 (16)
N1—Zn1—N2113.85 (6)C9—C8—C13122.64 (18)
O8—Zn1—N2107.73 (6)C9—C8—S2129.34 (16)
O1—S1—O2116.33 (10)C13—C8—S2107.96 (14)
O1—S1—N1111.13 (9)C8—C9—C10116.43 (19)
O2—S1—N1110.44 (9)C8—C9—H9121.8
O1—S1—C1110.24 (9)C10—C9—H9121.8
O2—S1—C1111.07 (9)C11—C10—C9121.70 (19)
N1—S1—C195.74 (9)C11—C10—H10119.2
O5—S2—O4115.07 (9)C9—C10—H10119.1
O5—S2—N2110.91 (9)C10—C11—C12120.8 (2)
O4—S2—N2111.66 (9)C10—C11—H11119.6
O5—S2—C8111.85 (9)C12—C11—H11119.6
O4—S2—C8109.97 (9)C13—C12—C11118.23 (19)
N2—S2—C895.79 (9)C13—C12—H12120.9
O7—S3—C15103.31 (9)C11—C12—H12120.9
O7—S3—C16101.90 (9)C12—C13—C8120.20 (18)
C15—S3—C1699.19 (10)C12—C13—C14127.67 (17)
O8—S4—C17105.95 (9)C8—C13—C14112.14 (17)
O8—S4—C18105.97 (9)O6—C14—N2123.72 (17)
C17—S4—C1899.28 (12)O6—C14—C13125.08 (18)
S3—O7—Zn1125.44 (8)N2—C14—C13111.20 (16)
S4—O8—Zn1131.30 (8)S3—C15—H15A109.5
C7—N1—S1112.50 (13)S3—C15—H15B109.5
C7—N1—Zn1123.29 (13)H15A—C15—H15B109.5
S1—N1—Zn1124.15 (9)S3—C15—H15C109.5
C14—N2—S2112.67 (13)H15A—C15—H15C109.5
C14—N2—Zn1119.96 (12)H15B—C15—H15C109.5
S2—N2—Zn1124.62 (9)S3—C16—H16A109.5
C6—C1—C2122.78 (19)S3—C16—H16B109.5
C6—C1—S1108.33 (14)H16A—C16—H16B109.5
C2—C1—S1128.86 (17)S3—C16—H16C109.5
C1—C2—C3116.9 (2)H16A—C16—H16C109.5
C1—C2—H2121.6H16B—C16—H16C109.5
C3—C2—H2121.6S4—C17—H17A109.5
C2—C3—C4121.0 (2)S4—C17—H17B109.5
C2—C3—H3119.5H17A—C17—H17B109.5
C4—C3—H3119.5S4—C17—H17C109.5
C5—C4—C3121.1 (2)H17A—C17—H17C109.5
C5—C4—H4119.5H17B—C17—H17C109.5
C3—C4—H4119.5S4—C18—H18A109.5
C6—C5—C4118.2 (2)S4—C18—H18B109.5
C6—C5—H5120.9H18A—C18—H18B109.5
C4—C5—H5120.9S4—C18—H18C109.5
C5—C6—C1120.01 (18)H18A—C18—H18C109.5
C5—C6—C7127.86 (19)H18B—C18—H18C109.5
C15—S3—O7—Zn1121.22 (11)C1—C2—C3—C40.1 (3)
C16—S3—O7—Zn1136.21 (11)C2—C3—C4—C50.2 (3)
N1—Zn1—O7—S332.67 (13)C3—C4—C5—C60.1 (3)
O8—Zn1—O7—S3155.39 (10)C4—C5—C6—C10.1 (3)
N2—Zn1—O7—S393.73 (11)C4—C5—C6—C7178.88 (19)
C17—S4—O8—Zn180.10 (14)C2—C1—C6—C50.2 (3)
C18—S4—O8—Zn124.75 (15)S1—C1—C6—C5178.41 (15)
O7—Zn1—O8—S442.42 (12)C2—C1—C6—C7178.92 (18)
N1—Zn1—O8—S4167.29 (10)S1—C1—C6—C70.7 (2)
N2—Zn1—O8—S465.39 (12)S1—N1—C7—O3177.82 (17)
O1—S1—N1—C7115.49 (14)Zn1—N1—C7—O30.6 (3)
O2—S1—N1—C7113.84 (14)S1—N1—C7—C61.7 (2)
C1—S1—N1—C71.19 (15)Zn1—N1—C7—C6178.98 (12)
O1—S1—N1—Zn167.29 (13)C5—C6—C7—O33.0 (3)
O2—S1—N1—Zn163.38 (13)C1—C6—C7—O3178.00 (19)
C1—S1—N1—Zn1178.40 (11)C5—C6—C7—N1177.45 (19)
O7—Zn1—N1—C711.80 (17)C1—C6—C7—N11.6 (2)
O8—Zn1—N1—C7102.78 (15)O5—S2—C8—C964.2 (2)
N2—Zn1—N1—C7133.13 (14)O4—S2—C8—C964.9 (2)
O7—Zn1—N1—S1165.12 (9)N2—S2—C8—C9179.50 (18)
O8—Zn1—N1—S180.29 (12)O5—S2—C8—C13118.46 (14)
N2—Zn1—N1—S143.79 (13)O4—S2—C8—C13112.38 (14)
O5—S2—N2—C14120.91 (13)N2—S2—C8—C133.18 (14)
O4—S2—N2—C14109.32 (14)C13—C8—C9—C101.5 (3)
C8—S2—N2—C144.86 (14)S2—C8—C9—C10178.46 (15)
O5—S2—N2—Zn140.17 (13)C8—C9—C10—C110.1 (3)
O4—S2—N2—Zn189.60 (12)C9—C10—C11—C121.2 (3)
C8—S2—N2—Zn1156.22 (11)C10—C11—C12—C130.9 (3)
O7—Zn1—N2—C14172.33 (13)C11—C12—C13—C80.5 (3)
N1—Zn1—N2—C1459.33 (15)C11—C12—C13—C14179.56 (18)
O8—Zn1—N2—C1468.04 (14)C9—C8—C13—C121.7 (3)
O7—Zn1—N2—S227.87 (12)S2—C8—C13—C12179.26 (15)
N1—Zn1—N2—S2100.47 (11)C9—C8—C13—C14178.29 (17)
O8—Zn1—N2—S2132.16 (10)S2—C8—C13—C140.75 (19)
O1—S1—C1—C6115.29 (15)S2—N2—C14—O6175.69 (16)
O2—S1—C1—C6114.27 (14)Zn1—N2—C14—O622.2 (2)
N1—S1—C1—C60.25 (15)S2—N2—C14—C135.08 (19)
O1—S1—C1—C262.8 (2)Zn1—N2—C14—C13156.99 (12)
O2—S1—C1—C267.6 (2)C12—C13—C14—O61.9 (3)
N1—S1—C1—C2177.84 (19)C8—C13—C14—O6178.16 (18)
C6—C1—C2—C30.1 (3)C12—C13—C14—N2177.37 (18)
S1—C1—C2—C3177.96 (17)C8—C13—C14—N22.6 (2)

Experimental details

Crystal data
Chemical formula[Zn(C7H4N2O3S)2(C2H6OS)2]
Mr585.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)19.2506 (7), 8.2855 (3), 14.8880 (5)
β (°) 103.460 (1)
V3)2309.42 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.14 × 0.11 × 0.05
Data collection
DiffractometerBruker Kappa DUO APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.820, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
44984, 5730, 4739
Rint0.047
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.02
No. of reflections5730
No. of parameters302
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.30

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

WEvZ gratefully acknowledges financial support from the University of KwaZulu-Natal. FSWP thanks the National Research Foundation (NRF) for an Innovative Grant.

References

First citationBaran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980–1999.  Web of Science CrossRef CAS Google Scholar
First citationBatsanov, A. S., Bilton, C., Deng, R. M. K., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Shepherd, H. J., Simon, S. & Tembwe, I. (2011). Inorg. Chim. Acta, 365, 225–231.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaider, S. Z., Malik, K. M. A., Ahmed, K. J., Kauffman, G. B. & Karbassi, M. (1985). Inorg. Synth. 23, 47–51.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYilmaz, V. T., Kars, V. & Kazak, C. (2006). J. Coord. Chem. 59, 1937–1944.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds