organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-amino­benz­yl)ethane-1,2-diaminium bis­­(4-methyl­benzene­sulfonate)

aLaboratorio de Química Industrial, CELAES, Facultad de Ciencias Químicas, UANL, Pedro de Alba S/N, 66451 San Nicolás de los Garza, NL, Mexico, and bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 24 October 2011; accepted 31 October 2011; online 9 November 2011)

The title salt, C16H24N42+·2C7H7O3S, crystallizes with the dication situated on an inversion center and the anion in a general position. The cation contains two ammonium and two free amine groups, and the observed conformation for the chain linking the benzene rings is different from that found in the free tetra­amine and in the fully protonated tetra­amine. All amine and ammonium H atoms of the cation form hydrogen bonds with eight symmetry-related anions, using the sulfonate O atoms as acceptors. This arrangement for the ions precludes any ππ contacts between benzene rings in the crystal.

Related literature

For reviews on applications of macrocyclic systems, see: Vigato & Tamburini (2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]); Radecka-Paryzek et al. (2005[Radecka-Paryzek, W., Patroniak, V. & Lisowski, J. (2005). Coord. Chem. Rev. 249, 2156-2175.]). For their acid-catalysed synthesis using p-toluene­sulfonic acid, see: Ionkin et al. (2008[Ionkin, A. S., Marshall, W. J., Adelman, D. J., Bobik Fones, B., Fish, B. M., Schiffhauer, M. F., Soper, P. D., Waterland, R. L., Spence, R. E. & Xie, T. (2008). J. Polymer Sci. Polymer Chem. 46, 585-611.]). For the structures of the free mol­ecule and the fully protonated cation corresponding to the title cation, see: Rodríguez de Barbarín et al. (2007[Rodríguez de Barbarín, C., Bernès, S., Nájera, B., Elizondo, P. & Cerda, P. (2007). Acta Cryst. E63, o549-o550.]) and Garza Rodríguez et al. (2009[Garza Rodríguez, L. A., Bernès, S., Nájera Martínez, B., Elizondo Martínez, P. & Pérez Rodríguez, N. (2009). Acta Cryst. E65, o2995.], 2011[Garza Rodríguez, L. Á., Bernès, S., Elizondo Martínez, P., Nájera Martínez, B. & Pérez Rodríguez, N. (2011). Acta Cryst. E67, o3237-o3238.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C16H24N42+·2C7H7O3S

  • Mr = 614.76

  • Triclinic, [P \overline 1]

  • a = 5.753 (2) Å

  • b = 9.512 (3) Å

  • c = 14.493 (5) Å

  • α = 101.40 (2)°

  • β = 100.06 (3)°

  • γ = 97.80 (3)°

  • V = 753.6 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.60 × 0.16 × 0.16 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.512, Tmax = 0.594

  • 3505 measured reflections

  • 2650 independent reflections

  • 2234 reflections with I > 2σ(I)

  • Rint = 0.091

  • 2 standard reflections every 98 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.162

  • S = 1.29

  • 2650 reflections

  • 204 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O2i 0.90 (1) 2.12 (1) 3.012 (3) 177 (3)
N1—H12⋯O3ii 0.91 (1) 2.27 (3) 3.028 (4) 141 (3)
N8—H81⋯O3iii 0.91 (1) 1.91 (2) 2.763 (3) 157 (3)
N8—H82⋯O1iv 0.91 (1) 1.86 (1) 2.739 (3) 160 (3)
Symmetry codes: (i) x-1, y+1, z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+2; (iv) -x+2, -y+1, -z+2.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

New routes for the preparation of macrocyclic crown ethers and related systems remains a topic of interest, because of their numerous potential applications, like recognizing and transporting specific metal ions, anions or neutral molecules (Vigato & Tamburini, 2004), modeling more intricate biological macrocyclic systems (hemoglobin, myoglobin, cytochromes, chlorophylls), corrins (vitamin B12) and antibiotics (valinomycin, nonactin), among others (Radecka-Paryzek et al., 2005).

Macrocycles may be obtained through alkylation reactions, Mannich condensation, self condensation of nitriles, and Schiff condensation, the latter being an expeditive and very easy technique. Template and direct synthesis are however the two most popular methods for these synthesis. The template synthesis uses a metal ion to orient the reacting groups (primary amine and carbonyl) in a conformation suitable for ring closure. Direct synthesis may be carried out at high dilution, where the reactants are mixed slowly, keeping a concentration in the range 10-2–10-3 M, or at low dilution, an acid-catalyzed route that uses very low concentrations of acids (10-4 M) to emulate the natural acidity of the hydrolysis of metal ion. Acids commonly used are sulfuric, hydrochloric, hydrobromic, formic and p-toluenesulfonic acids (Ionkin et al., 2008)

The title salt was obtained in a low yield as a by-product during the condensation reaction between 2,6-diacetylpyridine and N,N'-bis(o-aminobenzylidene)-1,2-diaminoethane, in the presence of p-toluenesulfonic acid (see Experimental). The asymmetric unit contains one-half cation, close to an inversion center, and one p-toluenesulfonate anion, placed in general position (Fig. 1). In the cation, amine groups of the 1,2-diaminoethane core are clearly protonated, while terminal NH2 groups remain unprotonated. The central chain linking benzene rings displays a gauchetranstranstransgauche conformation, defined by torsion angles C6—C7—N8—C9 [58.7 (3)°], C7—N8—C9—C9i, [171.5 (2)°], and N8—C9—C9i—N8i [180°, imposed by symmetry; symmetry code: (i) 1 - x, 1 - y, 2 - z]. This observed conformation is different from those displayed by the free tetraamine (transgauchetransgauchetrans; Rodríguez de Barbarín et al., 2007) and by the tetracation [all-trans; Garza Rodríguez et al., 2009, 2011]. The degree of protonation thus seems to influence the conformation stabilized in the solid-state for this system.

In the crystal structure, all N and O atoms are involved in hydrogen bonding, forming a three-dimensional supramolecular network. One cation is connected to eight symmetry-related anions, via NH···O(sulfonate) hydrogen bonds (Fig. 2). Ammonium groups give hydrogen bonds of higher strength compared to contacts formed by amine NH2 groups. In the former case, O···H separations are short, ca. 1.9 Å, while in the latter they are rather long, ca. 2.2 Å.

Related literature top

For reviews on applications of macrocyclic systems, see: Vigato & Tamburini (2004); Radecka-Paryzek et al. (2005). For their acid-catalysed synthesis using p-toluenesulfonic acid, see: Ionkin et al. (2008). For the structures of the free molecule and the fully protonated cation corresponding to the title cation, see: Rodríguez de Barbarín et al. (2007) and Garza Rodríguez et al. (2009, 2011), respectively.

Experimental top

A 100 ml flask was charged with 2,6-diacetylpyridine (163 mg, 1 mmol) in 35 ml of toluene. Under agitation at room temperature, p-toluenesulfonic acid monohydrate was added (38 mg, 0.20 mmol in 35 ml of toluene), and the mixture was further stirred for 30 min. A dissolution of N,N'-bis(o-aminobenzylidene)-1,2-diaminoethane (281 mg, 1.05 mmol, in 15 ml of toluene) was slowly added. The mixture was kept under these conditions for 2 days, affording a light yellow precipitate. The solid was filtered off, washed with cold toluene and diethylether, and air dried. The crude solid was dissolved in hot methanol and left overnight at 298 K for slow evaporation, affording the title salt (Yield: 32%; m.p. 458 K). Few crystals of limited quality were picked off from this material. Analysis found (calc. for C30H38N4O6S2): C 58.64 (58.61), H 6.67 (6.23), N 9.52 (9.12), S 10.20 (10.43%). IR spectrum features vibrations characteristic of the sulfonate group, at 1124 (νas), 1011 (νs) and 684 cm-1 (δs).

Refinement top

Very few needle-shaped crystals were found to be suitable for X-ray study, and were almost all twinned samples. Data were collected on a small part of an irregular needle, which gave symmetric diffraction peaks, although intensity was rather low. Amine and ammonium H atoms were found in a difference map and refined freely, with N—H bond lengths restrained to 0.90 (1) Å (4 restraints). All C-bonded H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.93 (aromatic), 0.97 (methylene), or 0.96 Å (methyl). Isotropic displacement parameters for H atoms were calculated from displacements of parent atoms: Uiso(H) = 1.5Ueq(carrier atom) for methyl, NH2 and NH2+ groups; Uiso(H) = 1.2Ueq(carrier C) for other H atoms.

Structure description top

New routes for the preparation of macrocyclic crown ethers and related systems remains a topic of interest, because of their numerous potential applications, like recognizing and transporting specific metal ions, anions or neutral molecules (Vigato & Tamburini, 2004), modeling more intricate biological macrocyclic systems (hemoglobin, myoglobin, cytochromes, chlorophylls), corrins (vitamin B12) and antibiotics (valinomycin, nonactin), among others (Radecka-Paryzek et al., 2005).

Macrocycles may be obtained through alkylation reactions, Mannich condensation, self condensation of nitriles, and Schiff condensation, the latter being an expeditive and very easy technique. Template and direct synthesis are however the two most popular methods for these synthesis. The template synthesis uses a metal ion to orient the reacting groups (primary amine and carbonyl) in a conformation suitable for ring closure. Direct synthesis may be carried out at high dilution, where the reactants are mixed slowly, keeping a concentration in the range 10-2–10-3 M, or at low dilution, an acid-catalyzed route that uses very low concentrations of acids (10-4 M) to emulate the natural acidity of the hydrolysis of metal ion. Acids commonly used are sulfuric, hydrochloric, hydrobromic, formic and p-toluenesulfonic acids (Ionkin et al., 2008)

The title salt was obtained in a low yield as a by-product during the condensation reaction between 2,6-diacetylpyridine and N,N'-bis(o-aminobenzylidene)-1,2-diaminoethane, in the presence of p-toluenesulfonic acid (see Experimental). The asymmetric unit contains one-half cation, close to an inversion center, and one p-toluenesulfonate anion, placed in general position (Fig. 1). In the cation, amine groups of the 1,2-diaminoethane core are clearly protonated, while terminal NH2 groups remain unprotonated. The central chain linking benzene rings displays a gauchetranstranstransgauche conformation, defined by torsion angles C6—C7—N8—C9 [58.7 (3)°], C7—N8—C9—C9i, [171.5 (2)°], and N8—C9—C9i—N8i [180°, imposed by symmetry; symmetry code: (i) 1 - x, 1 - y, 2 - z]. This observed conformation is different from those displayed by the free tetraamine (transgauchetransgauchetrans; Rodríguez de Barbarín et al., 2007) and by the tetracation [all-trans; Garza Rodríguez et al., 2009, 2011]. The degree of protonation thus seems to influence the conformation stabilized in the solid-state for this system.

In the crystal structure, all N and O atoms are involved in hydrogen bonding, forming a three-dimensional supramolecular network. One cation is connected to eight symmetry-related anions, via NH···O(sulfonate) hydrogen bonds (Fig. 2). Ammonium groups give hydrogen bonds of higher strength compared to contacts formed by amine NH2 groups. In the former case, O···H separations are short, ca. 1.9 Å, while in the latter they are rather long, ca. 2.2 Å.

For reviews on applications of macrocyclic systems, see: Vigato & Tamburini (2004); Radecka-Paryzek et al. (2005). For their acid-catalysed synthesis using p-toluenesulfonic acid, see: Ionkin et al. (2008). For the structures of the free molecule and the fully protonated cation corresponding to the title cation, see: Rodríguez de Barbarín et al. (2007) and Garza Rodríguez et al. (2009, 2011), respectively.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids at the 30% probability level. One cation and one anion are displayed. Non-labeled atoms are generated by symmetry code 1 - x, 1 - y, 2 - z.
[Figure 2] Fig. 2. A part of the crystal structure of the title compound. The cation is displayed in blue, and is encapsulated by eight anions through hydrogen bonds (dashed lines).
N,N'-Bis(2-aminobenzyl)ethane-1,2-diaminium bis(4-methylbenzenesulfonate) top
Crystal data top
C16H24N42+·2C7H7O3SZ = 1
Mr = 614.76F(000) = 326
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Melting point: 458 K
a = 5.753 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.512 (3) ÅCell parameters from 53 reflections
c = 14.493 (5) Åθ = 4.8–12.3°
α = 101.40 (2)°µ = 0.23 mm1
β = 100.06 (3)°T = 298 K
γ = 97.80 (3)°Needle, colourless
V = 753.6 (5) Å30.60 × 0.16 × 0.16 mm
Data collection top
Siemens P4
diffractometer
2234 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
Graphite monochromatorθmax = 25.1°, θmin = 2.2°
2θ/ω scansh = 61
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 1111
Tmin = 0.512, Tmax = 0.594l = 1717
3505 measured reflections2 standard reflections every 98 reflections
2650 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0785P)2 + 0.0881P]
where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max = 0.001
2650 reflectionsΔρmax = 0.39 e Å3
204 parametersΔρmin = 0.34 e Å3
4 restraintsExtinction correction: SHELXTL-Plus (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.098 (15)
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H24N42+·2C7H7O3Sγ = 97.80 (3)°
Mr = 614.76V = 753.6 (5) Å3
Triclinic, P1Z = 1
a = 5.753 (2) ÅMo Kα radiation
b = 9.512 (3) ŵ = 0.23 mm1
c = 14.493 (5) ÅT = 298 K
α = 101.40 (2)°0.60 × 0.16 × 0.16 mm
β = 100.06 (3)°
Data collection top
Siemens P4
diffractometer
2234 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.091
Tmin = 0.512, Tmax = 0.5942 standard reflections every 98 reflections
3505 measured reflections intensity decay: 1%
2650 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0564 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.29Δρmax = 0.39 e Å3
2650 reflectionsΔρmin = 0.34 e Å3
204 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3160 (5)0.8765 (2)0.87317 (17)0.0649 (6)
H110.204 (5)0.933 (3)0.867 (3)0.097*
H120.457 (4)0.939 (3)0.897 (2)0.097*
C10.3118 (4)0.7634 (3)0.79652 (17)0.0496 (5)
C20.1190 (5)0.7221 (3)0.71864 (19)0.0593 (6)
H2A0.00570.77490.71660.071*
C30.1086 (6)0.6054 (3)0.6448 (2)0.0688 (7)
H3A0.02350.57930.59390.083*
C40.2906 (6)0.5270 (3)0.6453 (2)0.0716 (8)
H4A0.28500.44870.59450.086*
C50.4818 (5)0.5656 (3)0.72205 (19)0.0618 (7)
H5A0.60570.51210.72270.074*
C60.4955 (4)0.6815 (2)0.79821 (17)0.0500 (6)
C70.6967 (4)0.7159 (3)0.88352 (18)0.0569 (6)
H7A0.76040.81950.89900.068*
H7B0.82400.66420.86790.068*
N80.6196 (3)0.6745 (2)0.96988 (14)0.0498 (5)
H810.524 (5)0.733 (3)0.995 (2)0.075*
H820.749 (3)0.700 (3)1.0198 (15)0.075*
C90.5193 (5)0.5189 (3)0.95362 (18)0.0566 (6)
H9A0.62820.46080.92700.068*
H9B0.36780.49630.90750.068*
S10.81511 (10)0.18163 (7)0.85656 (4)0.0543 (3)
O10.9816 (4)0.3162 (3)0.89311 (16)0.0927 (8)
O20.9253 (5)0.0558 (3)0.85049 (17)0.0967 (8)
O30.6275 (4)0.1732 (3)0.90879 (14)0.0786 (6)
C100.6800 (4)0.1845 (2)0.73869 (17)0.0488 (6)
C110.8130 (5)0.2400 (3)0.67923 (18)0.0572 (6)
H11A0.97440.28000.70230.069*
C120.7067 (5)0.2359 (3)0.5859 (2)0.0647 (7)
H12A0.79880.27320.54670.078*
C130.4679 (5)0.1784 (3)0.54872 (19)0.0587 (6)
C140.3383 (5)0.1247 (3)0.6094 (2)0.0640 (7)
H14A0.17660.08520.58630.077*
C150.4404 (4)0.1275 (3)0.70353 (19)0.0580 (6)
H15A0.34780.09110.74300.070*
C160.3535 (6)0.1760 (4)0.4471 (2)0.0793 (9)
H16A0.39560.27030.43410.119*
H16B0.18240.15180.43840.119*
H16C0.40920.10450.40370.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0860 (16)0.0610 (14)0.0559 (13)0.0284 (12)0.0228 (12)0.0149 (11)
C10.0595 (13)0.0503 (12)0.0476 (13)0.0149 (10)0.0192 (10)0.0202 (10)
C20.0606 (14)0.0688 (16)0.0572 (15)0.0215 (12)0.0131 (11)0.0270 (13)
C30.0760 (17)0.0695 (17)0.0579 (16)0.0132 (14)0.0021 (13)0.0175 (13)
C40.098 (2)0.0614 (16)0.0552 (16)0.0206 (15)0.0156 (15)0.0083 (13)
C50.0751 (16)0.0615 (15)0.0611 (16)0.0279 (13)0.0250 (13)0.0220 (12)
C60.0559 (13)0.0521 (13)0.0514 (13)0.0148 (10)0.0186 (10)0.0236 (10)
C70.0516 (13)0.0674 (15)0.0587 (15)0.0095 (11)0.0165 (11)0.0266 (12)
N80.0484 (10)0.0550 (11)0.0495 (12)0.0109 (8)0.0114 (8)0.0177 (9)
C90.0661 (14)0.0558 (14)0.0510 (14)0.0082 (11)0.0143 (11)0.0189 (11)
S10.0529 (4)0.0600 (4)0.0533 (4)0.0159 (3)0.0100 (3)0.0175 (3)
O10.0863 (14)0.0916 (16)0.0797 (15)0.0221 (12)0.0219 (11)0.0317 (12)
O20.1200 (19)0.1028 (18)0.0909 (16)0.0728 (16)0.0241 (14)0.0392 (14)
O30.0748 (12)0.1109 (17)0.0519 (11)0.0177 (12)0.0235 (9)0.0130 (10)
C100.0497 (12)0.0487 (12)0.0517 (13)0.0177 (10)0.0141 (10)0.0112 (10)
C110.0548 (13)0.0621 (15)0.0584 (15)0.0122 (11)0.0178 (11)0.0156 (11)
C120.0761 (17)0.0680 (16)0.0573 (16)0.0164 (13)0.0224 (13)0.0215 (13)
C130.0716 (16)0.0553 (14)0.0526 (14)0.0250 (12)0.0104 (12)0.0130 (11)
C140.0554 (14)0.0754 (17)0.0600 (16)0.0168 (12)0.0056 (11)0.0148 (13)
C150.0511 (13)0.0703 (16)0.0576 (15)0.0143 (11)0.0152 (11)0.0201 (12)
C160.105 (2)0.0776 (19)0.0568 (17)0.0340 (18)0.0050 (16)0.0165 (14)
Geometric parameters (Å, º) top
N1—C11.380 (3)C9—H9A0.9700
N1—H110.896 (10)C9—H9B0.9700
N1—H120.907 (10)S1—O21.423 (2)
C1—C21.388 (4)S1—O31.425 (2)
C1—C61.395 (3)S1—O11.435 (2)
C2—C31.367 (4)S1—C101.756 (3)
C2—H2A0.9300C10—C151.377 (4)
C3—C41.365 (4)C10—C111.381 (3)
C3—H3A0.9300C11—C121.374 (4)
C4—C51.373 (4)C11—H11A0.9300
C4—H4A0.9300C12—C131.378 (4)
C5—C61.380 (4)C12—H12A0.9300
C5—H5A0.9300C13—C141.376 (4)
C6—C71.487 (4)C13—C161.500 (4)
C7—N81.503 (3)C14—C151.381 (4)
C7—H7A0.9700C14—H14A0.9300
C7—H7B0.9700C15—H15A0.9300
N8—C91.471 (3)C16—H16A0.9600
N8—H810.905 (10)C16—H16B0.9600
N8—H820.912 (10)C16—H16C0.9600
C9—C9i1.503 (5)
C1—N1—H11118 (2)C9i—C9—H9A109.6
C1—N1—H12117 (2)N8—C9—H9B109.6
H11—N1—H12105 (3)C9i—C9—H9B109.6
N1—C1—C2121.3 (2)H9A—C9—H9B108.1
N1—C1—C6120.5 (2)O2—S1—O3111.59 (15)
C2—C1—C6118.1 (2)O2—S1—O1113.75 (17)
C3—C2—C1121.5 (2)O3—S1—O1111.44 (16)
C3—C2—H2A119.3O2—S1—C10107.00 (13)
C1—C2—H2A119.3O3—S1—C10106.50 (12)
C4—C3—C2120.5 (3)O1—S1—C10106.03 (12)
C4—C3—H3A119.7C15—C10—C11119.1 (2)
C2—C3—H3A119.7C15—C10—S1120.15 (19)
C3—C4—C5118.8 (3)C11—C10—S1120.71 (19)
C3—C4—H4A120.6C12—C11—C10120.0 (3)
C5—C4—H4A120.6C12—C11—H11A120.0
C4—C5—C6121.9 (2)C10—C11—H11A120.0
C4—C5—H5A119.1C11—C12—C13122.1 (3)
C6—C5—H5A119.1C11—C12—H12A119.0
C5—C6—C1119.1 (2)C13—C12—H12A119.0
C5—C6—C7121.1 (2)C12—C13—C14117.0 (3)
C1—C6—C7119.7 (2)C12—C13—C16121.5 (3)
C6—C7—N8112.20 (19)C14—C13—C16121.4 (3)
C6—C7—H7A109.2C13—C14—C15122.1 (3)
N8—C7—H7A109.2C13—C14—H14A118.9
C6—C7—H7B109.2C15—C14—H14A118.9
N8—C7—H7B109.2C10—C15—C14119.7 (2)
H7A—C7—H7B107.9C10—C15—H15A120.2
C9—N8—C7113.4 (2)C14—C15—H15A120.2
C9—N8—H81113 (2)C13—C16—H16A109.5
C7—N8—H81112.8 (19)C13—C16—H16B109.5
C9—N8—H82110.1 (19)H16A—C16—H16B109.5
C7—N8—H82108.0 (19)C13—C16—H16C109.5
H81—N8—H8299 (3)H16A—C16—H16C109.5
N8—C9—C9i110.5 (3)H16B—C16—H16C109.5
N8—C9—H9A109.6
N1—C1—C2—C3176.7 (2)O3—S1—C10—C1523.7 (2)
C6—C1—C2—C30.6 (4)O1—S1—C10—C15142.5 (2)
C1—C2—C3—C40.8 (4)O2—S1—C10—C1182.4 (2)
C2—C3—C4—C51.2 (4)O3—S1—C10—C11158.2 (2)
C3—C4—C5—C60.3 (4)O1—S1—C10—C1139.4 (2)
C4—C5—C6—C11.1 (4)C15—C10—C11—C120.9 (4)
C4—C5—C6—C7176.1 (2)S1—C10—C11—C12177.31 (19)
N1—C1—C6—C5177.6 (2)C10—C11—C12—C130.3 (4)
C2—C1—C6—C51.5 (3)C11—C12—C13—C140.1 (4)
N1—C1—C6—C70.3 (3)C11—C12—C13—C16179.3 (2)
C2—C1—C6—C7175.8 (2)C12—C13—C14—C150.0 (4)
C5—C6—C7—N8106.2 (3)C16—C13—C14—C15179.3 (2)
C1—C6—C7—N871.0 (3)C11—C10—C15—C141.0 (4)
C6—C7—N8—C958.7 (3)S1—C10—C15—C14177.23 (19)
C7—N8—C9—C9i171.5 (2)C13—C14—C15—C100.5 (4)
O2—S1—C10—C1595.8 (2)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O2ii0.90 (1)2.12 (1)3.012 (3)177 (3)
N1—H12···O3iii0.91 (1)2.27 (3)3.028 (4)141 (3)
N8—H81···O3i0.91 (1)1.91 (2)2.763 (3)157 (3)
N8—H82···O1iv0.91 (1)1.86 (1)2.739 (3)160 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H24N42+·2C7H7O3S
Mr614.76
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.753 (2), 9.512 (3), 14.493 (5)
α, β, γ (°)101.40 (2), 100.06 (3), 97.80 (3)
V3)753.6 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.60 × 0.16 × 0.16
Data collection
DiffractometerSiemens P4
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.512, 0.594
No. of measured, independent and
observed [I > 2σ(I)] reflections
3505, 2650, 2234
Rint0.091
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.162, 1.29
No. of reflections2650
No. of parameters204
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.34

Computer programs: XSCANS (Siemens, 1996), SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O2i0.896 (10)2.117 (11)3.012 (3)177 (3)
N1—H12···O3ii0.907 (10)2.27 (3)3.028 (4)141 (3)
N8—H81···O3iii0.905 (10)1.907 (15)2.763 (3)157 (3)
N8—H82···O1iv0.912 (10)1.863 (14)2.739 (3)160 (3)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+2.
 

Footnotes

Current affiliation: Universidad Regiomontana, Monterrey, NL, Mexico.

Acknowledgements

The authors thank the FCQ–UANL (project No. 03–6375-QMT-08–005) and PAICyT (project No. IT164–09) for financial support. LAGR acknowledges a grant from the CONACyT program "Dirección de Tesis entre la UANL y la University of Texas at Austin y/o Instituciones de Educación Superior de la ANUIES" (grant N·L.-2006-C09–32658).

References

First citationGarza Rodríguez, L. Á., Bernès, S., Elizondo Martínez, P., Nájera Martínez, B. & Pérez Rodríguez, N. (2011). Acta Cryst. E67, o3237–o3238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGarza Rodríguez, L. A., Bernès, S., Nájera Martínez, B., Elizondo Martínez, P. & Pérez Rodríguez, N. (2009). Acta Cryst. E65, o2995.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIonkin, A. S., Marshall, W. J., Adelman, D. J., Bobik Fones, B., Fish, B. M., Schiffhauer, M. F., Soper, P. D., Waterland, R. L., Spence, R. E. & Xie, T. (2008). J. Polymer Sci. Polymer Chem. 46, 585–611.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRadecka-Paryzek, W., Patroniak, V. & Lisowski, J. (2005). Coord. Chem. Rev. 249, 2156–2175.  Web of Science CrossRef CAS Google Scholar
First citationRodríguez de Barbarín, C., Bernès, S., Nájera, B., Elizondo, P. & Cerda, P. (2007). Acta Cryst. E63, o549–o550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds