organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-aza­niumylbenz­yl)ethane-1,2-diaminium tetra­chloride

aLaboratorio de Química Industrial, CELAES, Facultad de Ciencias Químicas, UANL, Pedro de Alba S/N, 66451 San Nicolás de los Garza, NL, Mexico, and bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 24 October 2011; accepted 31 October 2011; online 9 November 2011)

The title compound, C16H26N44+·4Cl, is based on a fully protonated tetra­amine. In the cation, both benzene rings are connected by an all-trans chain, and the rings are almost parallel, with an angle between the mean planes of 8.34 (12)°. The benzene rings are arranged in such a way that the NH3+ substituents are oriented cis with respect to the central chain. This arrangement is a consequence of multiple N—H⋯Cl hydrogen bonds, involving all N—H groups in the cation and the four independent Cl anions. These contacts have strengths ranging from weak to strong (based on H⋯Cl separations), and generate a complex three-dimensional crystal structure with no preferential crystallographic orientation for the contacts.

Related literature

For the structure of the free tetra­amine, see: Rodríguez de Barbarín et al. (2007[Rodríguez de Barbarín, C., Bernès, S., Nájera, B., Elizondo, P. & Cerda, P. (2007). Acta Cryst. E63, o549-o550.]). For related structures, see: Gakias et al. (2005[Gakias, S., Rix, C., Fowless, A., Wills-Johnson, G., Latham, K. & White, J. (2005). J. Mol. Struct. 737, 69-74.]); Garza Rodríguez et al. (2009[Garza Rodríguez, L. A., Bernès, S., Nájera Martínez, B., Elizondo Martínez, P. & Pérez Rodríguez, N. (2009). Acta Cryst. E65, o2995.], 2011[Garza Rodríguez, L. Á., Bernès, S., Elizondo Martínez, P., Nájera Martínez, B. & Rodríguez de Luna, S. L. (2011). Acta Cryst. E67, o3235-o3236.]). For the synthesis of the title hydro­chloride, see: Ansell et al. (1983[Ansell, C. W. G., McPartlin, M., Tasker, P. A. & Thambythurai, A. (1983). Polyhedron, 2, 83-85.]); Gruenwedel (1968[Gruenwedel, D. W. (1968). Inorg. Chem. 7, 495-501.]).

[Scheme 1]

Experimental

Crystal data
  • C16H26N44+·4Cl

  • Mr = 416.21

  • Triclinic, [P \overline 1]

  • a = 8.6827 (13) Å

  • b = 11.4831 (17) Å

  • c = 11.7317 (17) Å

  • α = 117.773 (10)°

  • β = 101.826 (14)°

  • γ = 94.387 (16)°

  • V = 992.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 298 K

  • 0.40 × 0.22 × 0.18 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.552, Tmax = 0.607

  • 6618 measured reflections

  • 4022 independent reflections

  • 3185 reflections with I > 2σ(I)

  • Rint = 0.029

  • 2 standard reflections every 98 reflections intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.06

  • 4022 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl4 0.89 2.33 3.1067 (18) 146
N1—H1B⋯Cl1i 0.89 2.30 3.1798 (18) 170
N1—H1C⋯Cl2ii 0.89 2.26 3.1301 (18) 167
N9—H9A⋯Cl1 0.90 2.21 3.1046 (17) 172
N9—H9B⋯Cl2 0.90 2.22 3.0968 (17) 165
N12—H12A⋯Cl3 0.90 2.18 3.0333 (18) 159
N12—H12B⋯Cl2iii 0.90 2.35 3.1779 (17) 153
N20—H20A⋯Cl1iv 0.89 2.29 3.1764 (19) 173
N20—H20B⋯Cl3iv 0.89 2.56 3.2305 (18) 133
N20—H20C⋯Cl3 0.89 2.23 3.1139 (18) 173
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y, z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

The tetraamine N,N'-bis(2-aminobenzyl)ethane-1,2-diamine, C16H22N4, is a tetradentate ligand for transition metals (Rodríguez de Barbarín et al., 2007) and a precursor to the corresponding Schiff base N,N'-bis(2-aminobenzylidene)ethane-1,2-diamine (C16H18N4, Gakias et al., 2005). Both are potentially useful as building blocks for the synthesis of macrocyclic ligands. However, we detected that these small amines and other related polyamines are frequently protonated if workup is carried out in acid media. If stabilizing anions are available in solution, a very stable salt is formed, which crystallizes readily, impeding the formation of the desired macrocycle. In view of this behavior, it is important to characterize as many salts as possible, in order to avoid anions which are prone to compete with the macrocycle synthesis. Some cationic species formed from the above quoted tetraamine C16H22N4 have been stabilized, for instance, with a mixture of nitrate and perchlorate (Garza Rodríguez et al., 2009) and with tosylate (Garza Rodríguez et al., 2011).

The title compound is the tetrahydrochloride salt of C16H22N4. In the cation, all amine groups are protonated, and the charges are balanced by four Cl- anions (Fig. 1). In contrast with the free amine (Rodríguez de Barbarín et al., 2007), the cation lies in general position. Another difference with the free amine is the conformation of the central chain linking the benzene rings. In the title compound, the chain is extended in the all-trans conformation, as reflected by torsion angles C7—C8—N9—C10 = -177.27 (15)°, C8—N9—C10—C11 = 172.08 (16)°, N9—C10—C11—N12 = -175.50 (15)°, C10—C11—N12—C13 = 162.72 (16)°, and C11—N12—C13—C14 = 169.22 (16)°. The benzene rings, although not related by symmetry, are almost parallel: the dihedral angle between their mean planes is 8.34 (12)°. A feature not observed in other related salts is the arrangement of ammonium NH3+ groups: one benzene group is rotated in order to place the NH3+ functionalities cis with respect to the central chain (see Fig. 1).

The cis-NH3+ conformation is very probably a consequence of the crystal structure, dominated by N—H···Cl hydrogen bonds. All ammonium H atoms and chloride Cl- anions participate in the hydrogen bonds framework (Fig. 2), affording a complex three-dimensional crystal structure. The range for H···Cl separations is from 2.18 to 2.56 Å and N—H···Cl angles are in the range 133.2–173.3°, indicating that all contacts significantly participate in the stabilization of the crystal structure.

Related literature top

For the structure of the free tetraamine, see: Rodríguez de Barbarín et al. (2007). For related structures, see: Gakias et al. (2005); Garza Rodríguez et al. (2009, 2011). For the synthesis of the title hydrochloride, see: Ansell et al. (1983); Gruenwedel (1968).

Experimental top

The title salt was obtained while attempting to dissolve a macrocycle in ethanol. N,N'-bis(2-aminobenzyl)ethane-1,2-diamine (50 mg, 0.185 mmol), 2,6-diacetylpyridine (30 mg, 0.185 mmol) and a concentrated solution of HCl (0.1 mmol) were mixed in 3.5 ml of ethanol. After 10 days of slow evaporation, crystals were formed and separated (7 mg of the title salt). Direct synthetic routes may also be found in the literature (Ansell et al., 1983; Gruenwedel, 1968).

Refinement top

All C-bonded H atoms were placed in calculated positions, with C—H bond lengths fixed to 0.93 (aromatic CH), or 0.97 Å (methylene CH2) and Uiso(H) = 1.2Ueq(C). N-bonded H atoms were detected in a difference map, corroborating that all N atoms are protonated in the cation. They were placed in idealized positions, with N—H = 0.89 Å for NH3 and N—H = 0.90 Å for NH2 groups. The NH3 were considered as rigid groups but were allowed to rotate about their C—N bonds. Isotropic displacement parameters for these H atoms were calculated as Uiso(H) = 1.2Ueq(N) for NH2 and Uiso(H) = 1.5Ueq(N) for NH3.

Structure description top

The tetraamine N,N'-bis(2-aminobenzyl)ethane-1,2-diamine, C16H22N4, is a tetradentate ligand for transition metals (Rodríguez de Barbarín et al., 2007) and a precursor to the corresponding Schiff base N,N'-bis(2-aminobenzylidene)ethane-1,2-diamine (C16H18N4, Gakias et al., 2005). Both are potentially useful as building blocks for the synthesis of macrocyclic ligands. However, we detected that these small amines and other related polyamines are frequently protonated if workup is carried out in acid media. If stabilizing anions are available in solution, a very stable salt is formed, which crystallizes readily, impeding the formation of the desired macrocycle. In view of this behavior, it is important to characterize as many salts as possible, in order to avoid anions which are prone to compete with the macrocycle synthesis. Some cationic species formed from the above quoted tetraamine C16H22N4 have been stabilized, for instance, with a mixture of nitrate and perchlorate (Garza Rodríguez et al., 2009) and with tosylate (Garza Rodríguez et al., 2011).

The title compound is the tetrahydrochloride salt of C16H22N4. In the cation, all amine groups are protonated, and the charges are balanced by four Cl- anions (Fig. 1). In contrast with the free amine (Rodríguez de Barbarín et al., 2007), the cation lies in general position. Another difference with the free amine is the conformation of the central chain linking the benzene rings. In the title compound, the chain is extended in the all-trans conformation, as reflected by torsion angles C7—C8—N9—C10 = -177.27 (15)°, C8—N9—C10—C11 = 172.08 (16)°, N9—C10—C11—N12 = -175.50 (15)°, C10—C11—N12—C13 = 162.72 (16)°, and C11—N12—C13—C14 = 169.22 (16)°. The benzene rings, although not related by symmetry, are almost parallel: the dihedral angle between their mean planes is 8.34 (12)°. A feature not observed in other related salts is the arrangement of ammonium NH3+ groups: one benzene group is rotated in order to place the NH3+ functionalities cis with respect to the central chain (see Fig. 1).

The cis-NH3+ conformation is very probably a consequence of the crystal structure, dominated by N—H···Cl hydrogen bonds. All ammonium H atoms and chloride Cl- anions participate in the hydrogen bonds framework (Fig. 2), affording a complex three-dimensional crystal structure. The range for H···Cl separations is from 2.18 to 2.56 Å and N—H···Cl angles are in the range 133.2–173.3°, indicating that all contacts significantly participate in the stabilization of the crystal structure.

For the structure of the free tetraamine, see: Rodríguez de Barbarín et al. (2007). For related structures, see: Gakias et al. (2005); Garza Rodríguez et al. (2009, 2011). For the synthesis of the title hydrochloride, see: Ansell et al. (1983); Gruenwedel (1968).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A part of the crystal structure of the title compound, showing the hydrogen bonds (dashed lines) between NH groups in cations and chloride ions (represented as green spheres). N and Cl atoms are labeled for the asymmetric unit.
N,N'-Bis(2-azaniumylbenzyl)ethane-1,2-diaminium tetrachloride top
Crystal data top
C16H26N44+·4ClZ = 2
Mr = 416.21F(000) = 436
Triclinic, P1Dx = 1.392 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6827 (13) ÅCell parameters from 100 reflections
b = 11.4831 (17) Åθ = 4.8–12.4°
c = 11.7317 (17) ŵ = 0.60 mm1
α = 117.773 (10)°T = 298 K
β = 101.826 (14)°Irregular, yellow
γ = 94.387 (16)°0.40 × 0.22 × 0.18 mm
V = 992.8 (3) Å3
Data collection top
Siemens P4
diffractometer
3185 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 26.4°, θmin = 2.0°
ω scansh = 105
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 1313
Tmin = 0.552, Tmax = 0.607l = 1414
6618 measured reflections2 standard reflections every 98 reflections
4022 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.4207P]
where P = (Fo2 + 2Fc2)/3
4022 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
0 constraints
Crystal data top
C16H26N44+·4Clγ = 94.387 (16)°
Mr = 416.21V = 992.8 (3) Å3
Triclinic, P1Z = 2
a = 8.6827 (13) ÅMo Kα radiation
b = 11.4831 (17) ŵ = 0.60 mm1
c = 11.7317 (17) ÅT = 298 K
α = 117.773 (10)°0.40 × 0.22 × 0.18 mm
β = 101.826 (14)°
Data collection top
Siemens P4
diffractometer
3185 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.029
Tmin = 0.552, Tmax = 0.6072 standard reflections every 98 reflections
6618 measured reflections intensity decay: 1.5%
4022 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
4022 reflectionsΔρmin = 0.26 e Å3
219 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.64430 (7)0.88174 (6)0.41424 (6)0.04766 (16)
Cl21.08774 (6)0.74843 (6)0.69409 (5)0.03914 (14)
Cl30.45844 (6)0.37199 (6)0.07026 (6)0.04107 (14)
Cl40.25755 (6)0.58183 (5)0.34958 (5)0.03896 (14)
N10.36517 (19)0.85610 (16)0.61340 (16)0.0315 (4)
H1A0.37930.78550.54260.047*
H1B0.35390.92270.59540.047*
H1C0.27740.83330.63240.047*
C20.5048 (2)0.90023 (19)0.72836 (18)0.0273 (4)
C30.5098 (2)1.0198 (2)0.8409 (2)0.0331 (4)
H3A0.42821.06760.84040.040*
C40.6361 (3)1.0679 (2)0.95391 (19)0.0357 (5)
H4A0.63961.14801.03010.043*
C50.7571 (3)0.9971 (2)0.9539 (2)0.0389 (5)
H5A0.84401.03031.02930.047*
C60.7488 (2)0.8769 (2)0.8416 (2)0.0346 (4)
H6A0.83010.82900.84300.042*
C70.6222 (2)0.82504 (19)0.72644 (18)0.0267 (4)
C80.6184 (2)0.68997 (19)0.61126 (19)0.0288 (4)
H8A0.51070.65380.55110.035*
H8B0.64490.62910.64480.035*
N90.73471 (18)0.69858 (16)0.53534 (15)0.0264 (3)
H9A0.71300.75840.50810.032*
H9B0.83490.72870.59050.032*
C100.7277 (2)0.5675 (2)0.41706 (19)0.0324 (4)
H10A0.61760.52860.36250.039*
H10B0.76670.50600.44610.039*
C110.8301 (2)0.5883 (2)0.33596 (19)0.0328 (4)
H11A0.79650.65550.31350.039*
H11B0.94150.62090.38860.039*
N120.81500 (19)0.46002 (16)0.21081 (15)0.0279 (3)
H12A0.71160.41720.17530.034*
H12B0.87280.40680.23050.034*
C130.8726 (2)0.48425 (19)0.11018 (18)0.0284 (4)
H13A0.97600.54520.15410.034*
H13B0.79790.52730.07700.034*
C140.8885 (2)0.35751 (19)0.00620 (18)0.0267 (4)
C151.0288 (2)0.3081 (2)0.0064 (2)0.0326 (4)
H15A1.10680.35100.08830.039*
C161.0547 (3)0.1976 (2)0.0991 (2)0.0392 (5)
H16A1.15030.16750.08860.047*
C170.9393 (3)0.1313 (2)0.2207 (2)0.0409 (5)
H17A0.95660.05610.29190.049*
C180.7979 (3)0.1767 (2)0.2363 (2)0.0351 (5)
H18A0.71950.13220.31790.042*
C190.7740 (2)0.28834 (19)0.13001 (18)0.0273 (4)
N200.62423 (19)0.33434 (17)0.15287 (16)0.0337 (4)
H20A0.55550.27030.22850.051*
H20B0.64410.40800.15920.051*
H20C0.58190.35280.08480.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0568 (3)0.0335 (3)0.0427 (3)0.0081 (2)0.0071 (2)0.0193 (2)
Cl20.0314 (3)0.0470 (3)0.0387 (3)0.0066 (2)0.0051 (2)0.0229 (2)
Cl30.0302 (3)0.0403 (3)0.0467 (3)0.0091 (2)0.0124 (2)0.0157 (2)
Cl40.0450 (3)0.0356 (3)0.0309 (3)0.0085 (2)0.0039 (2)0.0146 (2)
N10.0307 (8)0.0285 (9)0.0344 (9)0.0088 (7)0.0062 (7)0.0155 (7)
C20.0294 (9)0.0283 (10)0.0267 (9)0.0065 (8)0.0096 (7)0.0146 (8)
C30.0380 (11)0.0281 (10)0.0352 (11)0.0099 (8)0.0145 (9)0.0149 (9)
C40.0490 (12)0.0269 (10)0.0258 (10)0.0045 (9)0.0149 (9)0.0074 (8)
C50.0411 (12)0.0405 (12)0.0281 (10)0.0028 (9)0.0028 (9)0.0148 (9)
C60.0354 (11)0.0372 (11)0.0302 (10)0.0109 (9)0.0074 (8)0.0158 (9)
C70.0296 (10)0.0264 (10)0.0257 (9)0.0065 (8)0.0097 (7)0.0131 (8)
C80.0306 (10)0.0284 (10)0.0292 (10)0.0099 (8)0.0104 (8)0.0141 (8)
N90.0275 (8)0.0271 (8)0.0228 (7)0.0075 (6)0.0053 (6)0.0112 (7)
C100.0369 (11)0.0286 (10)0.0265 (9)0.0091 (8)0.0104 (8)0.0085 (8)
C110.0356 (10)0.0274 (10)0.0286 (10)0.0052 (8)0.0105 (8)0.0078 (8)
N120.0306 (8)0.0273 (8)0.0256 (8)0.0083 (7)0.0081 (6)0.0123 (7)
C130.0292 (10)0.0307 (10)0.0236 (9)0.0038 (8)0.0070 (7)0.0126 (8)
C140.0259 (9)0.0289 (10)0.0257 (9)0.0046 (7)0.0071 (7)0.0139 (8)
C150.0276 (10)0.0385 (11)0.0310 (10)0.0070 (8)0.0044 (8)0.0180 (9)
C160.0325 (11)0.0432 (12)0.0438 (12)0.0153 (9)0.0114 (9)0.0216 (10)
C170.0486 (13)0.0348 (12)0.0370 (11)0.0171 (10)0.0182 (10)0.0121 (10)
C180.0365 (11)0.0370 (11)0.0257 (10)0.0058 (9)0.0051 (8)0.0122 (9)
C190.0270 (9)0.0318 (10)0.0263 (9)0.0081 (8)0.0084 (7)0.0162 (8)
N200.0297 (9)0.0356 (9)0.0307 (9)0.0081 (7)0.0022 (7)0.0146 (8)
Geometric parameters (Å, º) top
N1—C21.464 (2)C11—N121.490 (2)
N1—H1A0.8900C11—H11A0.9700
N1—H1B0.8900C11—H11B0.9700
N1—H1C0.8900N12—C131.499 (2)
C2—C31.382 (3)N12—H12A0.9000
C2—C71.383 (3)N12—H12B0.9000
C3—C41.376 (3)C13—C141.502 (3)
C3—H3A0.9300C13—H13A0.9700
C4—C51.377 (3)C13—H13B0.9700
C4—H4A0.9300C14—C151.392 (3)
C5—C61.378 (3)C14—C191.393 (3)
C5—H5A0.9300C15—C161.374 (3)
C6—C71.389 (3)C15—H15A0.9300
C6—H6A0.9300C16—C171.380 (3)
C7—C81.501 (3)C16—H16A0.9300
C8—N91.503 (2)C17—C181.381 (3)
C8—H8A0.9700C17—H17A0.9300
C8—H8B0.9700C18—C191.378 (3)
N9—C101.484 (2)C18—H18A0.9300
N9—H9A0.9000C19—N201.462 (2)
N9—H9B0.9000N20—H20A0.8900
C10—C111.510 (3)N20—H20B0.8900
C10—H10A0.9700N20—H20C0.8900
C10—H10B0.9700
C2—N1—H1A109.5N12—C11—C10110.36 (16)
C2—N1—H1B109.5N12—C11—H11A109.6
H1A—N1—H1B109.5C10—C11—H11A109.6
C2—N1—H1C109.5N12—C11—H11B109.6
H1A—N1—H1C109.5C10—C11—H11B109.6
H1B—N1—H1C109.5H11A—C11—H11B108.1
C3—C2—C7121.74 (18)C11—N12—C13111.41 (15)
C3—C2—N1115.98 (17)C11—N12—H12A109.3
C7—C2—N1122.25 (17)C13—N12—H12A109.3
C4—C3—C2119.74 (19)C11—N12—H12B109.3
C4—C3—H3A120.1C13—N12—H12B109.3
C2—C3—H3A120.1H12A—N12—H12B108.0
C3—C4—C5119.89 (19)N12—C13—C14112.95 (15)
C3—C4—H4A120.1N12—C13—H13A109.0
C5—C4—H4A120.1C14—C13—H13A109.0
C4—C5—C6119.60 (19)N12—C13—H13B109.0
C4—C5—H5A120.2C14—C13—H13B109.0
C6—C5—H5A120.2H13A—C13—H13B107.8
C5—C6—C7121.89 (19)C15—C14—C19117.02 (17)
C5—C6—H6A119.1C15—C14—C13118.84 (17)
C7—C6—H6A119.1C19—C14—C13124.07 (17)
C2—C7—C6117.10 (17)C16—C15—C14121.56 (18)
C2—C7—C8124.54 (17)C16—C15—H15A119.2
C6—C7—C8118.31 (17)C14—C15—H15A119.2
C7—C8—N9111.55 (16)C15—C16—C17120.13 (19)
C7—C8—H8A109.3C15—C16—H16A119.9
N9—C8—H8A109.3C17—C16—H16A119.9
C7—C8—H8B109.3C16—C17—C18119.84 (19)
N9—C8—H8B109.3C16—C17—H17A120.1
H8A—C8—H8B108.0C18—C17—H17A120.1
C10—N9—C8112.63 (15)C19—C18—C17119.46 (19)
C10—N9—H9A109.1C19—C18—H18A120.3
C8—N9—H9A109.1C17—C18—H18A120.3
C10—N9—H9B109.1C18—C19—C14121.98 (18)
C8—N9—H9B109.1C18—C19—N20117.28 (17)
H9A—N9—H9B107.8C14—C19—N20120.72 (16)
N9—C10—C11109.22 (16)C19—N20—H20A109.5
N9—C10—H10A109.8C19—N20—H20B109.5
C11—C10—H10A109.8H20A—N20—H20B109.5
N9—C10—H10B109.8C19—N20—H20C109.5
C11—C10—H10B109.8H20A—N20—H20C109.5
H10A—C10—H10B108.3H20B—N20—H20C109.5
C7—C2—C3—C41.4 (3)C10—C11—N12—C13162.72 (16)
N1—C2—C3—C4179.35 (17)C11—N12—C13—C14169.22 (16)
C2—C3—C4—C50.4 (3)N12—C13—C14—C1584.1 (2)
C3—C4—C5—C61.6 (3)N12—C13—C14—C1999.1 (2)
C4—C5—C6—C71.0 (3)C19—C14—C15—C161.2 (3)
C3—C2—C7—C61.9 (3)C13—C14—C15—C16175.81 (19)
N1—C2—C7—C6179.74 (17)C14—C15—C16—C171.1 (3)
C3—C2—C7—C8175.54 (18)C15—C16—C17—C180.4 (3)
N1—C2—C7—C82.3 (3)C16—C17—C18—C190.2 (3)
C5—C6—C7—C20.7 (3)C17—C18—C19—C140.1 (3)
C5—C6—C7—C8176.90 (19)C17—C18—C19—N20178.41 (19)
C2—C7—C8—N9105.5 (2)C15—C14—C19—C180.6 (3)
C6—C7—C8—N977.2 (2)C13—C14—C19—C18176.23 (18)
C7—C8—N9—C10177.27 (15)C15—C14—C19—N20179.02 (17)
C8—N9—C10—C11172.08 (16)C13—C14—C19—N202.2 (3)
N9—C10—C11—N12175.50 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl40.892.333.1067 (18)146
N1—H1B···Cl1i0.892.303.1798 (18)170
N1—H1C···Cl2ii0.892.263.1301 (18)167
N9—H9A···Cl10.902.213.1046 (17)172
N9—H9B···Cl20.902.223.0968 (17)165
N12—H12A···Cl30.902.183.0333 (18)159
N12—H12B···Cl2iii0.902.353.1779 (17)153
N20—H20A···Cl1iv0.892.293.1764 (19)173
N20—H20B···Cl3iv0.892.563.2305 (18)133
N20—H20C···Cl30.892.233.1139 (18)173
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H26N44+·4Cl
Mr416.21
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.6827 (13), 11.4831 (17), 11.7317 (17)
α, β, γ (°)117.773 (10), 101.826 (14), 94.387 (16)
V3)992.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.40 × 0.22 × 0.18
Data collection
DiffractometerSiemens P4
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.552, 0.607
No. of measured, independent and
observed [I > 2σ(I)] reflections
6618, 4022, 3185
Rint0.029
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.06
No. of reflections4022
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: XSCANS (Siemens, 1996), SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl40.892.333.1067 (18)146.1
N1—H1B···Cl1i0.892.303.1798 (18)169.9
N1—H1C···Cl2ii0.892.263.1301 (18)167.4
N9—H9A···Cl10.902.213.1046 (17)172.3
N9—H9B···Cl20.902.223.0968 (17)165.1
N12—H12A···Cl30.902.183.0333 (18)158.8
N12—H12B···Cl2iii0.902.353.1779 (17)153.2
N20—H20A···Cl1iv0.892.293.1764 (19)173.3
N20—H20B···Cl3iv0.892.563.2305 (18)133.2
N20—H20C···Cl30.892.233.1139 (18)172.7
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z.
 

Footnotes

Current affiliation: Universidad Regiomontana, Monterrey, NL, Mexico.

Acknowledgements

The authors thank the FCQ–UANL (Project No. 03–6375-QMT-08–005) and PAICyT (Project No. IT164–09) for financial support. LAGR acknowledges a grant from the CONACyT program "Dirección de Tesis entre la UANL y la University of Texas at Austin y/o Instituciones de Educación Superior de la ANUIES" (grant N.L.-2006-C09–32658).

References

First citationAnsell, C. W. G., McPartlin, M., Tasker, P. A. & Thambythurai, A. (1983). Polyhedron, 2, 83–85.  CSD CrossRef CAS Web of Science Google Scholar
First citationGakias, S., Rix, C., Fowless, A., Wills-Johnson, G., Latham, K. & White, J. (2005). J. Mol. Struct. 737, 69–74.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarza Rodríguez, L. Á., Bernès, S., Elizondo Martínez, P., Nájera Martínez, B. & Rodríguez de Luna, S. L. (2011). Acta Cryst. E67, o3235–o3236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGarza Rodríguez, L. A., Bernès, S., Nájera Martínez, B., Elizondo Martínez, P. & Pérez Rodríguez, N. (2009). Acta Cryst. E65, o2995.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGruenwedel, D. W. (1968). Inorg. Chem. 7, 495–501.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRodríguez de Barbarín, C., Bernès, S., Nájera, B., Elizondo, P. & Cerda, P. (2007). Acta Cryst. E63, o549–o550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds