organic compounds
3-[4-(10H-Indolo[3,2-b]quinolin-11-yl)piperazin-1-yl]propan-1-ol
aDepartment of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85716, USA, and bCollege of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
*Correspondence e-mail: gsnichol@email.arizona.edu
In the title compound, C22H24N4O, the aromatic moiety is essentially planar (r.m.s. deviation of a least-squares plane fitted through all non-H atoms = 0.0386 Å) and is rotated by 89.98 (4)° from the piperazine ring, which adopts the expected chair conformation. The propanol chain is not fully extended away from the piperazine ring. In the crystal, there are two unique hydrogen-bonding interactions. One is an O—H⋯N interaction which, together with an inversion-related symmetry equivalent, forms a ring motif. The second is an N—H⋯N interaction which links adjacent molecules by means of a chain motif which propagates in the c-axis direction. Overall, a two-dimensional hydrogen-bonded structure is formed.
Related literature
For background information on the synthesis and properties of quindolines, see: Guyen et al. (2004); Ou et al. (2007). For synthesis details, see: Bierer et al. (1998); Takeuchi et al. (1997). For the graph-set notation description of hydrogen bonding, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536811050215/fj2477sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: https://doi.org/10.1107/S1600536811050215/fj2477Isup2.cdx
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811050215/fj2477Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811050215/fj2477Isup4.cml
11-Chloroquindoline was synthesized according to a literature method (Bierer et al., 1998; Takeuchi et al., 1997). A mixture of 11-chloroquindoline (500 mg, 1.98 mmol) and 3-(piperazin-1-yl)propan-1-ol (1.5 ml) was heated at 100 0C for 24 h, and the crude product on further purification gave 620 mg (86%) of the title compound, (I), as a yellow solid. Crystals for X-ray analysis were obtained by recrystallization from methanol: chloroform (4:1). 1H NMR (300 MHz, DMSO-d6): d 10.88 (br s, 1H, NH), 8.42–8.25 (m, 2H, ArH), 8.14 (d, J = 8.1 Hz, 1H, ArH), 7.76–7.50 (m, 4H, ArH), 7.25 (t, J = 6.4 Hz,1H, ArH), 5.10 - 4.30 (m, OH), 3.70–3.40 (m, 6H), 2.92–2.63 (m, 4H), 2.58–2.50 (m, 2H), 1.80–1.58 (m, 2H). 13C NMR (75 MHz, DMSO-d6): d 148.17, 145.80, 144.81, 136.73, 130.30, 129.89, 127.23, 127.02, 125.10, 124.27, 124.14, 122.09, 121.94, 120.20, 112.89, 60.29, 56.25, 54.53, 51.55, 30.54. MS (ESI): m/z = 361.2 [100%, (M+H)+]. HRMS calcd for C22H25N4O [M+H]+ 361.2023, found 361.2022. HPLC MS purity 100%.
3-(4-(10H-Indolo[3,2-b]quinolin-11-yl)piperazin-1-yl)propan-1-ol, (I), was synthesized as a potential c-Myc G-quadruplex interactive agent. Quindolines were first reported as telomeric G-quadruplex stabilizing agent by Guyen et al. (2004). Ou et al. (2007) synthesized and tested a series of 11-substituted quindoline analogs for G-quadruplex stabilization and c-Myc downregulation. We have used quindoline as a scaffold for lead modification and synthesis of c-Myc G-quadruplex stabilizing compounds. We postulated that the addition of piperazine ring would provide steric bulk to the planar quindoline ring resulting in increased selectivity for G-quadruplex binding over duplex DNA. The title compound was synthesized starting from 11-chloroquindoline and tested for its ability to interact with c-Myc G-quadruplex. Anthranilic acid and aniline were used in a multistep procedure to synthesize 11-chloroquindoline as reported in literature (Bierer et al., 1998; Takeuchi et al., 1997).
The molecular structure of (I) is shown in Figure 1. Molecular dimensions are unexceptional. The aromatic moiety of the structure is essentially planar (a mean plane fitted through all non-hydrogen atoms of the moiety has an r.m.s. deviation of 0.0386 Å). This plane is rotated by 89.98 (4)° from the piperazine ring, which adopts an expected chair conformation. The propanol chain is not fully extended away from the piperazine ring.
The compound has a two-dimensional hydrogen-bonded structure (Figure 2). Two O–H···N interactions, which are symmetry related by an inversion centre, form an R22(12)motif (Bernstein et al., 1995) while further N–H···N interactions link adjacent molecules into by means of a C(5) motif in the c-axis direction.
For background information on the synthesis and properties of quindolines, see: Guyen et al. (2004); Ou et al. (2007). For synthesis details, see: Bierer et al. (1998); Takeuchi et al. (1997). For the graph-set notation description of hydrogen bonding, see: Bernstein et al. (1995).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C22H24N4O | F(000) = 768 |
Mr = 360.45 | Dx = 1.295 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3837 reflections |
a = 11.218 (2) Å | θ = 2.3–28.0° |
b = 15.673 (3) Å | µ = 0.08 mm−1 |
c = 11.847 (2) Å | T = 120 K |
β = 117.417 (2)° | Prism, dark brown |
V = 1849.0 (6) Å3 | 0.51 × 0.36 × 0.25 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 3446 independent reflections |
Radiation source: sealed tube | 2678 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
thin–slice ω scans | θmax = 25.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→13 |
Tmin = 0.929, Tmax = 0.980 | k = −18→18 |
9503 measured reflections | l = −14→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.108 | All H-atom parameters refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0523P)2 + 0.7097P] where P = (Fo2 + 2Fc2)/3 |
3446 reflections | (Δ/σ)max < 0.001 |
340 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C22H24N4O | V = 1849.0 (6) Å3 |
Mr = 360.45 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.218 (2) Å | µ = 0.08 mm−1 |
b = 15.673 (3) Å | T = 120 K |
c = 11.847 (2) Å | 0.51 × 0.36 × 0.25 mm |
β = 117.417 (2)° |
Bruker SMART 1000 CCD diffractometer | 3446 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2678 reflections with I > 2σ(I) |
Tmin = 0.929, Tmax = 0.980 | Rint = 0.027 |
9503 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.108 | All H-atom parameters refined |
S = 1.03 | Δρmax = 0.27 e Å−3 |
3446 reflections | Δρmin = −0.22 e Å−3 |
340 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O | 1.06789 (12) | 0.50790 (7) | 0.41013 (11) | 0.0267 (3) | |
H1O | 1.109 (2) | 0.5355 (16) | 0.493 (2) | 0.068 (8)* | |
N1 | 0.37444 (13) | 0.24064 (9) | 0.40400 (13) | 0.0220 (3) | |
H1N | 0.3956 (18) | 0.2294 (11) | 0.3422 (18) | 0.028 (5)* | |
N2 | 0.42965 (13) | 0.31976 (8) | 0.70450 (12) | 0.0208 (3) | |
N3 | 0.61399 (13) | 0.34403 (8) | 0.45703 (12) | 0.0209 (3) | |
N4 | 0.79071 (12) | 0.39539 (8) | 0.35679 (12) | 0.0210 (3) | |
C1 | 0.55854 (15) | 0.33858 (10) | 0.54422 (15) | 0.0198 (3) | |
C2 | 0.44663 (15) | 0.28845 (10) | 0.51126 (15) | 0.0198 (3) | |
C3 | 0.26853 (15) | 0.20239 (10) | 0.41345 (15) | 0.0207 (3) | |
C4 | 0.16905 (16) | 0.14933 (10) | 0.32651 (16) | 0.0227 (4) | |
H4 | 0.1712 (16) | 0.1326 (11) | 0.2482 (17) | 0.024 (4)* | |
C5 | 0.06949 (16) | 0.12188 (11) | 0.35618 (16) | 0.0242 (4) | |
H5 | 0.0003 (18) | 0.0838 (12) | 0.2954 (17) | 0.028 (5)* | |
C6 | 0.06798 (16) | 0.14638 (11) | 0.46923 (16) | 0.0239 (4) | |
H6 | −0.0062 (17) | 0.1263 (11) | 0.4887 (16) | 0.027 (5)* | |
C7 | 0.16832 (16) | 0.19778 (10) | 0.55680 (16) | 0.0221 (4) | |
H7 | 0.1694 (16) | 0.2136 (10) | 0.6364 (16) | 0.020 (4)* | |
C8 | 0.26991 (15) | 0.22583 (10) | 0.52887 (15) | 0.0199 (3) | |
C9 | 0.38517 (15) | 0.28109 (10) | 0.59321 (15) | 0.0193 (3) | |
C10 | 0.54068 (15) | 0.37040 (10) | 0.74025 (15) | 0.0202 (3) | |
C11 | 0.58953 (16) | 0.41338 (11) | 0.85823 (15) | 0.0249 (4) | |
H11 | 0.5411 (16) | 0.4042 (10) | 0.9084 (15) | 0.016 (4)* | |
C12 | 0.69713 (17) | 0.46688 (11) | 0.89926 (16) | 0.0275 (4) | |
H12 | 0.7267 (16) | 0.4987 (11) | 0.9796 (17) | 0.023 (4)* | |
C13 | 0.76274 (17) | 0.47893 (11) | 0.82389 (17) | 0.0264 (4) | |
H13 | 0.839 (2) | 0.5184 (13) | 0.8534 (19) | 0.038 (5)* | |
C14 | 0.72030 (16) | 0.43782 (10) | 0.70995 (16) | 0.0226 (4) | |
H14 | 0.7664 (17) | 0.4464 (11) | 0.6598 (16) | 0.026 (5)* | |
C15 | 0.60766 (15) | 0.38205 (10) | 0.66306 (15) | 0.0199 (3) | |
C16 | 0.60048 (17) | 0.42857 (11) | 0.39894 (16) | 0.0240 (4) | |
H16A | 0.6495 (17) | 0.4746 (11) | 0.4637 (16) | 0.023 (4)* | |
H16B | 0.5062 (19) | 0.4439 (11) | 0.3571 (17) | 0.028 (5)* | |
C17 | 0.65126 (16) | 0.42647 (12) | 0.30064 (16) | 0.0244 (4) | |
H17A | 0.6487 (17) | 0.4852 (12) | 0.2682 (16) | 0.025 (5)* | |
H17B | 0.5923 (17) | 0.3887 (11) | 0.2266 (16) | 0.024 (4)* | |
C18 | 0.79162 (17) | 0.30740 (10) | 0.39967 (17) | 0.0237 (4) | |
H18B | 0.8840 (17) | 0.2845 (11) | 0.4334 (16) | 0.021 (4)* | |
H18A | 0.7292 (19) | 0.2708 (12) | 0.3271 (18) | 0.034 (5)* | |
C19 | 0.74808 (17) | 0.30570 (11) | 0.50322 (16) | 0.0231 (4) | |
H19A | 0.8171 (18) | 0.3353 (11) | 0.5797 (17) | 0.028 (5)* | |
H19B | 0.7437 (17) | 0.2446 (12) | 0.5249 (16) | 0.023 (4)* | |
C20 | 0.83818 (17) | 0.40109 (11) | 0.26025 (16) | 0.0251 (4) | |
H20A | 0.7803 (17) | 0.3667 (11) | 0.1848 (17) | 0.023 (4)* | |
H20B | 0.8255 (16) | 0.4632 (11) | 0.2318 (15) | 0.017 (4)* | |
C21 | 0.98381 (17) | 0.37398 (11) | 0.30578 (17) | 0.0274 (4) | |
H21A | 1.0040 (17) | 0.3868 (12) | 0.2342 (17) | 0.030 (5)* | |
H21B | 0.9945 (17) | 0.3105 (12) | 0.3171 (17) | 0.029 (5)* | |
C22 | 1.08386 (17) | 0.41778 (11) | 0.42631 (17) | 0.0266 (4) | |
H22A | 1.1778 (18) | 0.4023 (11) | 0.4449 (16) | 0.024 (4)* | |
H22B | 1.0721 (16) | 0.3979 (11) | 0.5050 (16) | 0.023 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O | 0.0287 (6) | 0.0227 (6) | 0.0286 (7) | −0.0009 (5) | 0.0130 (5) | 0.0010 (5) |
N1 | 0.0230 (7) | 0.0257 (8) | 0.0216 (7) | −0.0035 (6) | 0.0140 (6) | −0.0041 (6) |
N2 | 0.0214 (7) | 0.0218 (7) | 0.0204 (7) | 0.0013 (5) | 0.0105 (6) | 0.0006 (6) |
N3 | 0.0204 (7) | 0.0222 (7) | 0.0239 (7) | 0.0000 (5) | 0.0135 (6) | 0.0012 (6) |
N4 | 0.0209 (7) | 0.0208 (7) | 0.0244 (7) | 0.0006 (5) | 0.0131 (6) | 0.0014 (5) |
C1 | 0.0193 (8) | 0.0200 (8) | 0.0213 (8) | 0.0031 (6) | 0.0104 (6) | 0.0024 (6) |
C2 | 0.0200 (8) | 0.0198 (8) | 0.0195 (8) | 0.0021 (6) | 0.0091 (7) | −0.0004 (6) |
C3 | 0.0194 (8) | 0.0198 (8) | 0.0237 (8) | 0.0014 (6) | 0.0106 (7) | 0.0019 (6) |
C4 | 0.0242 (8) | 0.0222 (8) | 0.0216 (8) | 0.0006 (7) | 0.0106 (7) | −0.0010 (7) |
C5 | 0.0199 (8) | 0.0212 (8) | 0.0275 (9) | −0.0010 (7) | 0.0074 (7) | 0.0011 (7) |
C6 | 0.0196 (8) | 0.0234 (9) | 0.0305 (9) | 0.0000 (7) | 0.0131 (7) | 0.0030 (7) |
C7 | 0.0222 (8) | 0.0225 (9) | 0.0232 (8) | 0.0012 (6) | 0.0118 (7) | 0.0017 (7) |
C8 | 0.0201 (8) | 0.0188 (8) | 0.0213 (8) | 0.0020 (6) | 0.0099 (7) | 0.0017 (6) |
C9 | 0.0197 (8) | 0.0186 (8) | 0.0210 (8) | 0.0020 (6) | 0.0105 (7) | 0.0010 (6) |
C10 | 0.0191 (8) | 0.0181 (8) | 0.0226 (8) | 0.0031 (6) | 0.0089 (7) | 0.0019 (6) |
C11 | 0.0252 (8) | 0.0268 (9) | 0.0243 (9) | 0.0009 (7) | 0.0127 (7) | −0.0005 (7) |
C12 | 0.0273 (9) | 0.0281 (9) | 0.0239 (9) | −0.0009 (7) | 0.0090 (7) | −0.0067 (7) |
C13 | 0.0208 (8) | 0.0259 (9) | 0.0297 (9) | −0.0020 (7) | 0.0092 (7) | −0.0034 (7) |
C14 | 0.0194 (8) | 0.0221 (9) | 0.0271 (9) | 0.0018 (6) | 0.0115 (7) | 0.0003 (7) |
C15 | 0.0184 (8) | 0.0183 (8) | 0.0228 (8) | 0.0042 (6) | 0.0093 (7) | 0.0024 (6) |
C16 | 0.0204 (8) | 0.0255 (9) | 0.0266 (9) | 0.0041 (7) | 0.0113 (7) | 0.0056 (7) |
C17 | 0.0233 (9) | 0.0271 (9) | 0.0243 (9) | 0.0012 (7) | 0.0122 (7) | 0.0049 (7) |
C18 | 0.0255 (9) | 0.0199 (8) | 0.0314 (9) | −0.0002 (7) | 0.0178 (8) | −0.0014 (7) |
C19 | 0.0240 (8) | 0.0193 (9) | 0.0304 (9) | 0.0032 (7) | 0.0164 (8) | 0.0040 (7) |
C20 | 0.0295 (9) | 0.0270 (10) | 0.0235 (9) | −0.0034 (7) | 0.0162 (8) | −0.0020 (7) |
C21 | 0.0331 (10) | 0.0247 (9) | 0.0341 (10) | −0.0005 (7) | 0.0239 (8) | −0.0013 (8) |
C22 | 0.0260 (9) | 0.0223 (9) | 0.0357 (10) | 0.0026 (7) | 0.0178 (8) | 0.0052 (7) |
O—H1O | 0.97 (3) | C10—C15 | 1.438 (2) |
O—C22 | 1.426 (2) | C11—H11 | 0.984 (16) |
N1—H1N | 0.885 (19) | C11—C12 | 1.362 (2) |
N1—C2 | 1.373 (2) | C12—H12 | 0.987 (18) |
N1—C3 | 1.381 (2) | C12—C13 | 1.407 (2) |
N2—C9 | 1.322 (2) | C13—H13 | 0.98 (2) |
N2—C10 | 1.369 (2) | C13—C14 | 1.368 (2) |
N3—C1 | 1.433 (2) | C14—H14 | 0.960 (18) |
N3—C16 | 1.468 (2) | C14—C15 | 1.422 (2) |
N3—C19 | 1.471 (2) | C16—H16A | 1.011 (18) |
N4—C17 | 1.473 (2) | C16—H16B | 0.969 (19) |
N4—C18 | 1.468 (2) | C16—C17 | 1.514 (2) |
N4—C20 | 1.470 (2) | C17—H17A | 0.992 (18) |
C1—C2 | 1.376 (2) | C17—H17B | 1.011 (17) |
C1—C15 | 1.427 (2) | C18—H18B | 0.991 (17) |
C2—C9 | 1.431 (2) | C18—H18A | 1.00 (2) |
C3—C4 | 1.393 (2) | C18—C19 | 1.515 (2) |
C3—C8 | 1.409 (2) | C19—H19A | 0.995 (18) |
C4—H4 | 0.976 (17) | C19—H19B | 0.999 (18) |
C4—C5 | 1.385 (2) | C20—H20A | 0.988 (18) |
C5—H5 | 0.981 (18) | C20—H20B | 1.019 (17) |
C5—C6 | 1.401 (2) | C20—C21 | 1.526 (2) |
C6—H6 | 1.011 (18) | C21—H21A | 0.994 (19) |
C6—C7 | 1.385 (2) | C21—H21B | 1.004 (19) |
C7—H7 | 0.969 (17) | C21—C22 | 1.515 (2) |
C7—C8 | 1.396 (2) | C22—H22A | 1.002 (18) |
C8—C9 | 1.448 (2) | C22—H22B | 1.048 (17) |
C10—C11 | 1.415 (2) | ||
H1O—O—C22 | 109.5 (14) | H13—C13—C14 | 120.0 (12) |
H1N—N1—C2 | 127.3 (12) | C13—C14—H14 | 120.2 (11) |
H1N—N1—C3 | 123.3 (12) | C13—C14—C15 | 121.17 (16) |
C2—N1—C3 | 108.97 (13) | H14—C14—C15 | 118.6 (10) |
C9—N2—C10 | 116.48 (13) | C1—C15—C10 | 119.30 (14) |
C1—N3—C16 | 113.97 (12) | C1—C15—C14 | 123.29 (14) |
C1—N3—C19 | 114.61 (12) | C10—C15—C14 | 117.40 (14) |
C16—N3—C19 | 114.20 (12) | N3—C16—H16A | 112.7 (10) |
C17—N4—C18 | 107.68 (13) | N3—C16—H16B | 108.4 (11) |
C17—N4—C20 | 108.57 (12) | N3—C16—C17 | 110.28 (14) |
C18—N4—C20 | 112.26 (13) | H16A—C16—H16B | 107.2 (14) |
N3—C1—C2 | 118.14 (14) | H16A—C16—C17 | 109.4 (10) |
N3—C1—C15 | 125.75 (14) | H16B—C16—C17 | 108.7 (10) |
C2—C1—C15 | 116.10 (14) | N4—C17—C16 | 110.94 (13) |
N1—C2—C1 | 130.28 (15) | N4—C17—H17A | 108.5 (10) |
N1—C2—C9 | 108.71 (13) | N4—C17—H17B | 109.4 (9) |
C1—C2—C9 | 121.00 (14) | C16—C17—H17A | 108.9 (10) |
N1—C3—C4 | 128.75 (15) | C16—C17—H17B | 110.6 (10) |
N1—C3—C8 | 109.88 (14) | H17A—C17—H17B | 108.4 (14) |
C4—C3—C8 | 121.36 (15) | N4—C18—H18B | 108.6 (10) |
C3—C4—H4 | 120.1 (10) | N4—C18—H18A | 110.5 (11) |
C3—C4—C5 | 117.59 (15) | N4—C18—C19 | 110.06 (13) |
H4—C4—C5 | 122.3 (10) | H18B—C18—H18A | 109.1 (14) |
C4—C5—H5 | 117.4 (10) | H18B—C18—C19 | 109.5 (10) |
C4—C5—C6 | 121.58 (15) | H18A—C18—C19 | 109.0 (11) |
H5—C5—C6 | 121.0 (10) | N3—C19—C18 | 110.32 (14) |
C5—C6—H6 | 120.4 (10) | N3—C19—H19A | 112.5 (10) |
C5—C6—C7 | 120.82 (15) | N3—C19—H19B | 108.9 (10) |
H6—C6—C7 | 118.7 (10) | C18—C19—H19A | 108.9 (10) |
C6—C7—H7 | 121.3 (10) | C18—C19—H19B | 107.3 (10) |
C6—C7—C8 | 118.45 (15) | H19A—C19—H19B | 108.8 (14) |
H7—C7—C8 | 120.3 (10) | N4—C20—H20A | 110.4 (10) |
C3—C8—C7 | 120.17 (14) | N4—C20—H20B | 105.7 (9) |
C3—C8—C9 | 105.96 (13) | N4—C20—C21 | 114.87 (14) |
C7—C8—C9 | 133.82 (15) | H20A—C20—H20B | 106.8 (13) |
N2—C9—C2 | 124.13 (14) | H20A—C20—C21 | 108.6 (10) |
N2—C9—C8 | 129.39 (14) | H20B—C20—C21 | 110.3 (9) |
C2—C9—C8 | 106.48 (13) | C20—C21—H21A | 105.6 (10) |
N2—C10—C11 | 117.70 (14) | C20—C21—H21B | 111.4 (10) |
N2—C10—C15 | 122.98 (14) | C20—C21—C22 | 114.52 (14) |
C11—C10—C15 | 119.32 (14) | H21A—C21—H21B | 104.8 (14) |
C10—C11—H11 | 117.2 (9) | H21A—C21—C22 | 110.6 (10) |
C10—C11—C12 | 121.46 (16) | H21B—C21—C22 | 109.4 (10) |
H11—C11—C12 | 121.3 (9) | O—C22—C21 | 109.25 (14) |
C11—C12—H12 | 120.3 (10) | O—C22—H22A | 108.9 (10) |
C11—C12—C13 | 119.52 (16) | O—C22—H22B | 110.8 (9) |
H12—C12—C13 | 120.1 (10) | C21—C22—H22A | 110.2 (10) |
C12—C13—H13 | 118.9 (12) | C21—C22—H22B | 111.2 (9) |
C12—C13—C14 | 121.11 (16) | H22A—C22—H22B | 106.4 (13) |
C16—N3—C1—C2 | 112.37 (16) | C7—C8—C9—C2 | −176.76 (17) |
C16—N3—C1—C15 | −66.45 (19) | C9—N2—C10—C11 | 179.26 (14) |
C19—N3—C1—C2 | −113.44 (16) | C9—N2—C10—C15 | −0.1 (2) |
C19—N3—C1—C15 | 67.74 (19) | N2—C10—C11—C12 | −178.11 (15) |
C3—N1—C2—C1 | −178.98 (16) | C15—C10—C11—C12 | 1.3 (2) |
C3—N1—C2—C9 | −0.12 (17) | C10—C11—C12—C13 | −1.0 (3) |
N3—C1—C2—N1 | −0.4 (2) | C11—C12—C13—C14 | 0.0 (3) |
N3—C1—C2—C9 | −179.17 (13) | C12—C13—C14—C15 | 0.6 (3) |
C15—C1—C2—N1 | 178.51 (15) | C13—C14—C15—C1 | 179.20 (15) |
C15—C1—C2—C9 | −0.2 (2) | C13—C14—C15—C10 | −0.2 (2) |
C2—N1—C3—C4 | 179.23 (16) | N3—C1—C15—C10 | 179.73 (14) |
C2—N1—C3—C8 | 0.45 (18) | N3—C1—C15—C14 | 0.3 (2) |
N1—C3—C4—C5 | −177.20 (15) | C2—C1—C15—C10 | 0.9 (2) |
C8—C3—C4—C5 | 1.5 (2) | C2—C1—C15—C14 | −178.53 (14) |
C3—C4—C5—C6 | 0.1 (2) | N2—C10—C15—C1 | −0.8 (2) |
C4—C5—C6—C7 | −1.4 (2) | N2—C10—C15—C14 | 178.69 (14) |
C5—C6—C7—C8 | 1.1 (2) | C11—C10—C15—C1 | 179.88 (14) |
C6—C7—C8—C3 | 0.5 (2) | C11—C10—C15—C14 | −0.7 (2) |
C6—C7—C8—C9 | 177.43 (16) | C1—N3—C16—C17 | −175.37 (13) |
N1—C3—C8—C7 | 177.12 (14) | C19—N3—C16—C17 | 50.25 (18) |
N1—C3—C8—C9 | −0.60 (17) | C18—N4—C17—C16 | 62.64 (17) |
C4—C3—C8—C7 | −1.8 (2) | C20—N4—C17—C16 | −175.58 (14) |
C4—C3—C8—C9 | −179.48 (14) | N3—C16—C17—N4 | −55.76 (18) |
C10—N2—C9—C2 | 0.8 (2) | C17—N4—C18—C19 | −63.16 (17) |
C10—N2—C9—C8 | −178.45 (15) | C20—N4—C18—C19 | 177.38 (13) |
N1—C2—C9—N2 | −179.67 (14) | C1—N3—C19—C18 | 174.66 (13) |
N1—C2—C9—C8 | −0.25 (17) | C16—N3—C19—C18 | −51.25 (18) |
C1—C2—C9—N2 | −0.7 (2) | N4—C18—C19—N3 | 57.42 (18) |
C1—C2—C9—C8 | 178.74 (14) | C17—N4—C20—C21 | 177.89 (14) |
C3—C8—C9—N2 | 179.89 (15) | C18—N4—C20—C21 | −63.17 (18) |
C3—C8—C9—C2 | 0.51 (17) | N4—C20—C21—C22 | −52.4 (2) |
C7—C8—C9—N2 | 2.6 (3) | C20—C21—C22—O | −53.75 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O—H1O···N4i | 0.97 (3) | 1.94 (3) | 2.8990 (18) | 169 (2) |
N1—H1N···N2ii | 0.885 (19) | 1.99 (2) | 2.866 (2) | 168.4 (17) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C22H24N4O |
Mr | 360.45 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 11.218 (2), 15.673 (3), 11.847 (2) |
β (°) | 117.417 (2) |
V (Å3) | 1849.0 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.51 × 0.36 × 0.25 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.929, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9503, 3446, 2678 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.108, 1.03 |
No. of reflections | 3446 |
No. of parameters | 340 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.27, −0.22 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O—H1O···N4i | 0.97 (3) | 1.94 (3) | 2.8990 (18) | 169 (2) |
N1—H1N···N2ii | 0.885 (19) | 1.99 (2) | 2.866 (2) | 168.4 (17) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+1/2, z−1/2. |
Footnotes
‡Also affiliated with the BIO5 Institute and the Arizona Cancer Center, Tucson, AZ 85721, USA.
Acknowledgements
This research was supported by a grant from the Science Foundation Arizona (SBC 0016–07). PVLB thanks Dr Vijay Gokhale for discussion and critique of the manuscript. The diffractometer was purchased with funding from NSF grant CHE-9610347.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bierer, D. E., Dubenko, L. G., Zhang, P., Lu, Q., Imbach, P. A., Garofalo, A. W., Phuan, P.-W., Fort, D. M., Litvak, J., Gerber, R. E., Sloan, B., Luo, J., Cooper, R. & Reaven, G. M. (1998). J. Med. Chem. 41, 2754–2764. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Guyen, B., Schultes, C. M., Hazel, P., Mann, J. & Neidle, S. (2004). Org. Biomol. Chem. 2, 981–988. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ou, T. M., Lu, Y. J., Zhang, C., Huang, Z. S., Wang, X. D., Tan, J. H., Chen, Y., Ma, D. L., Wong, K. Y., Tang, J. C., Chan, A. S. & Gu, L. Q. (2007). J. Med. Chem. 50, 1465–1474. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takeuchi, Y., Kitaomo, M., Chang, M.-R., Shirasaka, S., Shimamura, C., Okuno, Y., Yamato, M. & Harayama, T. (1997). Chem. Pharm. Bull. (Tokyo), 45, 2096–2099. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3-(4-(10H-Indolo[3,2-b]quinolin-11-yl)piperazin-1-yl)propan-1-ol, (I), was synthesized as a potential c-Myc G-quadruplex interactive agent. Quindolines were first reported as telomeric G-quadruplex stabilizing agent by Guyen et al. (2004). Ou et al. (2007) synthesized and tested a series of 11-substituted quindoline analogs for G-quadruplex stabilization and c-Myc downregulation. We have used quindoline as a scaffold for lead modification and synthesis of c-Myc G-quadruplex stabilizing compounds. We postulated that the addition of piperazine ring would provide steric bulk to the planar quindoline ring resulting in increased selectivity for G-quadruplex binding over duplex DNA. The title compound was synthesized starting from 11-chloroquindoline and tested for its ability to interact with c-Myc G-quadruplex. Anthranilic acid and aniline were used in a multistep procedure to synthesize 11-chloroquindoline as reported in literature (Bierer et al., 1998; Takeuchi et al., 1997).
The molecular structure of (I) is shown in Figure 1. Molecular dimensions are unexceptional. The aromatic moiety of the structure is essentially planar (a mean plane fitted through all non-hydrogen atoms of the moiety has an r.m.s. deviation of 0.0386 Å). This plane is rotated by 89.98 (4)° from the piperazine ring, which adopts an expected chair conformation. The propanol chain is not fully extended away from the piperazine ring.
The compound has a two-dimensional hydrogen-bonded structure (Figure 2). Two O–H···N interactions, which are symmetry related by an inversion centre, form an R22(12)motif (Bernstein et al., 1995) while further N–H···N interactions link adjacent molecules into by means of a C(5) motif in the c-axis direction.