organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[4-(10H-Indolo[3,2-b]quinolin-11-yl)piperazin-1-yl]propan-1-ol

aDepartment of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85716, USA, and bCollege of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
*Correspondence e-mail: gsnichol@email.arizona.edu

(Received 10 November 2011; accepted 22 November 2011; online 30 November 2011)

In the title compound, C22H24N4O, the aromatic moiety is essentially planar (r.m.s. deviation of a least-squares plane fitted through all non-H atoms = 0.0386 Å) and is rotated by 89.98 (4)° from the piperazine ring, which adopts the expected chair conformation. The propanol chain is not fully extended away from the piperazine ring. In the crystal, there are two unique hydrogen-bonding inter­actions. One is an O—H⋯N inter­action which, together with an inversion-related symmetry equivalent, forms a ring motif. The second is an N—H⋯N inter­action which links adjacent mol­ecules by means of a chain motif which propagates in the c-axis direction. Overall, a two-dimensional hydrogen-bonded structure is formed.

Related literature

For background information on the synthesis and properties of quindolines, see: Guyen et al. (2004[Guyen, B., Schultes, C. M., Hazel, P., Mann, J. & Neidle, S. (2004). Org. Biomol. Chem. 2, 981-988.]); Ou et al. (2007[Ou, T. M., Lu, Y. J., Zhang, C., Huang, Z. S., Wang, X. D., Tan, J. H., Chen, Y., Ma, D. L., Wong, K. Y., Tang, J. C., Chan, A. S. & Gu, L. Q. (2007). J. Med. Chem. 50, 1465-1474.]). For synthesis details, see: Bierer et al. (1998[Bierer, D. E., Dubenko, L. G., Zhang, P., Lu, Q., Imbach, P. A., Garofalo, A. W., Phuan, P.-W., Fort, D. M., Litvak, J., Gerber, R. E., Sloan, B., Luo, J., Cooper, R. & Reaven, G. M. (1998). J. Med. Chem. 41, 2754-2764.]); Takeuchi et al. (1997[Takeuchi, Y., Kitaomo, M., Chang, M.-R., Shirasaka, S., Shimamura, C., Okuno, Y., Yamato, M. & Harayama, T. (1997). Chem. Pharm. Bull. (Tokyo), 45, 2096-2099.]). For the graph-set notation description of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24N4O

  • Mr = 360.45

  • Monoclinic, P 21 /c

  • a = 11.218 (2) Å

  • b = 15.673 (3) Å

  • c = 11.847 (2) Å

  • β = 117.417 (2)°

  • V = 1849.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.51 × 0.36 × 0.25 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.929, Tmax = 0.980

  • 9503 measured reflections

  • 3446 independent reflections

  • 2678 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.03

  • 3446 reflections

  • 340 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O—H1O⋯N4i 0.97 (3) 1.94 (3) 2.8990 (18) 169 (2)
N1—H1N⋯N2ii 0.885 (19) 1.99 (2) 2.866 (2) 168.4 (17)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

3-(4-(10H-Indolo[3,2-b]quinolin-11-yl)piperazin-1-yl)propan-1-ol, (I), was synthesized as a potential c-Myc G-quadruplex interactive agent. Quindolines were first reported as telomeric G-quadruplex stabilizing agent by Guyen et al. (2004). Ou et al. (2007) synthesized and tested a series of 11-substituted quindoline analogs for G-quadruplex stabilization and c-Myc downregulation. We have used quindoline as a scaffold for lead modification and synthesis of c-Myc G-quadruplex stabilizing compounds. We postulated that the addition of piperazine ring would provide steric bulk to the planar quindoline ring resulting in increased selectivity for G-quadruplex binding over duplex DNA. The title compound was synthesized starting from 11-chloroquindoline and tested for its ability to interact with c-Myc G-quadruplex. Anthranilic acid and aniline were used in a multistep procedure to synthesize 11-chloroquindoline as reported in literature (Bierer et al., 1998; Takeuchi et al., 1997).

The molecular structure of (I) is shown in Figure 1. Molecular dimensions are unexceptional. The aromatic moiety of the structure is essentially planar (a mean plane fitted through all non-hydrogen atoms of the moiety has an r.m.s. deviation of 0.0386 Å). This plane is rotated by 89.98 (4)° from the piperazine ring, which adopts an expected chair conformation. The propanol chain is not fully extended away from the piperazine ring.

The compound has a two-dimensional hydrogen-bonded structure (Figure 2). Two O–H···N interactions, which are symmetry related by an inversion centre, form an R22(12)motif (Bernstein et al., 1995) while further N–H···N interactions link adjacent molecules into by means of a C(5) motif in the c-axis direction.

Related literature top

For background information on the synthesis and properties of quindolines, see: Guyen et al. (2004); Ou et al. (2007). For synthesis details, see: Bierer et al. (1998); Takeuchi et al. (1997). For the graph-set notation description of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

11-Chloroquindoline was synthesized according to a literature method (Bierer et al., 1998; Takeuchi et al., 1997). A mixture of 11-chloroquindoline (500 mg, 1.98 mmol) and 3-(piperazin-1-yl)propan-1-ol (1.5 ml) was heated at 100 0C for 24 h, and the crude product on further purification gave 620 mg (86%) of the title compound, (I), as a yellow solid. Crystals for X-ray analysis were obtained by recrystallization from methanol: chloroform (4:1). 1H NMR (300 MHz, DMSO-d6): d 10.88 (br s, 1H, NH), 8.42–8.25 (m, 2H, ArH), 8.14 (d, J = 8.1 Hz, 1H, ArH), 7.76–7.50 (m, 4H, ArH), 7.25 (t, J = 6.4 Hz,1H, ArH), 5.10 - 4.30 (m, OH), 3.70–3.40 (m, 6H), 2.92–2.63 (m, 4H), 2.58–2.50 (m, 2H), 1.80–1.58 (m, 2H). 13C NMR (75 MHz, DMSO-d6): d 148.17, 145.80, 144.81, 136.73, 130.30, 129.89, 127.23, 127.02, 125.10, 124.27, 124.14, 122.09, 121.94, 120.20, 112.89, 60.29, 56.25, 54.53, 51.55, 30.54. MS (ESI): m/z = 361.2 [100%, (M+H)+]. HRMS calcd for C22H25N4O [M+H]+ 361.2023, found 361.2022. HPLC MS purity 100%.

Refinement top

All H atoms were located in a difference map and are freely refined.

Structure description top

3-(4-(10H-Indolo[3,2-b]quinolin-11-yl)piperazin-1-yl)propan-1-ol, (I), was synthesized as a potential c-Myc G-quadruplex interactive agent. Quindolines were first reported as telomeric G-quadruplex stabilizing agent by Guyen et al. (2004). Ou et al. (2007) synthesized and tested a series of 11-substituted quindoline analogs for G-quadruplex stabilization and c-Myc downregulation. We have used quindoline as a scaffold for lead modification and synthesis of c-Myc G-quadruplex stabilizing compounds. We postulated that the addition of piperazine ring would provide steric bulk to the planar quindoline ring resulting in increased selectivity for G-quadruplex binding over duplex DNA. The title compound was synthesized starting from 11-chloroquindoline and tested for its ability to interact with c-Myc G-quadruplex. Anthranilic acid and aniline were used in a multistep procedure to synthesize 11-chloroquindoline as reported in literature (Bierer et al., 1998; Takeuchi et al., 1997).

The molecular structure of (I) is shown in Figure 1. Molecular dimensions are unexceptional. The aromatic moiety of the structure is essentially planar (a mean plane fitted through all non-hydrogen atoms of the moiety has an r.m.s. deviation of 0.0386 Å). This plane is rotated by 89.98 (4)° from the piperazine ring, which adopts an expected chair conformation. The propanol chain is not fully extended away from the piperazine ring.

The compound has a two-dimensional hydrogen-bonded structure (Figure 2). Two O–H···N interactions, which are symmetry related by an inversion centre, form an R22(12)motif (Bernstein et al., 1995) while further N–H···N interactions link adjacent molecules into by means of a C(5) motif in the c-axis direction.

For background information on the synthesis and properties of quindolines, see: Guyen et al. (2004); Ou et al. (2007). For synthesis details, see: Bierer et al. (1998); Takeuchi et al. (1997). For the graph-set notation description of hydrogen bonding, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with anisotropic displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding interactions (blue dashed lines) in (I). Red dashed lines indicate continuation of hydrogen bonding. C-bound H atoms are omitted.
3-[4-(10H-Indolo[3,2-b]quinolin-11-yl)piperazin-1-yl]propan-1-ol top
Crystal data top
C22H24N4OF(000) = 768
Mr = 360.45Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3837 reflections
a = 11.218 (2) Åθ = 2.3–28.0°
b = 15.673 (3) ŵ = 0.08 mm1
c = 11.847 (2) ÅT = 120 K
β = 117.417 (2)°Prism, dark brown
V = 1849.0 (6) Å30.51 × 0.36 × 0.25 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3446 independent reflections
Radiation source: sealed tube2678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
thin–slice ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.929, Tmax = 0.980k = 1818
9503 measured reflectionsl = 149
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.108All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.7097P]
where P = (Fo2 + 2Fc2)/3
3446 reflections(Δ/σ)max < 0.001
340 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C22H24N4OV = 1849.0 (6) Å3
Mr = 360.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.218 (2) ŵ = 0.08 mm1
b = 15.673 (3) ÅT = 120 K
c = 11.847 (2) Å0.51 × 0.36 × 0.25 mm
β = 117.417 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3446 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2678 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.980Rint = 0.027
9503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108All H-atom parameters refined
S = 1.03Δρmax = 0.27 e Å3
3446 reflectionsΔρmin = 0.22 e Å3
340 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1.06789 (12)0.50790 (7)0.41013 (11)0.0267 (3)
H1O1.109 (2)0.5355 (16)0.493 (2)0.068 (8)*
N10.37444 (13)0.24064 (9)0.40400 (13)0.0220 (3)
H1N0.3956 (18)0.2294 (11)0.3422 (18)0.028 (5)*
N20.42965 (13)0.31976 (8)0.70450 (12)0.0208 (3)
N30.61399 (13)0.34403 (8)0.45703 (12)0.0209 (3)
N40.79071 (12)0.39539 (8)0.35679 (12)0.0210 (3)
C10.55854 (15)0.33858 (10)0.54422 (15)0.0198 (3)
C20.44663 (15)0.28845 (10)0.51126 (15)0.0198 (3)
C30.26853 (15)0.20239 (10)0.41345 (15)0.0207 (3)
C40.16905 (16)0.14933 (10)0.32651 (16)0.0227 (4)
H40.1712 (16)0.1326 (11)0.2482 (17)0.024 (4)*
C50.06949 (16)0.12188 (11)0.35618 (16)0.0242 (4)
H50.0003 (18)0.0838 (12)0.2954 (17)0.028 (5)*
C60.06798 (16)0.14638 (11)0.46923 (16)0.0239 (4)
H60.0062 (17)0.1263 (11)0.4887 (16)0.027 (5)*
C70.16832 (16)0.19778 (10)0.55680 (16)0.0221 (4)
H70.1694 (16)0.2136 (10)0.6364 (16)0.020 (4)*
C80.26991 (15)0.22583 (10)0.52887 (15)0.0199 (3)
C90.38517 (15)0.28109 (10)0.59321 (15)0.0193 (3)
C100.54068 (15)0.37040 (10)0.74025 (15)0.0202 (3)
C110.58953 (16)0.41338 (11)0.85823 (15)0.0249 (4)
H110.5411 (16)0.4042 (10)0.9084 (15)0.016 (4)*
C120.69713 (17)0.46688 (11)0.89926 (16)0.0275 (4)
H120.7267 (16)0.4987 (11)0.9796 (17)0.023 (4)*
C130.76274 (17)0.47893 (11)0.82389 (17)0.0264 (4)
H130.839 (2)0.5184 (13)0.8534 (19)0.038 (5)*
C140.72030 (16)0.43782 (10)0.70995 (16)0.0226 (4)
H140.7664 (17)0.4464 (11)0.6598 (16)0.026 (5)*
C150.60766 (15)0.38205 (10)0.66306 (15)0.0199 (3)
C160.60048 (17)0.42857 (11)0.39894 (16)0.0240 (4)
H16A0.6495 (17)0.4746 (11)0.4637 (16)0.023 (4)*
H16B0.5062 (19)0.4439 (11)0.3571 (17)0.028 (5)*
C170.65126 (16)0.42647 (12)0.30064 (16)0.0244 (4)
H17A0.6487 (17)0.4852 (12)0.2682 (16)0.025 (5)*
H17B0.5923 (17)0.3887 (11)0.2266 (16)0.024 (4)*
C180.79162 (17)0.30740 (10)0.39967 (17)0.0237 (4)
H18B0.8840 (17)0.2845 (11)0.4334 (16)0.021 (4)*
H18A0.7292 (19)0.2708 (12)0.3271 (18)0.034 (5)*
C190.74808 (17)0.30570 (11)0.50322 (16)0.0231 (4)
H19A0.8171 (18)0.3353 (11)0.5797 (17)0.028 (5)*
H19B0.7437 (17)0.2446 (12)0.5249 (16)0.023 (4)*
C200.83818 (17)0.40109 (11)0.26025 (16)0.0251 (4)
H20A0.7803 (17)0.3667 (11)0.1848 (17)0.023 (4)*
H20B0.8255 (16)0.4632 (11)0.2318 (15)0.017 (4)*
C210.98381 (17)0.37398 (11)0.30578 (17)0.0274 (4)
H21A1.0040 (17)0.3868 (12)0.2342 (17)0.030 (5)*
H21B0.9945 (17)0.3105 (12)0.3171 (17)0.029 (5)*
C221.08386 (17)0.41778 (11)0.42631 (17)0.0266 (4)
H22A1.1778 (18)0.4023 (11)0.4449 (16)0.024 (4)*
H22B1.0721 (16)0.3979 (11)0.5050 (16)0.023 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0287 (6)0.0227 (6)0.0286 (7)0.0009 (5)0.0130 (5)0.0010 (5)
N10.0230 (7)0.0257 (8)0.0216 (7)0.0035 (6)0.0140 (6)0.0041 (6)
N20.0214 (7)0.0218 (7)0.0204 (7)0.0013 (5)0.0105 (6)0.0006 (6)
N30.0204 (7)0.0222 (7)0.0239 (7)0.0000 (5)0.0135 (6)0.0012 (6)
N40.0209 (7)0.0208 (7)0.0244 (7)0.0006 (5)0.0131 (6)0.0014 (5)
C10.0193 (8)0.0200 (8)0.0213 (8)0.0031 (6)0.0104 (6)0.0024 (6)
C20.0200 (8)0.0198 (8)0.0195 (8)0.0021 (6)0.0091 (7)0.0004 (6)
C30.0194 (8)0.0198 (8)0.0237 (8)0.0014 (6)0.0106 (7)0.0019 (6)
C40.0242 (8)0.0222 (8)0.0216 (8)0.0006 (7)0.0106 (7)0.0010 (7)
C50.0199 (8)0.0212 (8)0.0275 (9)0.0010 (7)0.0074 (7)0.0011 (7)
C60.0196 (8)0.0234 (9)0.0305 (9)0.0000 (7)0.0131 (7)0.0030 (7)
C70.0222 (8)0.0225 (9)0.0232 (8)0.0012 (6)0.0118 (7)0.0017 (7)
C80.0201 (8)0.0188 (8)0.0213 (8)0.0020 (6)0.0099 (7)0.0017 (6)
C90.0197 (8)0.0186 (8)0.0210 (8)0.0020 (6)0.0105 (7)0.0010 (6)
C100.0191 (8)0.0181 (8)0.0226 (8)0.0031 (6)0.0089 (7)0.0019 (6)
C110.0252 (8)0.0268 (9)0.0243 (9)0.0009 (7)0.0127 (7)0.0005 (7)
C120.0273 (9)0.0281 (9)0.0239 (9)0.0009 (7)0.0090 (7)0.0067 (7)
C130.0208 (8)0.0259 (9)0.0297 (9)0.0020 (7)0.0092 (7)0.0034 (7)
C140.0194 (8)0.0221 (9)0.0271 (9)0.0018 (6)0.0115 (7)0.0003 (7)
C150.0184 (8)0.0183 (8)0.0228 (8)0.0042 (6)0.0093 (7)0.0024 (6)
C160.0204 (8)0.0255 (9)0.0266 (9)0.0041 (7)0.0113 (7)0.0056 (7)
C170.0233 (9)0.0271 (9)0.0243 (9)0.0012 (7)0.0122 (7)0.0049 (7)
C180.0255 (9)0.0199 (8)0.0314 (9)0.0002 (7)0.0178 (8)0.0014 (7)
C190.0240 (8)0.0193 (9)0.0304 (9)0.0032 (7)0.0164 (8)0.0040 (7)
C200.0295 (9)0.0270 (10)0.0235 (9)0.0034 (7)0.0162 (8)0.0020 (7)
C210.0331 (10)0.0247 (9)0.0341 (10)0.0005 (7)0.0239 (8)0.0013 (8)
C220.0260 (9)0.0223 (9)0.0357 (10)0.0026 (7)0.0178 (8)0.0052 (7)
Geometric parameters (Å, º) top
O—H1O0.97 (3)C10—C151.438 (2)
O—C221.426 (2)C11—H110.984 (16)
N1—H1N0.885 (19)C11—C121.362 (2)
N1—C21.373 (2)C12—H120.987 (18)
N1—C31.381 (2)C12—C131.407 (2)
N2—C91.322 (2)C13—H130.98 (2)
N2—C101.369 (2)C13—C141.368 (2)
N3—C11.433 (2)C14—H140.960 (18)
N3—C161.468 (2)C14—C151.422 (2)
N3—C191.471 (2)C16—H16A1.011 (18)
N4—C171.473 (2)C16—H16B0.969 (19)
N4—C181.468 (2)C16—C171.514 (2)
N4—C201.470 (2)C17—H17A0.992 (18)
C1—C21.376 (2)C17—H17B1.011 (17)
C1—C151.427 (2)C18—H18B0.991 (17)
C2—C91.431 (2)C18—H18A1.00 (2)
C3—C41.393 (2)C18—C191.515 (2)
C3—C81.409 (2)C19—H19A0.995 (18)
C4—H40.976 (17)C19—H19B0.999 (18)
C4—C51.385 (2)C20—H20A0.988 (18)
C5—H50.981 (18)C20—H20B1.019 (17)
C5—C61.401 (2)C20—C211.526 (2)
C6—H61.011 (18)C21—H21A0.994 (19)
C6—C71.385 (2)C21—H21B1.004 (19)
C7—H70.969 (17)C21—C221.515 (2)
C7—C81.396 (2)C22—H22A1.002 (18)
C8—C91.448 (2)C22—H22B1.048 (17)
C10—C111.415 (2)
H1O—O—C22109.5 (14)H13—C13—C14120.0 (12)
H1N—N1—C2127.3 (12)C13—C14—H14120.2 (11)
H1N—N1—C3123.3 (12)C13—C14—C15121.17 (16)
C2—N1—C3108.97 (13)H14—C14—C15118.6 (10)
C9—N2—C10116.48 (13)C1—C15—C10119.30 (14)
C1—N3—C16113.97 (12)C1—C15—C14123.29 (14)
C1—N3—C19114.61 (12)C10—C15—C14117.40 (14)
C16—N3—C19114.20 (12)N3—C16—H16A112.7 (10)
C17—N4—C18107.68 (13)N3—C16—H16B108.4 (11)
C17—N4—C20108.57 (12)N3—C16—C17110.28 (14)
C18—N4—C20112.26 (13)H16A—C16—H16B107.2 (14)
N3—C1—C2118.14 (14)H16A—C16—C17109.4 (10)
N3—C1—C15125.75 (14)H16B—C16—C17108.7 (10)
C2—C1—C15116.10 (14)N4—C17—C16110.94 (13)
N1—C2—C1130.28 (15)N4—C17—H17A108.5 (10)
N1—C2—C9108.71 (13)N4—C17—H17B109.4 (9)
C1—C2—C9121.00 (14)C16—C17—H17A108.9 (10)
N1—C3—C4128.75 (15)C16—C17—H17B110.6 (10)
N1—C3—C8109.88 (14)H17A—C17—H17B108.4 (14)
C4—C3—C8121.36 (15)N4—C18—H18B108.6 (10)
C3—C4—H4120.1 (10)N4—C18—H18A110.5 (11)
C3—C4—C5117.59 (15)N4—C18—C19110.06 (13)
H4—C4—C5122.3 (10)H18B—C18—H18A109.1 (14)
C4—C5—H5117.4 (10)H18B—C18—C19109.5 (10)
C4—C5—C6121.58 (15)H18A—C18—C19109.0 (11)
H5—C5—C6121.0 (10)N3—C19—C18110.32 (14)
C5—C6—H6120.4 (10)N3—C19—H19A112.5 (10)
C5—C6—C7120.82 (15)N3—C19—H19B108.9 (10)
H6—C6—C7118.7 (10)C18—C19—H19A108.9 (10)
C6—C7—H7121.3 (10)C18—C19—H19B107.3 (10)
C6—C7—C8118.45 (15)H19A—C19—H19B108.8 (14)
H7—C7—C8120.3 (10)N4—C20—H20A110.4 (10)
C3—C8—C7120.17 (14)N4—C20—H20B105.7 (9)
C3—C8—C9105.96 (13)N4—C20—C21114.87 (14)
C7—C8—C9133.82 (15)H20A—C20—H20B106.8 (13)
N2—C9—C2124.13 (14)H20A—C20—C21108.6 (10)
N2—C9—C8129.39 (14)H20B—C20—C21110.3 (9)
C2—C9—C8106.48 (13)C20—C21—H21A105.6 (10)
N2—C10—C11117.70 (14)C20—C21—H21B111.4 (10)
N2—C10—C15122.98 (14)C20—C21—C22114.52 (14)
C11—C10—C15119.32 (14)H21A—C21—H21B104.8 (14)
C10—C11—H11117.2 (9)H21A—C21—C22110.6 (10)
C10—C11—C12121.46 (16)H21B—C21—C22109.4 (10)
H11—C11—C12121.3 (9)O—C22—C21109.25 (14)
C11—C12—H12120.3 (10)O—C22—H22A108.9 (10)
C11—C12—C13119.52 (16)O—C22—H22B110.8 (9)
H12—C12—C13120.1 (10)C21—C22—H22A110.2 (10)
C12—C13—H13118.9 (12)C21—C22—H22B111.2 (9)
C12—C13—C14121.11 (16)H22A—C22—H22B106.4 (13)
C16—N3—C1—C2112.37 (16)C7—C8—C9—C2176.76 (17)
C16—N3—C1—C1566.45 (19)C9—N2—C10—C11179.26 (14)
C19—N3—C1—C2113.44 (16)C9—N2—C10—C150.1 (2)
C19—N3—C1—C1567.74 (19)N2—C10—C11—C12178.11 (15)
C3—N1—C2—C1178.98 (16)C15—C10—C11—C121.3 (2)
C3—N1—C2—C90.12 (17)C10—C11—C12—C131.0 (3)
N3—C1—C2—N10.4 (2)C11—C12—C13—C140.0 (3)
N3—C1—C2—C9179.17 (13)C12—C13—C14—C150.6 (3)
C15—C1—C2—N1178.51 (15)C13—C14—C15—C1179.20 (15)
C15—C1—C2—C90.2 (2)C13—C14—C15—C100.2 (2)
C2—N1—C3—C4179.23 (16)N3—C1—C15—C10179.73 (14)
C2—N1—C3—C80.45 (18)N3—C1—C15—C140.3 (2)
N1—C3—C4—C5177.20 (15)C2—C1—C15—C100.9 (2)
C8—C3—C4—C51.5 (2)C2—C1—C15—C14178.53 (14)
C3—C4—C5—C60.1 (2)N2—C10—C15—C10.8 (2)
C4—C5—C6—C71.4 (2)N2—C10—C15—C14178.69 (14)
C5—C6—C7—C81.1 (2)C11—C10—C15—C1179.88 (14)
C6—C7—C8—C30.5 (2)C11—C10—C15—C140.7 (2)
C6—C7—C8—C9177.43 (16)C1—N3—C16—C17175.37 (13)
N1—C3—C8—C7177.12 (14)C19—N3—C16—C1750.25 (18)
N1—C3—C8—C90.60 (17)C18—N4—C17—C1662.64 (17)
C4—C3—C8—C71.8 (2)C20—N4—C17—C16175.58 (14)
C4—C3—C8—C9179.48 (14)N3—C16—C17—N455.76 (18)
C10—N2—C9—C20.8 (2)C17—N4—C18—C1963.16 (17)
C10—N2—C9—C8178.45 (15)C20—N4—C18—C19177.38 (13)
N1—C2—C9—N2179.67 (14)C1—N3—C19—C18174.66 (13)
N1—C2—C9—C80.25 (17)C16—N3—C19—C1851.25 (18)
C1—C2—C9—N20.7 (2)N4—C18—C19—N357.42 (18)
C1—C2—C9—C8178.74 (14)C17—N4—C20—C21177.89 (14)
C3—C8—C9—N2179.89 (15)C18—N4—C20—C2163.17 (18)
C3—C8—C9—C20.51 (17)N4—C20—C21—C2252.4 (2)
C7—C8—C9—N22.6 (3)C20—C21—C22—O53.75 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H1O···N4i0.97 (3)1.94 (3)2.8990 (18)169 (2)
N1—H1N···N2ii0.885 (19)1.99 (2)2.866 (2)168.4 (17)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H24N4O
Mr360.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.218 (2), 15.673 (3), 11.847 (2)
β (°) 117.417 (2)
V3)1849.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.51 × 0.36 × 0.25
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.929, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
9503, 3446, 2678
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.03
No. of reflections3446
No. of parameters340
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H1O···N4i0.97 (3)1.94 (3)2.8990 (18)169 (2)
N1—H1N···N2ii0.885 (19)1.99 (2)2.866 (2)168.4 (17)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z1/2.
 

Footnotes

Also affiliated with the BIO5 Institute and the Arizona Cancer Center, Tucson, AZ 85721, USA.

Acknowledgements

This research was supported by a grant from the Science Foundation Arizona (SBC 0016–07). PVLB thanks Dr Vijay Gokhale for discussion and critique of the manuscript. The diffractometer was purchased with funding from NSF grant CHE-9610347.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBierer, D. E., Dubenko, L. G., Zhang, P., Lu, Q., Imbach, P. A., Garofalo, A. W., Phuan, P.-W., Fort, D. M., Litvak, J., Gerber, R. E., Sloan, B., Luo, J., Cooper, R. & Reaven, G. M. (1998). J. Med. Chem. 41, 2754–2764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGuyen, B., Schultes, C. M., Hazel, P., Mann, J. & Neidle, S. (2004). Org. Biomol. Chem. 2, 981–988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOu, T. M., Lu, Y. J., Zhang, C., Huang, Z. S., Wang, X. D., Tan, J. H., Chen, Y., Ma, D. L., Wong, K. Y., Tang, J. C., Chan, A. S. & Gu, L. Q. (2007). J. Med. Chem. 50, 1465–1474.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakeuchi, Y., Kitaomo, M., Chang, M.-R., Shirasaka, S., Shimamura, C., Okuno, Y., Yamato, M. & Harayama, T. (1997). Chem. Pharm. Bull. (Tokyo), 45, 2096–2099.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds