metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(1,2,5,6-η)-Cyclo­octa-1,5-diene]bis­­(1-iso­propyl-3-methyl­imidazolin-2-yl­­idene)rhodium(I) tetra­fluorido­borate

aDepartment of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85716, USA, bLancaster Country Day School, Lancaster, PA 17603, USA, and cDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA
*Correspondence e-mail: gsnichol@email.arizona.edu

(Received 10 November 2011; accepted 21 November 2011; online 30 November 2011)

In the title compound, [Rh(C8H12)(C7H12N2)2]BF4, the square-planar Rh complex cation and the BF4 anion are both bis­ected by a crystallographic twofold rotation axis. The Rh and B atoms lie on this axis and all others are in general positions. In the crystal, two unique C—H⋯F hydrogen-bonding inter­actions are present, which involve both imidazolin-2-yl­idene H atoms. They form two separate C(5) motifs, the combination of which is a rippled hydrogen-bonded sheet structure in the ab plane.

Related literature

For the structure and dynamics of related N-heterocyclic carbene rhodium and iridium complexes, see: Chianese et al. (2003[Chianese, A. R., Li, X., Jansen, M. C., Faller, J. W. & Crabtree, R. H. (2003). Organometallics, 22, 1663-1667.]); Köcher & Herrmann (1997[Köcher, C. & Herrmann, W. A. (1997). J. Organomet. Chem. 532, 261-265.]); Leung et al. (2006[Leung, C. H., Incarvito, C. D. & Crabtree, R. H. (2006). Organometallics, 25, 6099-6107.]); Nichol et al. (2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.]); Herrmann et al. (2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]). For the catalytic properties of these complexes, see: Albrecht et al. (2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]); Frey et al. (2006[Frey, G. D., Rentzsch, C. F., von Preysing, D., Scherg, T., Mühlhofer, M., Herdtweck, E. & Herrmann, W. A. (2006). J. Organomet. Chem. 691, 5725-5738.]); Gnanamgari et al. (2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]); Voutchkova et al. (2008[Voutchkova, A. M., Gnanamgari, D., Jakobsche, C. E., Butler, C., Miller, S. J., Parr, J. & Crabtree, R. H. (2008). J. Organomet. Chem. 693, 1815-1821.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C8H12)(C7H12N2)2]BF4

  • Mr = 546.27

  • Orthorhombic, P c c n

  • a = 11.7508 (6) Å

  • b = 11.9283 (6) Å

  • c = 17.3129 (9) Å

  • V = 2426.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 100 K

  • 0.38 × 0.37 × 0.37 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.763, Tmax = 0.771

  • 234794 measured reflections

  • 14018 independent reflections

  • 10241 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.059

  • S = 1.13

  • 14018 reflections

  • 218 parameters

  • All H-atom parameters refined

  • Δρmax = 1.55 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F1i 0.909 (11) 2.496 (11) 3.3975 (8) 171.4 (10)
C3—H3⋯F2ii 0.877 (12) 2.478 (12) 3.2415 (8) 145.9 (11)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We are interested in rhodium and iridium complexes with N-heterocyclic carbene ligands, in particular ligands derived from 1,2,4-triazole-derived compounds (Nichol et al., 2009, 2010). The title compound, (I), was prepared as part of this study (Figure 1). The Rh center has an expected square planar geometry and bond distances are unexceptional. Both the Rh and B atoms lie on a crystallographic twofold rotation axis, which bisects the complex and BF4- counterion. C–H···F hydrogen bonding interactions, which involve both imidazolin-2-ylidene H atoms and all four F atoms, form a thick two-dimensional sheet structure in the ab plane (Figure 2).

Related literature top

For the structure and dynamics of related N-heterocyclic carbene rhodium and iridium complexes, see: Chianese et al. (2003); Köcher & Herrmann (1997); Leung et al. (2006); Nichol et al. (2009, 2010); Herrmann et al. (2006). For the catalytic properties of these complexes, see: Albrecht et al. (2002); Frey et al. (2006); Gnanamgari et al. (2007); Voutchkova et al. (2008).

Experimental top

The title compound was synthesized by transmetallation. 1-Isopropyl-3-methylimidazolium bromide (268 mg, 1.31 mmol) was mixed with Ag2O (152 mg, 0.654 mmol), and was stirred under dark at room temperature for 90 minutes in 10 ml of CH2Cl2. The resulting mixture was filtered through Celite into a new flask containing the neutral compound [(cod)Rh(NHC)Cl](585 mg, 1.31 mmol), and AgBF4(254 mg, 1.31 mmol)and stirred for an additional 90 minutes under dark. The mixture was filtered once more through Celite to remove silver bromide and silver chloride, and the solvent was removed under pressure to give a yellow solid (93%). Crystals of the resulting solid of the title compound, (I), were obtained by slow diffusion of pentane into dichloromethane solution of the compound. 1H NMR (400 MHz, CDCl3): δ (p.p.m.) = 7.15 (s, 2 H, NCH), 6.93 (s, 2 H, NCH), 5.03 (m, 3JH—H = 6.8 Hz, 2 H, CH of iPr), 4.63 (br, 2 H, CH of COD), 4.21 (s, 6 H, N—CH3), 3.92 (m, 2 H, CH of COD), 2.63 (m, 2 H, CH2 of COD), 2.42 – 1.92 (m, 6 H, CH2 of COD), 1.46 (d, 3JH—H = 6.8 Hz, 6 H, CH3 of iPr), 1.00 (d, 3JH—H = 6.8 Hz, 6 H, CH3 of iPr). 13C NMR: δ = 178.76, 178.22 (Ir—C), 124, 117 (N—CH—N), 91.34, 91.25 (N-CHMe3), 86.36, 86.28 (N—CH3), 52.60 (CH of COD), 38.10, 33.75, 27.99, (CH2 of COD), 23.5, 22.90 (CH3 of iPr).

Refinement top

H atoms were located from a difference Fourier map and are freely refined.

Structure description top

We are interested in rhodium and iridium complexes with N-heterocyclic carbene ligands, in particular ligands derived from 1,2,4-triazole-derived compounds (Nichol et al., 2009, 2010). The title compound, (I), was prepared as part of this study (Figure 1). The Rh center has an expected square planar geometry and bond distances are unexceptional. Both the Rh and B atoms lie on a crystallographic twofold rotation axis, which bisects the complex and BF4- counterion. C–H···F hydrogen bonding interactions, which involve both imidazolin-2-ylidene H atoms and all four F atoms, form a thick two-dimensional sheet structure in the ab plane (Figure 2).

For the structure and dynamics of related N-heterocyclic carbene rhodium and iridium complexes, see: Chianese et al. (2003); Köcher & Herrmann (1997); Leung et al. (2006); Nichol et al. (2009, 2010); Herrmann et al. (2006). For the catalytic properties of these complexes, see: Albrecht et al. (2002); Frey et al. (2006); Gnanamgari et al. (2007); Voutchkova et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Twice the asymmetric unit of (I), with H atoms omitted. Displacement ellipsoids are at the 50% probability level. Unlabeled atoms are related to labeled atoms by twofold rotation symmetry.
[Figure 2] Fig. 2. A c-axis projection showing C–H···F interactions (blue dotted lines) in (I). Red dotted lines indicate H bond continuation.
[(1,2,5,6-η)-Cycloocta-1,5-diene]bis(1-isopropyl-3- methylimidazolin-2-ylidene)rhodium(I) tetrafluoridoborate top
Crystal data top
[Rh(C8H12)(C7H12N2)2]BF4F(000) = 1128
Mr = 546.27Dx = 1.495 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 9624 reflections
a = 11.7508 (6) Åθ = 4.2–51.7°
b = 11.9283 (6) ŵ = 0.75 mm1
c = 17.3129 (9) ÅT = 100 K
V = 2426.7 (2) Å3Block, yellow
Z = 40.38 × 0.37 × 0.37 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
14018 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics10241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 52.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2625
Tmin = 0.763, Tmax = 0.771k = 2626
234794 measured reflectionsl = 3738
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: difference Fourier map
wR(F2) = 0.059All H-atom parameters refined
S = 1.13 w = 1/[σ2(Fo2) + (0.0182P)2 + 0.6772P]
where P = (Fo2 + 2Fc2)/3
14018 reflections(Δ/σ)max = 0.002
218 parametersΔρmax = 1.55 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
[Rh(C8H12)(C7H12N2)2]BF4V = 2426.7 (2) Å3
Mr = 546.27Z = 4
Orthorhombic, PccnMo Kα radiation
a = 11.7508 (6) ŵ = 0.75 mm1
b = 11.9283 (6) ÅT = 100 K
c = 17.3129 (9) Å0.38 × 0.37 × 0.37 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
14018 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
10241 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.771Rint = 0.033
234794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.059All H-atom parameters refined
S = 1.13Δρmax = 1.55 e Å3
14018 reflectionsΔρmin = 0.92 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.75000.25000.507678 (3)0.01052 (1)
N10.56243 (4)0.20105 (4)0.38873 (3)0.01399 (6)
N20.66738 (4)0.05648 (4)0.40496 (3)0.01512 (6)
C10.65651 (4)0.16534 (4)0.42664 (3)0.01295 (6)
C20.51512 (5)0.11598 (5)0.34425 (4)0.01757 (8)
H20.4526 (10)0.1269 (10)0.3143 (7)0.022 (3)*
C30.58158 (5)0.02502 (5)0.35458 (4)0.01811 (8)
H30.5769 (10)0.0434 (10)0.3364 (7)0.028 (3)*
C40.51719 (5)0.31568 (5)0.39338 (3)0.01602 (7)
H40.5633 (9)0.3517 (9)0.4313 (6)0.019 (3)*
C50.53212 (7)0.37474 (6)0.31623 (4)0.02376 (11)
H5A0.4910 (11)0.3362 (11)0.2772 (7)0.030 (3)*
H5B0.6089 (11)0.3778 (11)0.3028 (8)0.031 (3)*
H5C0.5034 (11)0.4517 (11)0.3183 (8)0.035 (3)*
C60.39373 (6)0.31435 (7)0.41936 (5)0.02579 (12)
H6A0.3478 (11)0.2754 (11)0.3834 (8)0.028 (3)*
H6B0.3635 (11)0.3876 (11)0.4230 (8)0.035 (3)*
H6C0.3844 (12)0.2775 (12)0.4678 (9)0.033 (3)*
C70.75478 (6)0.02030 (5)0.43195 (4)0.02033 (9)
H7A0.8005 (10)0.0166 (10)0.4689 (7)0.024 (3)*
H7B0.7196 (11)0.0845 (12)0.4540 (8)0.031 (3)*
H7C0.8014 (11)0.0430 (11)0.3906 (8)0.032 (3)*
C80.61291 (5)0.22486 (5)0.59096 (3)0.01603 (7)
H80.5433 (10)0.2098 (10)0.5610 (7)0.021 (3)*
C90.68830 (5)0.13645 (5)0.60051 (3)0.01646 (8)
H90.6691 (10)0.0669 (10)0.5751 (7)0.025 (3)*
C100.77717 (6)0.12488 (6)0.66365 (4)0.01943 (9)
H10A0.7517 (9)0.1609 (11)0.7107 (8)0.023 (3)*
H10B0.7852 (10)0.0442 (11)0.6775 (7)0.026 (3)*
C110.89369 (5)0.16926 (6)0.63829 (4)0.01888 (9)
H11A0.9440 (9)0.1813 (9)0.6833 (7)0.020 (2)*
H11B0.9335 (10)0.1111 (10)0.6049 (7)0.023 (3)*
B10.75000.75000.29593 (6)0.01705 (12)
F10.76439 (5)0.84479 (5)0.24966 (3)0.03003 (10)
F20.65419 (4)0.76347 (4)0.34218 (3)0.02659 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01063 (2)0.00980 (2)0.01114 (2)0.00124 (1)0.0000.000
N10.01412 (14)0.01361 (14)0.01424 (15)0.00070 (11)0.00193 (11)0.00109 (12)
N20.01684 (16)0.01164 (14)0.01689 (16)0.00010 (12)0.00365 (13)0.00144 (12)
C10.01345 (15)0.01194 (15)0.01347 (16)0.00035 (12)0.00093 (12)0.00044 (12)
C20.01794 (19)0.01713 (19)0.0176 (2)0.00031 (15)0.00510 (16)0.00262 (15)
C30.0211 (2)0.01475 (18)0.0185 (2)0.00131 (16)0.00536 (17)0.00293 (15)
C40.01615 (18)0.01608 (18)0.01583 (18)0.00398 (14)0.00011 (14)0.00123 (14)
C50.0321 (3)0.0195 (2)0.0197 (2)0.0075 (2)0.0032 (2)0.00306 (19)
C60.0185 (2)0.0318 (3)0.0270 (3)0.0065 (2)0.0043 (2)0.0023 (2)
C70.0218 (2)0.01268 (16)0.0265 (3)0.00234 (17)0.0073 (2)0.00142 (16)
C80.01421 (17)0.01788 (18)0.01599 (18)0.00244 (14)0.00177 (14)0.00026 (15)
C90.01790 (19)0.01465 (17)0.01685 (19)0.00334 (15)0.00120 (15)0.00176 (14)
C100.0215 (2)0.0200 (2)0.0168 (2)0.00095 (18)0.00002 (17)0.00507 (17)
C110.0179 (2)0.0210 (2)0.0178 (2)0.00064 (17)0.00287 (16)0.00310 (17)
B10.0149 (3)0.0145 (3)0.0218 (3)0.0006 (2)0.0000.000
F10.0346 (3)0.0235 (2)0.0320 (2)0.00074 (18)0.00329 (18)0.01073 (17)
F20.01926 (17)0.02301 (19)0.0375 (3)0.00023 (13)0.00938 (16)0.00171 (16)
Geometric parameters (Å, º) top
Rh1—C12.0482 (5)C6—H6A0.946 (13)
Rh1—C1i2.0482 (5)C6—H6B0.946 (14)
Rh1—C82.1826 (6)C6—H6C0.952 (15)
Rh1—C8i2.1826 (6)C7—H7A0.944 (12)
Rh1—C92.2233 (6)C7—H7B0.950 (14)
Rh1—C9i2.2233 (6)C7—H7C0.941 (13)
N1—C11.3544 (7)C8—H80.985 (12)
N1—C21.3899 (7)C8—C91.3872 (9)
N1—C41.4692 (7)C8—C11i1.5074 (9)
N2—C11.3577 (7)C9—H90.965 (12)
N2—C31.3850 (7)C9—C101.5181 (9)
N2—C71.4532 (8)C10—H10A0.968 (13)
C2—H20.909 (11)C10—H10B0.997 (13)
C2—C31.3487 (9)C10—C111.5322 (9)
C3—H30.877 (12)C11—C8i1.5075 (9)
C4—H40.954 (11)C11—H11A0.989 (11)
C4—C51.5202 (9)C11—H11B1.017 (12)
C4—C61.5190 (9)B1—F11.3960 (8)
C5—H5A0.950 (13)B1—F1ii1.3960 (8)
C5—H5B0.933 (13)B1—F21.3908 (8)
C5—H5C0.979 (14)B1—F2ii1.3909 (8)
C1—Rh1—C1i93.53 (3)C4—C6—H6A110.8 (8)
C1—Rh1—C889.36 (2)C4—C6—H6B111.7 (8)
C1i—Rh1—C8i89.36 (2)C4—C6—H6C112.0 (8)
C1—Rh1—C8i156.36 (2)H6A—C6—H6B106.4 (11)
C1i—Rh1—C8156.36 (2)H6A—C6—H6C106.7 (11)
C1—Rh1—C991.14 (2)H6B—C6—H6C108.9 (11)
C1i—Rh1—C9166.03 (2)N2—C7—H7A109.0 (7)
C1i—Rh1—C9i91.14 (2)N2—C7—H7B109.3 (8)
C1—Rh1—C9i166.03 (2)N2—C7—H7C110.4 (8)
C8—Rh1—C8i97.31 (3)H7A—C7—H7B110.6 (11)
C8—Rh1—C936.69 (2)H7A—C7—H7C108.6 (11)
C8i—Rh1—C981.19 (2)H7B—C7—H7C109.0 (11)
C8i—Rh1—C9i36.69 (2)Rh1—C8—H8106.8 (7)
C8—Rh1—C9i81.19 (2)Rh1—C8—C973.25 (3)
C9—Rh1—C9i87.42 (3)Rh1—C8—C11i106.38 (4)
C1—N1—C2111.43 (5)H8—C8—C9117.0 (7)
C1—N1—C4124.16 (5)H8—C8—C11i113.3 (7)
C2—N1—C4124.41 (5)C9—C8—C11i127.23 (5)
C1—N2—C3111.39 (5)Rh1—C9—C870.06 (3)
C1—N2—C7125.48 (5)Rh1—C9—H9105.7 (7)
C3—N2—C7123.10 (5)Rh1—C9—C10110.59 (4)
Rh1—C1—N1127.93 (4)C8—C9—H9116.7 (7)
Rh1—C1—N2127.62 (4)C8—C9—C10126.46 (6)
N1—C1—N2104.10 (4)H9—C9—C10114.2 (7)
N1—C2—H2122.4 (7)C9—C10—H10A110.7 (7)
N1—C2—C3106.40 (5)C9—C10—H10B109.0 (7)
H2—C2—C3131.2 (7)C9—C10—C11112.14 (5)
N2—C3—C2106.68 (5)H10A—C10—H10B104.8 (11)
N2—C3—H3121.6 (8)H10A—C10—C11111.3 (7)
C2—C3—H3131.7 (8)H10B—C10—C11108.6 (7)
N1—C4—H4104.6 (7)C8i—C11—C10113.53 (5)
N1—C4—C5109.96 (5)C8i—C11—H11A109.7 (7)
N1—C4—C6110.61 (5)C8i—C11—H11B106.6 (7)
H4—C4—C5109.3 (7)C10—C11—H11A111.0 (7)
H4—C4—C6110.0 (7)C10—C11—H11B109.8 (7)
C5—C4—C6112.04 (6)H11A—C11—H11B105.8 (9)
C4—C5—H5A110.0 (8)F1—B1—F1ii109.97 (9)
C4—C5—H5B110.4 (8)F1—B1—F2109.56 (3)
C4—C5—H5C111.2 (8)F1ii—B1—F2109.02 (3)
H5A—C5—H5B109.5 (11)F1ii—B1—F2ii109.56 (3)
H5A—C5—H5C107.7 (11)F1—B1—F2ii109.02 (3)
H5B—C5—H5C107.9 (11)F2—B1—F2ii109.70 (9)
C2—N1—C1—Rh1173.45 (4)C2—N1—C4—C656.65 (8)
C2—N1—C1—N20.13 (6)C1—Rh1—C8—C992.76 (4)
C4—N1—C1—Rh17.28 (8)C1i—Rh1—C8—C9169.87 (5)
C4—N1—C1—N2179.14 (5)C1i—Rh1—C8—C11i45.11 (7)
C3—N2—C1—Rh1173.54 (4)C1—Rh1—C8—C11i142.49 (4)
C3—N2—C1—N10.07 (6)C8i—Rh1—C8—C964.50 (3)
C7—N2—C1—Rh14.70 (8)C8i—Rh1—C8—C11i60.26 (4)
C7—N2—C1—N1178.31 (6)C9i—Rh1—C8—C997.57 (4)
C1i—Rh1—C1—N183.65 (5)C9—Rh1—C8—C11i124.75 (6)
C1i—Rh1—C1—N2104.22 (5)C9i—Rh1—C8—C11i27.19 (4)
C8—Rh1—C1—N172.88 (5)Rh1—C8—C9—C10101.36 (6)
C8i—Rh1—C1—N1179.85 (5)C11i—C8—C9—Rh198.12 (6)
C8—Rh1—C1—N299.26 (5)C11i—C8—C9—C103.25 (9)
C8i—Rh1—C1—N27.72 (8)C1—Rh1—C9—C887.40 (4)
C9—Rh1—C1—N1109.52 (5)C1i—Rh1—C9—C8163.01 (8)
C9i—Rh1—C1—N125.66 (11)C1—Rh1—C9—C10149.98 (4)
C9—Rh1—C1—N262.61 (5)C1i—Rh1—C9—C1040.40 (11)
C9i—Rh1—C1—N2146.48 (8)C8i—Rh1—C9—C8115.05 (4)
C1—N1—C2—C30.15 (7)C8—Rh1—C9—C10122.61 (6)
C4—N1—C2—C3179.12 (5)C8i—Rh1—C9—C107.56 (4)
N1—C2—C3—N20.09 (7)C9i—Rh1—C9—C878.69 (3)
C1—N2—C3—C20.01 (7)C9i—Rh1—C9—C1043.92 (4)
C7—N2—C3—C2178.27 (6)Rh1—C9—C10—C1113.94 (7)
C1—N1—C4—C5111.55 (6)C8—C9—C10—C1193.84 (7)
C1—N1—C4—C6124.17 (6)C9—C10—C11—C8i39.69 (8)
C2—N1—C4—C567.63 (8)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F1iii0.909 (11)2.496 (11)3.3975 (8)171.4 (10)
C3—H3···F2iv0.877 (12)2.478 (12)3.2415 (8)145.9 (11)
Symmetry codes: (iii) x1/2, y+1, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Rh(C8H12)(C7H12N2)2]BF4
Mr546.27
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)100
a, b, c (Å)11.7508 (6), 11.9283 (6), 17.3129 (9)
V3)2426.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.38 × 0.37 × 0.37
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.763, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
234794, 14018, 10241
Rint0.033
(sin θ/λ)max1)1.113
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.059, 1.13
No. of reflections14018
No. of parameters218
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.55, 0.92

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F1i0.909 (11)2.496 (11)3.3975 (8)171.4 (10)
C3—H3···F2ii0.877 (12)2.478 (12)3.2415 (8)145.9 (11)
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x, y1, z.
 

Acknowledgements

JR and DPW thank the Department of Chemistry, Millers­ville University, for project funding. The diffractometer was purchased with funding from NSF grant CHE-0741837.

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChianese, A. R., Li, X., Jansen, M. C., Faller, J. W. & Crabtree, R. H. (2003). Organometallics, 22, 1663–1667.  Web of Science CSD CrossRef CAS Google Scholar
First citationFrey, G. D., Rentzsch, C. F., von Preysing, D., Scherg, T., Mühlhofer, M., Herdtweck, E. & Herrmann, W. A. (2006). J. Organomet. Chem. 691, 5725–5738.  Web of Science CSD CrossRef CAS Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationKöcher, C. & Herrmann, W. A. (1997). J. Organomet. Chem. 532, 261–265.  Google Scholar
First citationLeung, C. H., Incarvito, C. D. & Crabtree, R. H. (2006). Organometallics, 25, 6099–6107.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVoutchkova, A. M., Gnanamgari, D., Jakobsche, C. E., Butler, C., Miller, S. J., Parr, J. & Crabtree, R. H. (2008). J. Organomet. Chem. 693, 1815–1821.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds