organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5-[(2-Hy­dr­oxy-3-meth­­oxy­benzyl­­idene)amino]-1,3,4-thia­diazole-2(3H)-thione

aDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran, and bX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran and, Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: hadi_kargar@yahoo.com, hkargar@pnu.ac.ir

(Received 14 November 2011; accepted 26 November 2011; online 30 November 2011)

In the title compound, C10H9N3O2S2, the dihedral angle between the benzene ring and the five-membered ring is 1.54 (13)°. An intra­molecular O—H⋯N hydrogen bond makes an S(6) ring. In the crystal, mol­ecules are linked together through bifurcated N—H⋯(O,O) hydrogen bonds having R12(5) ring motifs, forming chains along the b axis. The crystal structure also features ππ inter­actions, with centroid–centroid distances of 3.699 (3)–3.767 (3) Å.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the biological versatility of thione ligands, see, for example: Kumar et al. (1988[Kumar, R., Giri S. & Nizamuddin (1988). J. Indian Chem. Soc. 65, 572-573.]); Yadav et al. (1989[Yadav, L. D. S., Shukla, K. N. & Singh, H. (1989). Indian J. Chem. Sect B, 28, 78-80.]). For related structures, see: Zhang (2003[Zhang, Y.-X. (2003). Acta Cryst. E59, o581-o582.]); Kargar et al. (2011[Kargar, H. & Kia, R. (2011). Acta Cryst. E67, o3437.], 2011a[Kargar, H., Kia, R. & Tahir, M. N. (2011a). Acta Cryst. E67, o3311.], 2011b[Kargar, H., Kia, R. & Tahir, M. N. (2011b). Acta Cryst. E67, o3436.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3O2S2

  • Mr = 267.32

  • Monoclinic, P 21 /c

  • a = 7.432 (5) Å

  • b = 14.993 (5) Å

  • c = 10.853 (5) Å

  • β = 101.738 (5)°

  • V = 1184.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 291 K

  • 0.25 × 0.21 × 0.11 mm

Data collection
  • Stoe IPDS 2T Image Plate diffractometer

  • Absorption correction: multi-scan [MULABS (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])] Tmin = 0.898, Tmax = 1.000

  • 9012 measured reflections

  • 3147 independent reflections

  • 1530 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.079

  • S = 0.92

  • 3147 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.76 1.97 2.633 (3) 146
N3—H3⋯O1i 0.86 2.23 2.919 (3) 138
N3—H3⋯O2i 0.86 2.29 3.034 (3) 146
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The biological versatility of compounds incorporating a thiadiazole ring is well known (Kumar et al., 1988; Yadav et al., 1989).

The asymmetric unit of the title compound, Fig. 1, comprises a thione-Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Zhang, 2003; Kargar et al., 2011a,b; Kargar & Kia, 2011).

The dihedral angle between the benzene ring and the five-membered ring is 1.54 (13)°. The intramolecular O—H···N hydrogen bond makes S(6) ring motif (Bernstein et al., 1995). In the crystal packing molecules are linked together through bifurctaed N—H···O hydrogen bonds with R21(5) ring motifs (Bernstein et al., 1995), forming one-dimensional extended chains along the b axis. The crystal structure is further stabilized by the intermolecular π-π interactions [[Cg1···Cg2i = 3.767 (3)Å, (i) -x, 1 - y, 1 -z; Cg1···Cg2ii = 3.699 (3)Å, (ii) 1 - x, 1 - y, 1 - z; Cg1 and Cg2 are centroids of S(1)/C(8)/N(2)/N(3)/C(9) and C1–C6 rings, respectively].

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the biological versatility of thione ligands, see, for example: Kumar et al. (1988); Yadav et al. (1989). For related structures, see: Zhang (2003); Kargar et al. (2011, 2011a, 2011b).

Experimental top

The title compound was synthesized by adding 3-methoxy-salicylaldehyde (1 mmol) to a solution of 5-aminothiophene-2-thiol (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

All hydrogen atoms were positioned geometrically with C—H = 0.93-0.96 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was applied to the methyl group.

Structure description top

The biological versatility of compounds incorporating a thiadiazole ring is well known (Kumar et al., 1988; Yadav et al., 1989).

The asymmetric unit of the title compound, Fig. 1, comprises a thione-Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Zhang, 2003; Kargar et al., 2011a,b; Kargar & Kia, 2011).

The dihedral angle between the benzene ring and the five-membered ring is 1.54 (13)°. The intramolecular O—H···N hydrogen bond makes S(6) ring motif (Bernstein et al., 1995). In the crystal packing molecules are linked together through bifurctaed N—H···O hydrogen bonds with R21(5) ring motifs (Bernstein et al., 1995), forming one-dimensional extended chains along the b axis. The crystal structure is further stabilized by the intermolecular π-π interactions [[Cg1···Cg2i = 3.767 (3)Å, (i) -x, 1 - y, 1 -z; Cg1···Cg2ii = 3.699 (3)Å, (ii) 1 - x, 1 - y, 1 - z; Cg1 and Cg2 are centroids of S(1)/C(8)/N(2)/N(3)/C(9) and C1–C6 rings, respectively].

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the biological versatility of thione ligands, see, for example: Kumar et al. (1988); Yadav et al. (1989). For related structures, see: Zhang (2003); Kargar et al. (2011, 2011a, 2011b).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The dashed lines show the intermolecular interaction.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down the c-axis showing linkning of molecules through the intermolecular N—H···O intearctions R21(5) ring motifs, forming one-dimensional extended chains along the b-axis. Only the H atoms involved the hydrogen bonds are shown. The dashed lines show the intermolecular interactions.
(E)-5-[(2-Hydroxy-3-methoxybenzylidene)amino]- 1,3,4-thiadiazole-2(3H)-thione top
Crystal data top
C10H9N3O2S2F(000) = 552
Mr = 267.32Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 2780 reflections
a = 7.432 (5) Åθ = 2.5–27.4°
b = 14.993 (5) ŵ = 0.44 mm1
c = 10.853 (5) ÅT = 291 K
β = 101.738 (5)°Block, yellow
V = 1184.0 (10) Å30.25 × 0.21 × 0.11 mm
Z = 4
Data collection top
Stoe IPDS 2T Image Plate
diffractometer
3147 independent reflections
Radiation source: fine-focus sealed tube1530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 0.15 mm pixels mm-1θmax = 29.0°, θmin = 2.4°
ω scansh = 910
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
k = 2019
Tmin = 0.898, Tmax = 1.000l = 1414
9012 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0235P)2]
where P = (Fo2 + 2Fc2)/3
3147 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H9N3O2S2V = 1184.0 (10) Å3
Mr = 267.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.432 (5) ŵ = 0.44 mm1
b = 14.993 (5) ÅT = 291 K
c = 10.853 (5) Å0.25 × 0.21 × 0.11 mm
β = 101.738 (5)°
Data collection top
Stoe IPDS 2T Image Plate
diffractometer
3147 independent reflections
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
1530 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 1.000Rint = 0.075
9012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 0.92Δρmax = 0.21 e Å3
3147 reflectionsΔρmin = 0.22 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21750 (10)0.70390 (4)0.52967 (6)0.04780 (19)
S20.26803 (11)0.88098 (5)0.66246 (8)0.0669 (3)
O10.3794 (2)0.35277 (10)0.59426 (14)0.0493 (5)
H10.38150.40090.61670.074*
O20.3399 (3)0.19524 (12)0.50192 (17)0.0610 (5)
N10.3081 (3)0.52471 (12)0.57179 (17)0.0366 (5)
N20.4094 (3)0.63027 (13)0.72724 (18)0.0436 (5)
N30.3970 (3)0.72004 (13)0.74725 (18)0.0471 (6)
H30.45520.73610.82020.056*
C10.2778 (3)0.34679 (16)0.4758 (2)0.0380 (6)
C20.2551 (4)0.26105 (18)0.4235 (2)0.0437 (7)
C30.1578 (4)0.2506 (2)0.3031 (3)0.0561 (8)
H3A0.14320.19400.26740.067*
C40.0809 (4)0.3235 (2)0.2342 (3)0.0604 (8)
H4A0.01560.31550.15230.073*
C50.0996 (4)0.40713 (18)0.2846 (2)0.0528 (7)
H5A0.04620.45560.23750.063*
C60.1990 (3)0.41983 (17)0.4071 (2)0.0365 (6)
C70.2189 (3)0.50812 (16)0.4597 (2)0.0395 (6)
H7A0.16470.55550.41030.047*
C80.3194 (3)0.61176 (16)0.6153 (2)0.0351 (6)
C90.3028 (4)0.77222 (16)0.6575 (2)0.0438 (6)
C100.2996 (5)0.10417 (18)0.4652 (3)0.0769 (10)
H10A0.35500.06530.53260.115*
H10B0.34810.09100.39170.115*
H10C0.16900.09530.44680.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0536 (5)0.0348 (4)0.0529 (4)0.0065 (3)0.0058 (3)0.0043 (3)
S20.0708 (6)0.0335 (4)0.0980 (6)0.0065 (4)0.0208 (5)0.0043 (4)
O10.0629 (13)0.0321 (10)0.0487 (11)0.0050 (9)0.0013 (9)0.0003 (7)
O20.0684 (14)0.0303 (11)0.0841 (14)0.0019 (10)0.0148 (11)0.0055 (9)
N10.0394 (13)0.0303 (12)0.0397 (12)0.0015 (10)0.0071 (10)0.0017 (9)
N20.0455 (14)0.0333 (13)0.0497 (13)0.0026 (10)0.0041 (11)0.0036 (10)
N30.0482 (14)0.0407 (14)0.0499 (13)0.0017 (11)0.0044 (11)0.0094 (11)
C10.0352 (15)0.0415 (15)0.0389 (13)0.0042 (12)0.0112 (12)0.0040 (12)
C20.0428 (17)0.0374 (16)0.0540 (17)0.0030 (13)0.0175 (14)0.0048 (13)
C30.062 (2)0.0465 (19)0.0655 (19)0.0168 (15)0.0269 (16)0.0203 (15)
C40.067 (2)0.064 (2)0.0484 (16)0.0238 (18)0.0068 (15)0.0136 (16)
C50.0549 (19)0.0518 (19)0.0478 (17)0.0114 (15)0.0013 (14)0.0021 (13)
C60.0338 (15)0.0358 (15)0.0399 (14)0.0044 (12)0.0074 (12)0.0008 (11)
C70.0374 (16)0.0366 (16)0.0449 (15)0.0006 (12)0.0094 (13)0.0077 (12)
C80.0344 (14)0.0309 (14)0.0414 (14)0.0033 (11)0.0108 (12)0.0054 (11)
C90.0390 (15)0.0376 (15)0.0578 (16)0.0019 (13)0.0167 (13)0.0025 (13)
C100.083 (3)0.0348 (18)0.115 (3)0.0048 (17)0.026 (2)0.0109 (18)
Geometric parameters (Å, º) top
S1—C91.737 (3)C1—C21.401 (3)
S1—C81.749 (2)C2—C31.369 (3)
S2—C91.654 (3)C3—C41.381 (4)
O1—C11.355 (3)C3—H3A0.9300
O1—H10.7607C4—C51.364 (3)
O2—C21.370 (3)C4—H4A0.9300
O2—C101.437 (3)C5—C61.397 (3)
N1—C71.286 (3)C5—H5A0.9300
N1—C81.385 (3)C6—C71.437 (3)
N2—C81.292 (3)C7—H7A0.9300
N2—N31.369 (3)C10—H10A0.9600
N3—C91.332 (3)C10—H10B0.9600
N3—H30.8561C10—H10C0.9600
C1—C61.386 (3)
C9—S1—C889.62 (13)C4—C5—H5A120.1
C1—O1—H1109.8C6—C5—H5A120.1
C2—O2—C10118.0 (2)C1—C6—C5119.2 (2)
C7—N1—C8119.3 (2)C1—C6—C7121.1 (2)
C8—N2—N3108.7 (2)C5—C6—C7119.7 (2)
C9—N3—N2120.2 (2)N1—C7—C6123.0 (2)
C9—N3—H3127.1N1—C7—H7A118.5
N2—N3—H3112.7C6—C7—H7A118.5
O1—C1—C6123.5 (2)N2—C8—N1120.5 (2)
O1—C1—C2116.3 (2)N2—C8—S1114.54 (18)
C6—C1—C2120.3 (2)N1—C8—S1125.01 (18)
C3—C2—O2126.7 (3)N3—C9—S2128.1 (2)
C3—C2—C1119.3 (3)N3—C9—S1106.85 (18)
O2—C2—C1114.0 (2)S2—C9—S1125.01 (17)
C2—C3—C4120.4 (3)O2—C10—H10A109.5
C2—C3—H3A119.8O2—C10—H10B109.5
C4—C3—H3A119.8H10A—C10—H10B109.5
C5—C4—C3120.9 (3)O2—C10—H10C109.5
C5—C4—H4A119.5H10A—C10—H10C109.5
C3—C4—H4A119.5H10B—C10—H10C109.5
C4—C5—C6119.9 (3)
C8—N2—N3—C90.0 (3)C4—C5—C6—C10.1 (4)
C10—O2—C2—C311.4 (4)C4—C5—C6—C7179.8 (2)
C10—O2—C2—C1169.9 (2)C8—N1—C7—C6179.6 (2)
O1—C1—C2—C3178.4 (2)C1—C6—C7—N10.5 (4)
C6—C1—C2—C31.3 (4)C5—C6—C7—N1179.8 (2)
O1—C1—C2—O20.4 (3)N3—N2—C8—N1179.1 (2)
C6—C1—C2—O2179.9 (2)N3—N2—C8—S10.5 (2)
O2—C2—C3—C4179.3 (3)C7—N1—C8—N2179.5 (2)
C1—C2—C3—C40.7 (4)C7—N1—C8—S11.0 (3)
C2—C3—C4—C50.3 (4)C9—S1—C8—N20.61 (19)
C3—C4—C5—C60.6 (4)C9—S1—C8—N1178.9 (2)
O1—C1—C6—C5178.7 (2)N2—N3—C9—S2179.02 (18)
C2—C1—C6—C51.0 (4)N2—N3—C9—S10.4 (3)
O1—C1—C6—C71.0 (4)C8—S1—C9—N30.53 (18)
C2—C1—C6—C7179.3 (2)C8—S1—C9—S2178.93 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.761.972.633 (3)146
N3—H3···O1i0.862.232.919 (3)138
N3—H3···O2i0.862.293.034 (3)146
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H9N3O2S2
Mr267.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)7.432 (5), 14.993 (5), 10.853 (5)
β (°) 101.738 (5)
V3)1184.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.25 × 0.21 × 0.11
Data collection
DiffractometerStoe IPDS 2T Image Plate
Absorption correctionMulti-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
Tmin, Tmax0.898, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9012, 3147, 1530
Rint0.075
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.079, 0.92
No. of reflections3147
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: X-AREA (Stoe & Cie, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.76001.97002.633 (3)146.00
N3—H3···O1i0.86002.23002.919 (3)138.00
N3—H3···O2i0.86002.29003.034 (3)146.00
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

HK thanks PNU for the financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKargar, H. & Kia, R. (2011). Acta Cryst. E67, o3437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R. & Tahir, M. N. (2011a). Acta Cryst. E67, o3311.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R. & Tahir, M. N. (2011b). Acta Cryst. E67, o3436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R., Giri S. & Nizamuddin (1988). J. Indian Chem. Soc. 65, 572–573.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYadav, L. D. S., Shukla, K. N. & Singh, H. (1989). Indian J. Chem. Sect B, 28, 78–80.  Google Scholar
First citationZhang, Y.-X. (2003). Acta Cryst. E59, o581–o582.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds