organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-Anthracen-9-yl­methyl­­idene]-3,4-di­methyl-1,2-oxazol-5-amine

aDepartment of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, bThe Center of Excellence for Advanced Materials Reesrch, King Abdulaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 4 November 2011; accepted 24 November 2011; online 30 November 2011)

In the title compound, C20H16N2O, an intra­molecular C—H⋯N forms an S(6) ring motif. In the crystal, the mol­ecules are stacked with their anthracene ring planes in sheets along [100].

Related literature

For applications of compounds containing azomethine groups, see: Khuhawar et al. (2004[Khuhawar, M. Y., Mughal, M. A. & Channar, A. H. (2004). Eur. Polymer J. 40, 805-809.]). Schiff base compounds demonstrate anti­bacterial (Asiri & Khan, 2010[Asiri, A. M. & Khan, S. A. (2010). Molecules, 15, 6850-6858.]), anti­tumor activity (Saxena & Tandon, 1983[Saxena, A. & Tandon, J. P. (1983). Cancer Lett. 19, 73-76.]) and anti-HIV activity (Pandeya et al., 1999[Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Pharm. Acta Helv. 74, 11-17.]). For related structures, see: Asiri et al. (2011a[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2011a). Acta Cryst. E67, o2163.],b[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2011b). Acta Cryst. E67, o2305.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N2O

  • Mr = 300.35

  • Monoclinic, C 2/c

  • a = 22.4919 (14) Å

  • b = 6.1666 (4) Å

  • c = 22.6801 (13) Å

  • β = 102.015 (2)°

  • V = 3076.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.980

  • 12925 measured reflections

  • 3193 independent reflections

  • 2381 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.04

  • 3193 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1 0.93 2.20 2.840 (2) 125

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Compounds containing azomethine groups (CN) play a vital role in chemistry (Khuhawar et al., 2004). Schiff-base compounds have been used as fine chemicals and medical substrates such as intermediates for the various reactions and antibacterial (Asiri & Khan, 2010), antitumor activity (Saxena & Tandon, 1983) and anti-HIV activity (Pandeya et al., 1999). Schiff bases containing heterocyclic rings dramatically increase the biological activity. The crystal structure of title compound (I), (Fig. 1) is being reported here.

Recently, we have reported the crystal structure of (II) i.e., 4-[(anthracen-9-ylmethylidene)amino]-1,5-dimethyl-2-phenyl-1H- pyrazol-3(2H)-one (Asiri et al., 2011a) and (III) i.e., N-[(E)-1,3-benzodioxol-5-ylmethylidene]-3,4-dimethyl-1,2-oxazol -5-amine (Asiri et al., 2011b) which contain the common moieties of (I).

In (I), the anthracen rings A (C1–C6), B (C1/C6/C7/C8/C13/C14) and C (C8–C13) are planar with r. m. s. deviations of 0.0090, 0.0241 and 0.0063 Å, respectively. The dihedral angles A/B, A/C and B/C are 4.80 (11)°, 8.36 (11) ° and 3.90 (10) °, respectively. The 3,4-dimethyl-1,2 -oxazol-5-amine moiety D (N1/C16–C20/N2/O1) is also planar with r. m. s. deviation of 0.0061 Å. The dihedral angles A/D, B/D and C/D are 7.59 (10)°, 3.85 (10)° and 5.48 (10)°, respectively. Intra-molecular H-bonds of C—H···N and C—H···O type complete S(6) and S(5) ring motifs (Fig. 1)(Bernstein et al., 1995). The crystal packing shows the anthracen ring planes stacked in parallel sheets along [100].

Related literature top

For applications of compounds containing azomethine groups, see: Khuhawar et al. (2004). Schiff base compounds demonstrate antibacterial (Asiri & Khan, 2010), antitumor activity (Saxena & Tandon, 1983) and anti-HIV activity (Pandeya et al., 1999). For related structures, see: Asiri et al. (2011a,b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of anthracene-9-carbaldehyde (0.50 g, 2.4 mmol) and 5-amino-3,4-dimethylisoxazole (2.4 mmol) in ethanol (15 ml) was heated for 3 h. The progress of the reaction was monitored by TLC. The solid that separated from the cooled mixture was collected and recrystallized from a methanol:chloroform mixture (8:2) to give red prisms of (I).

Red solid: Yield: 82%, m.p. 419–420 K.

Refinement top

Aromatic H-atoms were positioned geometrically (C–H = 0.93Å) and refined as riding with Uiso(H) = 1.2Ueq(C); methyl H positions were derived from difference maps (HFIX 137) and refined with C–H = 0.96Å and Uiso(H) = 1.5Ueq(C)

Structure description top

Compounds containing azomethine groups (CN) play a vital role in chemistry (Khuhawar et al., 2004). Schiff-base compounds have been used as fine chemicals and medical substrates such as intermediates for the various reactions and antibacterial (Asiri & Khan, 2010), antitumor activity (Saxena & Tandon, 1983) and anti-HIV activity (Pandeya et al., 1999). Schiff bases containing heterocyclic rings dramatically increase the biological activity. The crystal structure of title compound (I), (Fig. 1) is being reported here.

Recently, we have reported the crystal structure of (II) i.e., 4-[(anthracen-9-ylmethylidene)amino]-1,5-dimethyl-2-phenyl-1H- pyrazol-3(2H)-one (Asiri et al., 2011a) and (III) i.e., N-[(E)-1,3-benzodioxol-5-ylmethylidene]-3,4-dimethyl-1,2-oxazol -5-amine (Asiri et al., 2011b) which contain the common moieties of (I).

In (I), the anthracen rings A (C1–C6), B (C1/C6/C7/C8/C13/C14) and C (C8–C13) are planar with r. m. s. deviations of 0.0090, 0.0241 and 0.0063 Å, respectively. The dihedral angles A/B, A/C and B/C are 4.80 (11)°, 8.36 (11) ° and 3.90 (10) °, respectively. The 3,4-dimethyl-1,2 -oxazol-5-amine moiety D (N1/C16–C20/N2/O1) is also planar with r. m. s. deviation of 0.0061 Å. The dihedral angles A/D, B/D and C/D are 7.59 (10)°, 3.85 (10)° and 5.48 (10)°, respectively. Intra-molecular H-bonds of C—H···N and C—H···O type complete S(6) and S(5) ring motifs (Fig. 1)(Bernstein et al., 1995). The crystal packing shows the anthracen ring planes stacked in parallel sheets along [100].

For applications of compounds containing azomethine groups, see: Khuhawar et al. (2004). Schiff base compounds demonstrate antibacterial (Asiri & Khan, 2010), antitumor activity (Saxena & Tandon, 1983) and anti-HIV activity (Pandeya et al., 1999). For related structures, see: Asiri et al. (2011a,b). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii. The dotted lines represent the intra-molecular H-bonds.
N-[(E)-Anthracen-9-ylmethylidene]-3,4-dimethyl-1,2-oxazol-5-amine top
Crystal data top
C20H16N2OF(000) = 1264
Mr = 300.35Dx = 1.297 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2381 reflections
a = 22.4919 (14) Åθ = 1.9–26.5°
b = 6.1666 (4) ŵ = 0.08 mm1
c = 22.6801 (13) ÅT = 296 K
β = 102.015 (2)°Prism, red
V = 3076.8 (3) Å30.32 × 0.24 × 0.22 mm
Z = 8
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3193 independent reflections
Radiation source: fine-focus sealed tube2381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.10 pixels mm-1θmax = 26.5°, θmin = 1.9°
ω scansh = 2827
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 77
Tmin = 0.975, Tmax = 0.980l = 2328
12925 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: geom and difmap
wR(F2) = 0.130H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0637P)2 + 1.2672P]
where P = (Fo2 + 2Fc2)/3
3193 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H16N2OV = 3076.8 (3) Å3
Mr = 300.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.4919 (14) ŵ = 0.08 mm1
b = 6.1666 (4) ÅT = 296 K
c = 22.6801 (13) Å0.32 × 0.24 × 0.22 mm
β = 102.015 (2)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3193 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2381 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.980Rint = 0.028
12925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
3193 reflectionsΔρmin = 0.21 e Å3
210 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09676 (5)0.50025 (19)0.05196 (5)0.0516 (4)
N10.10276 (6)0.2014 (2)0.11940 (6)0.0459 (4)
N20.05953 (7)0.6861 (3)0.03694 (7)0.0584 (5)
C10.16650 (6)0.1894 (3)0.17670 (6)0.0379 (4)
C20.12182 (7)0.1253 (3)0.20964 (7)0.0486 (5)
C30.10875 (8)0.2518 (3)0.25450 (8)0.0580 (6)
C40.13754 (8)0.4522 (3)0.26932 (8)0.0606 (7)
C50.17975 (8)0.5201 (3)0.23969 (8)0.0528 (6)
C60.19672 (7)0.3919 (3)0.19346 (7)0.0403 (5)
C70.24311 (7)0.4589 (3)0.16590 (7)0.0429 (5)
C80.26386 (7)0.3322 (3)0.12393 (6)0.0393 (5)
C90.31446 (7)0.3980 (3)0.09933 (7)0.0497 (6)
C100.33622 (8)0.2712 (3)0.06009 (8)0.0556 (6)
C110.30869 (8)0.0702 (3)0.04332 (8)0.0554 (6)
C120.25992 (7)0.0016 (3)0.06472 (7)0.0476 (5)
C130.23446 (6)0.1286 (2)0.10601 (6)0.0365 (5)
C140.18386 (6)0.0631 (2)0.13028 (6)0.0356 (4)
C150.15128 (7)0.1314 (2)0.10573 (7)0.0398 (5)
C160.07545 (7)0.3889 (3)0.09501 (7)0.0415 (5)
C170.02670 (7)0.4911 (3)0.10808 (7)0.0447 (5)
C180.01918 (7)0.6751 (3)0.07070 (8)0.0501 (6)
C190.02801 (9)0.8473 (3)0.06716 (10)0.0733 (8)
C200.00958 (9)0.4243 (4)0.15280 (9)0.0675 (7)
H20.101260.005180.200300.0584*
H30.080090.204260.275820.0696*
H40.127350.537540.299560.0728*
H50.198410.653630.249460.0633*
H70.260930.593680.175930.0515*
H90.332850.531050.110560.0596*
H100.369130.316820.044340.0667*
H110.324240.018090.016920.0666*
H120.242560.131870.052170.0571*
H150.167240.210790.077790.0478*
H19A0.023710.916850.105690.1099*
H19B0.067680.783250.056120.1099*
H19C0.023010.952610.037400.1099*
H20A0.007250.293880.172660.1013*
H20B0.050880.398420.132540.1013*
H20C0.008550.537330.182090.1013*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0536 (7)0.0504 (7)0.0565 (7)0.0142 (5)0.0243 (5)0.0109 (5)
N10.0428 (7)0.0438 (8)0.0535 (8)0.0056 (6)0.0158 (6)0.0045 (6)
N20.0621 (9)0.0510 (9)0.0640 (10)0.0189 (7)0.0177 (8)0.0137 (7)
C10.0335 (7)0.0412 (8)0.0383 (8)0.0033 (6)0.0061 (6)0.0001 (6)
C20.0451 (9)0.0550 (10)0.0495 (9)0.0033 (8)0.0184 (7)0.0062 (8)
C30.0509 (10)0.0745 (13)0.0539 (10)0.0015 (9)0.0232 (8)0.0084 (9)
C40.0559 (11)0.0746 (13)0.0533 (10)0.0048 (10)0.0157 (8)0.0243 (10)
C50.0492 (10)0.0527 (10)0.0539 (10)0.0015 (8)0.0051 (8)0.0167 (8)
C60.0380 (8)0.0401 (9)0.0403 (8)0.0045 (7)0.0022 (6)0.0036 (7)
C70.0411 (8)0.0374 (8)0.0472 (9)0.0045 (7)0.0021 (7)0.0024 (7)
C80.0360 (8)0.0410 (9)0.0394 (8)0.0027 (6)0.0043 (6)0.0051 (7)
C90.0426 (9)0.0536 (10)0.0522 (10)0.0125 (8)0.0085 (7)0.0051 (8)
C100.0421 (9)0.0734 (13)0.0548 (10)0.0113 (9)0.0180 (8)0.0067 (9)
C110.0489 (10)0.0699 (12)0.0530 (10)0.0021 (9)0.0232 (8)0.0059 (9)
C120.0455 (9)0.0513 (10)0.0489 (9)0.0067 (8)0.0168 (7)0.0078 (8)
C130.0341 (8)0.0395 (9)0.0356 (7)0.0008 (6)0.0064 (6)0.0028 (6)
C140.0329 (7)0.0372 (8)0.0368 (7)0.0000 (6)0.0076 (6)0.0010 (6)
C150.0392 (8)0.0405 (9)0.0429 (8)0.0026 (7)0.0157 (6)0.0023 (7)
C160.0407 (8)0.0419 (9)0.0437 (8)0.0021 (7)0.0132 (7)0.0006 (7)
C170.0396 (8)0.0453 (9)0.0507 (9)0.0041 (7)0.0127 (7)0.0054 (7)
C180.0442 (9)0.0495 (10)0.0553 (10)0.0090 (8)0.0077 (8)0.0045 (8)
C190.0640 (13)0.0621 (13)0.0937 (16)0.0253 (10)0.0162 (11)0.0007 (11)
C200.0554 (11)0.0771 (14)0.0791 (13)0.0055 (10)0.0347 (10)0.0032 (11)
Geometric parameters (Å, º) top
O1—N21.418 (2)C14—C151.4545 (19)
O1—C161.360 (2)C16—C171.350 (2)
N1—C151.271 (2)C17—C181.405 (3)
N1—C161.371 (2)C17—C201.486 (3)
N2—C181.305 (2)C18—C191.492 (3)
C1—C21.427 (2)C2—H20.9300
C1—C61.435 (3)C3—H30.9300
C1—C141.428 (2)C4—H40.9300
C2—C31.362 (2)C5—H50.9300
C3—C41.403 (3)C7—H70.9300
C4—C51.339 (3)C9—H90.9300
C5—C61.427 (2)C10—H100.9300
C6—C71.386 (2)C11—H110.9300
C7—C81.385 (2)C12—H120.9300
C8—C91.427 (2)C15—H150.9300
C8—C131.438 (2)C19—H19A0.9600
C9—C101.351 (2)C19—H19B0.9600
C10—C111.402 (3)C19—H19C0.9600
C11—C121.356 (2)C20—H20A0.9600
C12—C131.429 (2)C20—H20B0.9600
C13—C141.4220 (19)C20—H20C0.9600
N2—O1—C16107.56 (12)N2—C18—C19120.35 (17)
C15—N1—C16121.58 (14)C17—C18—C19127.02 (16)
O1—N2—C18105.36 (15)C1—C2—H2119.00
C2—C1—C6116.67 (14)C3—C2—H2119.00
C2—C1—C14124.43 (15)C2—C3—H3119.00
C6—C1—C14118.88 (13)C4—C3—H3119.00
C1—C2—C3121.16 (16)C3—C4—H4120.00
C2—C3—C4121.52 (17)C5—C4—H4120.00
C3—C4—C5119.68 (17)C4—C5—H5119.00
C4—C5—C6121.43 (17)C6—C5—H5119.00
C1—C6—C5119.50 (15)C6—C7—H7119.00
C1—C6—C7119.97 (15)C8—C7—H7119.00
C5—C6—C7120.51 (16)C8—C9—H9119.00
C6—C7—C8122.32 (17)C10—C9—H9119.00
C7—C8—C9121.24 (16)C9—C10—H10120.00
C7—C8—C13119.07 (14)C11—C10—H10120.00
C9—C8—C13119.68 (14)C10—C11—H11119.00
C8—C9—C10121.40 (17)C12—C11—H11119.00
C9—C10—C11119.36 (17)C11—C12—H12119.00
C10—C11—C12121.53 (17)C13—C12—H12119.00
C11—C12—C13121.87 (16)N1—C15—H15117.00
C8—C13—C12116.13 (13)C14—C15—H15117.00
C8—C13—C14119.78 (12)C18—C19—H19A109.00
C12—C13—C14124.07 (12)C18—C19—H19B109.00
C1—C14—C13119.62 (12)C18—C19—H19C109.00
C1—C14—C15122.60 (13)H19A—C19—H19B109.00
C13—C14—C15117.78 (12)H19A—C19—H19C109.00
N1—C15—C14125.21 (14)H19B—C19—H19C109.00
O1—C16—N1121.36 (14)C17—C20—H20A109.00
O1—C16—C17110.22 (15)C17—C20—H20B109.00
N1—C16—C17128.42 (15)C17—C20—H20C109.00
C16—C17—C18104.22 (14)H20A—C20—H20B109.00
C16—C17—C20127.36 (17)H20A—C20—H20C109.00
C18—C17—C20128.41 (17)H20B—C20—H20C109.00
N2—C18—C17112.63 (16)
C16—O1—N2—C180.22 (18)C6—C7—C8—C133.1 (2)
N2—O1—C16—N1179.18 (14)C7—C8—C9—C10177.53 (16)
N2—O1—C16—C170.46 (18)C13—C8—C9—C101.1 (2)
C16—N1—C15—C14178.72 (14)C7—C8—C13—C12177.20 (14)
C15—N1—C16—O14.6 (2)C7—C8—C13—C141.6 (2)
C15—N1—C16—C17174.96 (17)C9—C8—C13—C121.5 (2)
O1—N2—C18—C170.09 (19)C9—C8—C13—C14179.74 (14)
O1—N2—C18—C19179.65 (15)C8—C9—C10—C110.3 (3)
C6—C1—C2—C30.2 (2)C9—C10—C11—C121.3 (3)
C14—C1—C2—C3178.22 (15)C10—C11—C12—C130.8 (3)
C2—C1—C6—C52.0 (2)C11—C12—C13—C80.5 (2)
C2—C1—C6—C7176.27 (15)C11—C12—C13—C14179.27 (15)
C14—C1—C6—C5179.86 (15)C8—C13—C14—C16.3 (2)
C14—C1—C6—C71.8 (2)C8—C13—C14—C15173.06 (13)
C2—C1—C14—C13171.60 (14)C12—C13—C14—C1172.43 (14)
C2—C1—C14—C159.1 (2)C12—C13—C14—C158.3 (2)
C6—C1—C14—C136.3 (2)C1—C14—C15—N14.8 (2)
C6—C1—C14—C15172.94 (14)C13—C14—C15—N1174.48 (14)
C1—C2—C3—C41.5 (3)O1—C16—C17—C180.49 (19)
C2—C3—C4—C51.3 (3)O1—C16—C17—C20179.47 (17)
C3—C4—C5—C60.6 (3)N1—C16—C17—C18179.11 (17)
C4—C5—C6—C12.3 (3)N1—C16—C17—C200.1 (3)
C4—C5—C6—C7176.03 (17)C16—C17—C18—N20.4 (2)
C1—C6—C7—C83.0 (2)C16—C17—C18—C19179.36 (18)
C5—C6—C7—C8175.34 (16)C20—C17—C18—N2179.32 (18)
C6—C7—C8—C9175.57 (15)C20—C17—C18—C190.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N10.932.202.840 (2)125
C15—H15···O10.932.382.7463 (18)103

Experimental details

Crystal data
Chemical formulaC20H16N2O
Mr300.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)22.4919 (14), 6.1666 (4), 22.6801 (13)
β (°) 102.015 (2)
V3)3076.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker KAPPA APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.975, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
12925, 3193, 2381
Rint0.028
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.04
No. of reflections3193
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N10.932.202.840 (2)125
 

Acknowledgements

The authors would like to thank the Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia, for providing research facilities.

References

First citationAsiri, A. M. & Khan, S. A. (2010). Molecules, 15, 6850–6858.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2011a). Acta Cryst. E67, o2163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2011b). Acta Cryst. E67, o2305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhuhawar, M. Y., Mughal, M. A. & Channar, A. H. (2004). Eur. Polymer J. 40, 805–809.  Web of Science CrossRef CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationSaxena, A. & Tandon, J. P. (1983). Cancer Lett. 19, 73–76.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds