organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2,6-di­methyl-4-phenyl­pyridine-3,5-di­carboxyl­ate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: muller.theunis@gmail.com

(Received 14 November 2011; accepted 21 November 2011; online 30 November 2011)

In the title compound, C17H17NO4, the dihedral angle between the benzene and pyridine rings is 75.51 (4)°. The benzene and pyridine rings are both approximately planar (r.m.s. deviations of 0.0040 and 0.0083 Å, respectively), indicating that the pyridine N atom is not protonated. The crystal structure is stabilized by weak inter­molecular C—H⋯O and C—H⋯N inter­actions.

Related literature

For the biological activity of pyridine derivatives, see: Lopez-Alarcon et al. (2004[Lopez-Alarcon, C., Speisky, H., Squella, J. A., Olea-Azar, C., Camargo, C. & Nunez-Vargara, L. J. (2004). Pharm. Res. 21, No. 10.]). For related structures, see: Rowan et al. (1996[Rowan, K. R. & Holt, E. M. (1996). Acta Cryst. C52, 1565-1570.], 1997[Rowan, K. R. & Holt, E. M. (1997). Acta Cryst. C53, 257-261.]); Lou et al. (2010[Luo, J., Chen, H., Wang, Q.-F. & Liu, H.-J. (2010). Acta Cryst. E66, o538.]). For the sythesis, see: Debache et al. (2008[Debache, A., Boulcina, R., Belfaitah, A., Rhouati, S. & Carboni, B. (2008). Synlett, pp. 509-512.]). For the use of pyridine-type ligands in catalysis models, see: Roodt et al. (2011[Roodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 66, 241-280.]); van der Westhuizen et al. (2010[Westhuizen, H. J. van der, Meijboom, R., Schutte, M. & Roodt, A. (2010). Inorg. Chem. 49, 9599-9608.]) For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO4

  • Mr = 299.32

  • Monoclinic, P 21 /c

  • a = 16.0732 (4) Å

  • b = 7.2497 (2) Å

  • c = 13.1339 (3) Å

  • β = 91.003 (1)°

  • V = 1530.20 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.42 × 0.36 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.962, Tmax = 0.984

  • 26541 measured reflections

  • 3782 independent reflections

  • 3132 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.114

  • S = 1.05

  • 3782 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O3i 0.98 2.42 3.3825 (15) 167
C7—H7B⋯O1ii 0.98 2.5 3.3826 (15) 149
C13—H13⋯N1iii 0.95 2.62 3.2701 (16) 126
C15—H15A⋯O2iv 0.98 2.56 3.5187 (17) 165
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,4-Dihydropyridines (1,4-DHPs) belong to a class of nitrogen containing heterocycles having a six-membered ring. These are analogues of NADH coenzymes and are an important class of drugs (Lopez-Alarcon et al. 2004). The oxidation of 1,4-DHP`s into the corresponding pyridines is one of the main metabolic pathways of these drugs. The title compound can be prepared by the catalytic oxidation of 1,4-dihydropyridine. The dihydropyrimidine synthesized by the known procedure through three components process disclosed in the literature (Debache et al. 2008). The oxidation of the dihdropyridine was carried out in the presence of 5 mol% of I2 as a catalyst using DMSO as solvent. The title compound, C17H17N1O4, (Figure 1) crystallized in the monoclinic space group P2(1)/c with Z = 4. The dihedral angle between the benzene ring and the pyridine ring is 75.51 (4)°. This compares well to 75.3 (4)° from the structure reported by Lou et al. (2010). The benzene ring (C8—C13) is flat (r.m.s = 0.0040) as well as the pyridine (N1, C1—C4) ring (r.m.s =0.0083). So the nitrogen in the pyridine ring is not protonated (Rowan et al., 1996 and 1997). The methyl groups at C1 and C5 are above the plane at 0.0165 (20) Å and 0.0589 (19)Å respectively. The carboxylate groups at C2 and C4 are also out of the plane by 0.0521 (18) and -0.1049 (18) Å respectively. Bond lengths and angles are within expected ranges (Allen et al., 1987). The packing is further stabilized by weak intermolecular C6—H6B···O3i, C7—H7B···O1ii, C15—H15A···O2iv and C13—H13···N1iii interactions (Table 1). (i = -x + 1, -y, -z + 1; ii = -x, -y, -z + 1; iii = x, -y - 1/2, z + 1/2; iv = -x, y + 1/2, -z + 1.5)

Related literature top

For the biological activity of pyridine derivatives, see: Lopez-Alarcon et al. (2004). For related structures, see: Rowan et al. (1996, 1997); Lou et al. (2010). For the sythesis, see: Debache et al. (2008). For the use of pyridine-type ligands in catalysis models, see: Roodt et al. (2011); van der Westhuizen et al. (2010) For standard bond lengths, see: Allen et al. (1987).

Experimental top

1,4-dihydropyridine synthesis: Methylacetoacetate (2.5 mmol) and benzaldehyde (1 mmol) was added to ethanol (10 ml) and stirred. To this 5 mol % of phenyl boric acid was added as catalyst. The mixture was heated to reflux and stirred until completion. After completion of the reaction (monitored by TLC) the precipitated was filtered off and dried in oven at 60 °C before it was dissolved in a KOH (2 mmol) containing DMSO solution(3 ml). Molecular iodine 5 mol% was added and the mixture stirred at room temperature until completion of the reaction(TLC). Ice cold water (20 ml) was subsequently added and the reaction mixture stirred for 30 min, before the product was extracted into ethyl acetate (3 x 20 ml) and the solvent removed under reduced pressure to yield the title compound as a white powder. Crystals suitable for x-ray analysis where obtained by slow evaporation of hexane and dicloromethane mixture (9:1; 2 ml) at 4 °C.

1H NMR (600 MHz): 2.60 (s, 6H,2 x Methyl), 3.54 (s, 6H, 2 x methoxy), 7.24 (m, 2H, aromatic-H), 7.39 (m, 3H, aromatic-H).

13C NMR (150 MHz): 23.12, 52.35, 126.89, 126.87, 128.38, 128.68, 136.56, 146.41, 155.72, 168.59. m.p. 130–131 °C

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) with a C—H distance of 0.95. The methyl H atoms were derived from difference maps (HFIX 137) and refined with Uiso(H) = 1.5Ueq(C) and C—H 0.98 Å.

Structure description top

1,4-Dihydropyridines (1,4-DHPs) belong to a class of nitrogen containing heterocycles having a six-membered ring. These are analogues of NADH coenzymes and are an important class of drugs (Lopez-Alarcon et al. 2004). The oxidation of 1,4-DHP`s into the corresponding pyridines is one of the main metabolic pathways of these drugs. The title compound can be prepared by the catalytic oxidation of 1,4-dihydropyridine. The dihydropyrimidine synthesized by the known procedure through three components process disclosed in the literature (Debache et al. 2008). The oxidation of the dihdropyridine was carried out in the presence of 5 mol% of I2 as a catalyst using DMSO as solvent. The title compound, C17H17N1O4, (Figure 1) crystallized in the monoclinic space group P2(1)/c with Z = 4. The dihedral angle between the benzene ring and the pyridine ring is 75.51 (4)°. This compares well to 75.3 (4)° from the structure reported by Lou et al. (2010). The benzene ring (C8—C13) is flat (r.m.s = 0.0040) as well as the pyridine (N1, C1—C4) ring (r.m.s =0.0083). So the nitrogen in the pyridine ring is not protonated (Rowan et al., 1996 and 1997). The methyl groups at C1 and C5 are above the plane at 0.0165 (20) Å and 0.0589 (19)Å respectively. The carboxylate groups at C2 and C4 are also out of the plane by 0.0521 (18) and -0.1049 (18) Å respectively. Bond lengths and angles are within expected ranges (Allen et al., 1987). The packing is further stabilized by weak intermolecular C6—H6B···O3i, C7—H7B···O1ii, C15—H15A···O2iv and C13—H13···N1iii interactions (Table 1). (i = -x + 1, -y, -z + 1; ii = -x, -y, -z + 1; iii = x, -y - 1/2, z + 1/2; iv = -x, y + 1/2, -z + 1.5)

For the biological activity of pyridine derivatives, see: Lopez-Alarcon et al. (2004). For related structures, see: Rowan et al. (1996, 1997); Lou et al. (2010). For the sythesis, see: Debache et al. (2008). For the use of pyridine-type ligands in catalysis models, see: Roodt et al. (2011); van der Westhuizen et al. (2010) For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Diamond representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).
Dimethyl 2,6-dimethyl-4-phenylpyridine-3,5-dicarboxylate top
Crystal data top
C17H17NO4F(000) = 632
Mr = 299.32Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.0732 (4) ÅCell parameters from 6764 reflections
b = 7.2497 (2) Åθ = 3.1–28.2°
c = 13.1339 (3) ŵ = 0.09 mm1
β = 91.003 (1)°T = 100 K
V = 1530.20 (7) Å3Plate, colourless
Z = 40.42 × 0.36 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 28.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1921
Tmin = 0.962, Tmax = 0.984k = 99
26541 measured reflectionsl = 1716
3782 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: geom and difmap
wR(F2) = 0.114H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.5155P]
where P = (Fo2 + 2Fc2)/3
3782 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H17NO4V = 1530.20 (7) Å3
Mr = 299.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0732 (4) ŵ = 0.09 mm1
b = 7.2497 (2) ÅT = 100 K
c = 13.1339 (3) Å0.42 × 0.36 × 0.18 mm
β = 91.003 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3782 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3132 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.984Rint = 0.036
26541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
3782 reflectionsΔρmin = 0.25 e Å3
203 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 1659 frames were collected with a frame width of 0.5° covering up to θ = 28.26° with 99.9% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31920 (7)0.26904 (16)0.51421 (9)0.0155 (2)
C20.32461 (7)0.11146 (15)0.57614 (9)0.0143 (2)
C30.25177 (7)0.02892 (15)0.61091 (8)0.0135 (2)
C40.17589 (7)0.11187 (15)0.58352 (9)0.0143 (2)
C50.17515 (7)0.27106 (16)0.52304 (9)0.0151 (2)
C60.39463 (8)0.36532 (18)0.47394 (11)0.0233 (3)
H6A0.41410.45760.52340.035*
H6B0.43880.27480.46270.035*
H6C0.38020.42630.40940.035*
C70.09654 (8)0.37102 (17)0.49311 (10)0.0209 (3)
H7A0.10020.4130.42240.031*
H7B0.0490.28750.49950.031*
H7C0.08920.47770.53790.031*
C80.25268 (7)0.13135 (15)0.68224 (9)0.0140 (2)
C90.27156 (7)0.30990 (16)0.65095 (9)0.0176 (2)
H90.28690.33250.58260.021*
C100.26785 (8)0.45503 (16)0.71995 (9)0.0196 (3)
H100.280.57690.69820.023*
C110.24653 (7)0.42316 (17)0.82023 (9)0.0188 (3)
H110.24410.52290.8670.023*
C120.22882 (8)0.24556 (18)0.85221 (9)0.0213 (3)
H120.21480.22320.92110.026*
C130.23166 (8)0.10024 (17)0.78347 (9)0.0188 (3)
H130.21920.02130.80550.023*
C140.09598 (7)0.02242 (16)0.61348 (9)0.0168 (2)
C150.02859 (8)0.0577 (2)0.70350 (13)0.0324 (3)
H15A0.02380.06490.73450.049*
H15B0.05480.14250.75140.049*
H15C0.06270.04980.64110.049*
C160.40794 (7)0.03409 (16)0.60534 (9)0.0163 (2)
C170.53414 (8)0.0953 (2)0.69408 (12)0.0314 (3)
H17A0.5680.09710.63270.047*
H17B0.55730.18220.74420.047*
H17C0.53440.02930.7230.047*
N10.24576 (6)0.34462 (13)0.48819 (7)0.0154 (2)
O10.07254 (6)0.12423 (12)0.58103 (8)0.0250 (2)
O20.05370 (6)0.12553 (12)0.67903 (7)0.0227 (2)
O30.43443 (6)0.11142 (12)0.57660 (8)0.0236 (2)
O40.44906 (6)0.14856 (13)0.66776 (7)0.0255 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0148 (5)0.0143 (5)0.0174 (5)0.0007 (4)0.0027 (4)0.0020 (4)
C20.0138 (5)0.0132 (5)0.0159 (5)0.0015 (4)0.0001 (4)0.0024 (4)
C30.0154 (5)0.0111 (5)0.0139 (5)0.0003 (4)0.0003 (4)0.0026 (4)
C40.0141 (5)0.0131 (5)0.0158 (5)0.0002 (4)0.0002 (4)0.0020 (4)
C50.0150 (5)0.0136 (5)0.0166 (5)0.0012 (4)0.0008 (4)0.0017 (4)
C60.0168 (6)0.0202 (6)0.0331 (7)0.0010 (5)0.0066 (5)0.0062 (5)
C70.0157 (6)0.0183 (6)0.0286 (7)0.0023 (5)0.0019 (5)0.0055 (5)
C80.0126 (5)0.0137 (5)0.0157 (5)0.0002 (4)0.0015 (4)0.0002 (4)
C90.0213 (6)0.0154 (6)0.0162 (5)0.0018 (4)0.0009 (4)0.0014 (4)
C100.0232 (6)0.0131 (5)0.0223 (6)0.0020 (5)0.0023 (5)0.0001 (5)
C110.0183 (6)0.0181 (6)0.0197 (6)0.0012 (4)0.0024 (5)0.0056 (4)
C120.0261 (6)0.0228 (6)0.0151 (5)0.0013 (5)0.0012 (5)0.0001 (5)
C130.0232 (6)0.0153 (5)0.0179 (6)0.0022 (5)0.0001 (5)0.0024 (4)
C140.0142 (5)0.0155 (5)0.0207 (6)0.0016 (4)0.0015 (4)0.0030 (4)
C150.0200 (7)0.0269 (7)0.0508 (9)0.0028 (5)0.0155 (6)0.0014 (6)
C160.0135 (5)0.0167 (6)0.0189 (6)0.0001 (4)0.0020 (4)0.0020 (4)
C170.0180 (6)0.0337 (8)0.0422 (8)0.0033 (5)0.0109 (6)0.0044 (6)
N10.0169 (5)0.0133 (5)0.0160 (5)0.0006 (4)0.0007 (4)0.0009 (4)
O10.0198 (5)0.0183 (4)0.0368 (5)0.0049 (3)0.0015 (4)0.0042 (4)
O20.0173 (4)0.0203 (4)0.0308 (5)0.0013 (3)0.0084 (4)0.0020 (4)
O30.0174 (4)0.0173 (4)0.0361 (5)0.0043 (3)0.0001 (4)0.0031 (4)
O40.0178 (4)0.0254 (5)0.0330 (5)0.0043 (4)0.0084 (4)0.0081 (4)
Geometric parameters (Å, º) top
C1—N11.3402 (15)C9—H90.95
C1—C21.4042 (16)C10—C111.3861 (17)
C1—C61.5032 (16)C10—H100.95
C2—C31.3986 (15)C11—C121.3854 (18)
C2—C161.4958 (16)C11—H110.95
C3—C41.4011 (15)C12—C131.3887 (17)
C3—C81.4924 (15)C12—H120.95
C4—C51.4009 (16)C13—H130.95
C4—C141.4977 (16)C14—O11.2034 (15)
C5—N11.3417 (15)C14—O21.3350 (15)
C5—C71.5030 (16)C15—O21.4524 (15)
C6—H6A0.98C15—H15A0.98
C6—H6B0.98C15—H15B0.98
C6—H6C0.98C15—H15C0.98
C7—H7A0.98C16—O31.2009 (15)
C7—H7B0.98C16—O41.3338 (15)
C7—H7C0.98C17—O41.4568 (15)
C8—C91.3932 (16)C17—H17A0.98
C8—C131.3959 (16)C17—H17B0.98
C9—C101.3906 (17)C17—H17C0.98
N1—C1—C2121.72 (10)C11—C10—C9120.48 (11)
N1—C1—C6115.63 (10)C11—C10—H10119.8
C2—C1—C6122.64 (11)C9—C10—H10119.8
C3—C2—C1119.57 (10)C12—C11—C10119.90 (11)
C3—C2—C16120.45 (10)C12—C11—H11120
C1—C2—C16119.98 (10)C10—C11—H11120
C2—C3—C4117.54 (10)C11—C12—C13119.92 (11)
C2—C3—C8122.61 (10)C11—C12—H12120
C4—C3—C8119.62 (10)C13—C12—H12120
C5—C4—C3119.86 (10)C12—C13—C8120.52 (11)
C5—C4—C14120.45 (10)C12—C13—H13119.7
C3—C4—C14119.57 (10)C8—C13—H13119.7
N1—C5—C4121.47 (10)O1—C14—O2124.29 (11)
N1—C5—C7115.56 (10)O1—C14—C4123.65 (11)
C4—C5—C7122.97 (10)O2—C14—C4112.06 (10)
C1—C6—H6A109.5O2—C15—H15A109.5
C1—C6—H6B109.5O2—C15—H15B109.5
H6A—C6—H6B109.5H15A—C15—H15B109.5
C1—C6—H6C109.5O2—C15—H15C109.5
H6A—C6—H6C109.5H15A—C15—H15C109.5
H6B—C6—H6C109.5H15B—C15—H15C109.5
C5—C7—H7A109.5O3—C16—O4124.40 (11)
C5—C7—H7B109.5O3—C16—C2124.73 (11)
H7A—C7—H7B109.5O4—C16—C2110.87 (10)
C5—C7—H7C109.5O4—C17—H17A109.5
H7A—C7—H7C109.5O4—C17—H17B109.5
H7B—C7—H7C109.5H17A—C17—H17B109.5
C9—C8—C13119.26 (11)O4—C17—H17C109.5
C9—C8—C3122.55 (10)H17A—C17—H17C109.5
C13—C8—C3118.18 (10)H17B—C17—H17C109.5
C10—C9—C8119.91 (11)C1—N1—C5119.80 (10)
C10—C9—H9120C14—O2—C15115.40 (10)
C8—C9—H9120C16—O4—C17115.72 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O3i0.982.423.3825 (15)167
C7—H7B···O1ii0.982.53.3826 (15)149
C13—H13···N1iii0.952.623.2701 (16)126
C15—H15A···O2iv0.982.563.5187 (17)165
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H17NO4
Mr299.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.0732 (4), 7.2497 (2), 13.1339 (3)
β (°) 91.003 (1)
V3)1530.20 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.36 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.962, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
26541, 3782, 3132
Rint0.036
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.05
No. of reflections3782
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O3i0.982.423.3825 (15)167.1
C7—H7B···O1ii0.982.53.3826 (15)149.3
C13—H13···N1iii0.952.623.2701 (16)126.3
C15—H15A···O2iv0.982.563.5187 (17)164.5
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+3/2.
 

Acknowledgements

The University of the Free State and Sasol Ltd are gratefully acknowledged for financial support and Johannes van Tonder for the NMR data and help with the synthesis of the title compound. Special thanks are due to Prof Andreas Roodt.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDebache, A., Boulcina, R., Belfaitah, A., Rhouati, S. & Carboni, B. (2008). Synlett, pp. 509–512.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLopez-Alarcon, C., Speisky, H., Squella, J. A., Olea-Azar, C., Camargo, C. & Nunez-Vargara, L. J. (2004). Pharm. Res. 21, No. 10.  Google Scholar
First citationLuo, J., Chen, H., Wang, Q.-F. & Liu, H.-J. (2010). Acta Cryst. E66, o538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 66, 241–280.  Web of Science CrossRef Google Scholar
First citationRowan, K. R. & Holt, E. M. (1996). Acta Cryst. C52, 1565–1570.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRowan, K. R. & Holt, E. M. (1997). Acta Cryst. C53, 257–261.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWesthuizen, H. J. van der, Meijboom, R., Schutte, M. & Roodt, A. (2010). Inorg. Chem. 49, 9599–9608.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds