organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(tert-Butyl­di­methyl­sil­yl)­­oxy]-6-meth­­oxy-7-methyl-5-(oxiran-2-ylmeth­yl)-2-benzo­furan-3(1H)-one

aChemical Faculty, Gdansk University of Technology, Narutowicza 11/12, Gdansk PL-80233, Poland
*Correspondence e-mail: gch@chem.pg.gda.pl

(Received 5 October 2011; accepted 17 November 2011; online 23 November 2011)

The title compound, C19H28O5Si, was obtained in the reaction of 1,3-dihydro-4-[(tert-butyl­dimethyl­sil­yl)­oxy]-6-meth­oxy-7-methyl-3-oxo-5-(prop-2-en­yl)isobenzofuran with meta-chloro­perbenzoic acid. This reaction is one of the stages of the total synthesis of mycophenolic acid, which we attempted to modify. The title compound forms crystals with only weak inter­molecular inter­actions. The strongest stacking inter­action is found between the benzene and furan rings of inversion-related mol­ecules with a distance of 3.8773 (13) Å between the ring centroids.

Related literature

For structures of related oxiranes, see: Langer & Becker (1993[Langer, V. & Becker, H.-D. (1993). Z. Kristallogr. 207, 153-155.]); Berthalon et al. (1999[Berthalon, S., Motta-Viola, L., Regnouf-de-Vains, J.-B., Lamartine, R., Lecocq, S. & Perrin, M. (1999). Eur. J. Org. Chem. pp. 2269-2274.]). For the preparation of the title compound, see: Patterson (1995[Patterson, J. W. (1995). J. Org. Chem. 60, 4542-4548.]); Plé et al. (1997[Plé, P. A., Hamon, A. & Jones, G. (1997). Tetrahedron, 53, 3395-3400.]). For the properties of epoxides, see: Padwa & Murphree (2006[Padwa, A. & Murphree, S. S. (2006). ARKIVOC, iii, 6-33.]). For a description of the Cambridge Structural Database, see Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C19H28O5Si

  • Mr = 364.5

  • Monoclinic, P 21 /c

  • a = 7.5682 (3) Å

  • b = 12.2488 (4) Å

  • c = 20.6905 (8) Å

  • β = 93.990 (4)°

  • V = 1913.39 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 120 K

  • 0.55 × 0.44 × 0.35 mm

Data collection
  • Agilent Xcalibur diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.938, Tmax = 0.954

  • 6727 measured reflections

  • 3430 independent reflections

  • 2858 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.09

  • 3430 reflections

  • 243 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

Presented research is an attempt to modify the known multi-stage total synthesis of mycophenolic acid (Patterson, 1995) by making use of epoxides as intermediates. The synthesis of the desired epoxide was successful and its X-ray structure has been determined.

In the title compound, bond length C12—C13 is ca 0.01 Å longer than C12—O5 or C13—O5, which is a trend noted for other oxirans. The valence angle at O5 is close to the average of 60.5 (9)° calculated for 17 structures containing benzyloxirane fragment, according to our CSD search (Allen et al., 2002). The most closely related compounds, which contain the 1-phenyl-2,3-epoxypropane fragment are rac-3-(9-anthryl)-1,2-epoxypropane (Langer et al., 1993) and a modified calix[4]arene (Berthalon et al., 1999).

The crystal lattice is composed of discrete molecules with no strong specific intermolecular interactions. The strongest stacking interaction is found between the benzene and furan rings of molecules related by the inversion at (1/2, 1/2, 1) with a distance of 3.8773 (13) Å between the ring centroids.

The ORTEP view of the title epoxide is given in Fig. 1. Although the oxirane ring is not connected with the aromatic ring directly, the shortest intramolecular contact between the ring and adjacent methoxy substituent is rather short 2.560 (3) Å for O5···H11A. Epoxides are known to be reactive compounds (Padwa et al., 2006), but the investigated oxirane is relatively stable and can be purified on silica gel and stored for several months. We suppose the reactivity of the epoxide ring is decreased by the steric hindrance from the proximate methoxyl and t-BuMe2Si substituents.

Related literature top

For structures of related oxiranes, see: Langer & Becker (1993); Berthalon et al. (1999). For the preparation of the title compound, see: Patterson (1995); Plé et al. (1997). For the properties of epoxides, see: Padwa & Murphree (2006). For a description of the Cambridge Structural Database, see Allen (2002).

Experimental top

The starting material 1,3-dihydro-4-[(tert-butyldimethylsilyl)oxy]-6-methoxy-7-methyl-3-oxo-5-(prop-2-enyl)isobenzofuran was obtained according to the chemical literature (Patterson, 1995).

Preparation of 1,3-dihydro-4-[(tert-butyldimethylsilyl)oxy]-6-methoxy-7-methyl-3-oxo-5-(2,3-epoxypropanyl)isobenzofuran, was carried out based on the procedure reported in the chemical literature (Plé et al., 1997). In the cited work geranyl acetate was oxidized to 6,7-epoxygeranyl acetate with meta-chloroperoxybenzoic acid (m-CPBA). We applied lower temperature for addition of m-CPBA (–70 °C, instead of – 30 °C), and then the reaction was carried out at room temperature (instead of 0 °C).

The solution of 1,3-dihydro-4-[(tert-butyldimethylsilyl)oxy]-6-methoxy-7-methyl-3-oxo-5-(prop-2-enyl)isobenzofuran (6.5 mmol), freshly melted sodium acetate (6.5 mmol) in anhydrous methyl chloride (20 ml) was cooled to –70 °C. Subsequently, m-CPBA (13 mmol) (meta-chloroperbenzoic acid) was added portionwise and the reaction mixture was stirred at room temperature for 5 h. Then it was washed with diluted NaHCO3, and the aqueous layer was extracted with methylene chloride. Next, the combined organic layers were washed with cooled 1M NaOH, dried over Na2SO4 and filtered and evaporated under vacuum. The crude product was purified with column chromatography (petroleum ether – ethyl acetate 10:1) to give 3-dihydro-4-[(tert-butyldimethylsilyl)oxy]-6-methoxy-7-methyl-3-oxo-5-(2,3-epoxypropanyl)isobenzofuran in 80% yield.

Single crystals were obtained by vapour diffusion of petroleum ether into a solution of about 30 mg product in 1 mL dichloromethane over 3-4 days (m.p. 96–98 °C).

Refinement top

All hydrogen atoms were refined in isotropic approximation with U values fixed to be 1.5 times Ueq of C atoms for CH3 or 1.2 times Ueq for CH2 and CH groups. C12 oxiran atom was found disordered over two positions (with 0.839 (6)/0.161 (6) probablilities). The same splitting ratio was applied to the disorder of the neighbouring O4—C13 methoxy group and the second neighbour C8 methyl group to avoid short contacts within the molecule.

Structure description top

Presented research is an attempt to modify the known multi-stage total synthesis of mycophenolic acid (Patterson, 1995) by making use of epoxides as intermediates. The synthesis of the desired epoxide was successful and its X-ray structure has been determined.

In the title compound, bond length C12—C13 is ca 0.01 Å longer than C12—O5 or C13—O5, which is a trend noted for other oxirans. The valence angle at O5 is close to the average of 60.5 (9)° calculated for 17 structures containing benzyloxirane fragment, according to our CSD search (Allen et al., 2002). The most closely related compounds, which contain the 1-phenyl-2,3-epoxypropane fragment are rac-3-(9-anthryl)-1,2-epoxypropane (Langer et al., 1993) and a modified calix[4]arene (Berthalon et al., 1999).

The crystal lattice is composed of discrete molecules with no strong specific intermolecular interactions. The strongest stacking interaction is found between the benzene and furan rings of molecules related by the inversion at (1/2, 1/2, 1) with a distance of 3.8773 (13) Å between the ring centroids.

The ORTEP view of the title epoxide is given in Fig. 1. Although the oxirane ring is not connected with the aromatic ring directly, the shortest intramolecular contact between the ring and adjacent methoxy substituent is rather short 2.560 (3) Å for O5···H11A. Epoxides are known to be reactive compounds (Padwa et al., 2006), but the investigated oxirane is relatively stable and can be purified on silica gel and stored for several months. We suppose the reactivity of the epoxide ring is decreased by the steric hindrance from the proximate methoxyl and t-BuMe2Si substituents.

For structures of related oxiranes, see: Langer & Becker (1993); Berthalon et al. (1999). For the preparation of the title compound, see: Patterson (1995); Plé et al. (1997). For the properties of epoxides, see: Padwa & Murphree (2006). For a description of the Cambridge Structural Database, see Allen (2002).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010), PLATON (Spek, 2009), WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of C19H28O5Si, showing the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
4-[(tert-Butyldimethylsilyl)oxy]-6-methoxy-7-methyl- 5-(oxiran-2-ylmethyl)-2-benzofuran-3(1H)-one top
Crystal data top
C19H28O5SiF(000) = 784
Mr = 364.5Dx = 1.265 Mg m3
Monoclinic, P21/cMelting point: 369(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.5682 (3) ÅCell parameters from 4883 reflections
b = 12.2488 (4) Åθ = 2.6–28.8°
c = 20.6905 (8) ŵ = 0.15 mm1
β = 93.990 (4)°T = 120 K
V = 1913.39 (12) Å3Block, colourless
Z = 40.55 × 0.44 × 0.35 mm
Data collection top
Agilent Xcalibur
diffractometer
3430 independent reflections
Graphite monochromator2858 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.017
ω scansθmax = 25.2°, θmin = 2.6°
Absorption correction: analytical
(Clark & Reid, 1995)
h = 97
Tmin = 0.938, Tmax = 0.954k = 1314
6727 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.075P)2 + 0.4245P]
where P = (Fo2 + 2Fc2)/3
3430 reflections(Δ/σ)max = 0.013
243 parametersΔρmax = 0.42 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
C19H28O5SiV = 1913.39 (12) Å3
Mr = 364.5Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5682 (3) ŵ = 0.15 mm1
b = 12.2488 (4) ÅT = 120 K
c = 20.6905 (8) Å0.55 × 0.44 × 0.35 mm
β = 93.990 (4)°
Data collection top
Agilent Xcalibur
diffractometer
3430 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
2858 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.954Rint = 0.017
6727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.09Δρmax = 0.42 e Å3
3430 reflectionsΔρmin = 0.18 e Å3
243 parameters
Special details top

Experimental. 1H NMR (CDCl3, δ): 0.25 (s, 3H), 0.26 (s, 3H), 1.04 (s, 9H), 2.18 (s, 3H), 2.55 (dd, J = 5.1, 2.7, 1H), 2.70 (dd, J = 4.4, 4.4, 1H), 2.86 (dd, J = 13.7, 5.9, 1H), 3.10 (dd, J = 13.7, 4.9, 1H), 3.18 – 3.19 (m, 1H), 3.81 (s, 3H), 5.09 (s, 2H).

13C NMR (CDCl3, δ): -3.35, -3.23, 1.25, 11.74, 18.98, 26.26, 27.92, 47.41, 51.29, 61.30, 67.93, 111.99, 118.31, 123.41, 147.18, 152.44, 163.72, 169.25.

MS: C19H28O5Si M/z = 364.3 (calculated 364.2)

NMR spectra were recorded with Varian Unity Plus 500 MHz. Coupling constants are given in Hz. Mass spectrum was recorded with MALDI-TOF spectrometer BRUKER BIFLEX III (DHB matrix).Column chromatography was carried out on silica gel Merck 60 (0.063–0.2 mm). The reactions were followed with TLC technique on plates Merck 60 F254. All solvents were purified according to standard methods.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.75384 (6)0.75814 (4)0.80053 (2)0.02184 (17)
O10.74792 (15)0.71310 (10)0.87721 (6)0.0229 (3)
O20.42666 (18)0.41649 (10)0.87895 (6)0.0306 (3)
O30.67752 (19)0.46983 (11)0.83748 (7)0.0370 (4)
O40.31864 (16)0.82981 (10)1.02105 (6)0.0268 (3)
C10.6018 (2)0.69206 (14)0.91006 (8)0.0208 (4)
C20.5145 (2)0.59172 (14)0.90497 (8)0.0220 (4)
C30.3654 (2)0.57202 (14)0.93807 (8)0.0228 (4)
C40.2933 (2)0.64859 (14)0.97795 (8)0.0233 (4)
C50.3860 (2)0.74744 (14)0.98426 (8)0.0226 (4)
C60.5399 (2)0.77006 (13)0.95246 (8)0.0210 (4)
C70.6395 (2)0.87568 (14)0.96487 (9)0.0265 (4)
H7A0.65570.9120.92290.032*
H7B0.56790.92470.99070.032*
C80.1239 (18)0.6273 (9)1.0104 (6)0.0328 (8)0.839 (5)
H8A0.09160.69251.03430.049*0.839 (5)
H8B0.14150.56581.04050.049*0.839 (5)
H8C0.02890.60970.97740.049*0.839 (5)
C8A0.128 (10)0.628 (5)1.007 (3)0.0328 (8)0.161 (5)
H8D0.08820.55370.99720.049*0.161 (5)
H8E0.03850.68030.99050.049*0.161 (5)
H8F0.14670.63661.05450.049*0.161 (5)
C90.3019 (3)0.45817 (14)0.92251 (9)0.0276 (4)
H9A0.30250.41310.96230.033*
H9B0.18050.45920.90140.033*
C100.5564 (3)0.49177 (15)0.86926 (9)0.0272 (4)
C110.3706 (5)0.8213 (3)1.08945 (13)0.0311 (7)0.839 (5)
H11A0.49950.82861.09620.047*0.839 (5)
H11B0.33420.75011.10560.047*0.839 (5)
H11C0.31330.87941.11290.047*0.839 (5)
C11A0.304 (2)0.8127 (17)1.0872 (10)0.035 (5)*0.161 (5)
H11D0.25420.87811.10640.052*0.161 (5)
H11E0.42110.79761.10830.052*0.161 (5)
H11F0.22540.75041.09330.052*0.161 (5)
O50.8139 (2)0.82094 (13)1.06596 (7)0.0447 (4)
C120.8155 (3)0.85929 (19)0.99979 (11)0.0303 (7)0.839 (5)
H120.90790.8260.97370.036*0.839 (5)
C12A0.7066 (14)0.8869 (9)1.0375 (5)0.029 (3)*0.161 (5)
H12A0.61550.9161.06570.034*0.161 (5)
C130.8822 (3)0.9282 (2)1.05370 (11)0.0482 (6)
H13A1.01180.93931.05990.058*
H13B0.80970.99181.06490.058*
C140.6788 (3)0.90278 (17)0.79575 (10)0.0375 (5)
H14A0.75870.9480.82380.056*
H14B0.55830.9080.810.056*
H14C0.680.92850.75090.056*
C150.6074 (3)0.67721 (18)0.74361 (9)0.0366 (5)
H15A0.48650.67820.75780.055*
H15B0.65010.60170.74280.055*
H15C0.60780.70880.70010.055*
C160.9937 (2)0.74546 (15)0.78426 (9)0.0259 (4)
C171.1085 (3)0.81497 (18)0.83260 (10)0.0382 (5)
H17A1.07570.8920.82730.057*
H17B1.23360.80570.82450.057*
H17C1.08940.79160.87690.057*
C181.0503 (3)0.62553 (18)0.79128 (13)0.0440 (6)
H18A1.17640.61890.78410.066*
H18B0.98090.58120.75930.066*
H18C1.02960.59980.8350.066*
C191.0203 (3)0.7855 (2)0.71551 (10)0.0414 (5)
H19A0.94730.74170.68430.062*
H19B1.14530.7780.70670.062*
H19C0.98530.86230.71150.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0212 (3)0.0250 (3)0.0195 (3)0.00013 (19)0.00251 (19)0.00215 (19)
O10.0221 (6)0.0270 (6)0.0202 (6)0.0007 (5)0.0055 (5)0.0011 (5)
O20.0433 (8)0.0202 (6)0.0289 (7)0.0026 (6)0.0072 (6)0.0032 (5)
O30.0470 (9)0.0279 (7)0.0381 (8)0.0057 (6)0.0169 (7)0.0044 (6)
O40.0317 (7)0.0235 (6)0.0259 (7)0.0063 (5)0.0061 (5)0.0033 (5)
C10.0226 (9)0.0226 (9)0.0173 (8)0.0013 (7)0.0015 (7)0.0030 (7)
C20.0269 (9)0.0220 (9)0.0171 (8)0.0043 (7)0.0010 (7)0.0012 (7)
C30.0263 (9)0.0221 (9)0.0200 (9)0.0014 (7)0.0001 (7)0.0031 (7)
C40.0234 (9)0.0241 (9)0.0226 (9)0.0022 (7)0.0025 (7)0.0029 (7)
C50.0269 (9)0.0208 (9)0.0200 (9)0.0062 (7)0.0022 (7)0.0006 (7)
C60.0241 (9)0.0195 (8)0.0193 (9)0.0009 (7)0.0009 (7)0.0015 (7)
C70.0348 (10)0.0197 (9)0.0256 (10)0.0026 (7)0.0063 (8)0.0024 (7)
C80.0308 (12)0.0301 (11)0.039 (2)0.0030 (9)0.0112 (12)0.0024 (9)
C8A0.0308 (12)0.0301 (11)0.039 (2)0.0030 (9)0.0112 (12)0.0024 (9)
C90.0346 (10)0.0236 (9)0.0253 (10)0.0022 (8)0.0056 (8)0.0001 (8)
C100.0377 (11)0.0212 (9)0.0231 (9)0.0015 (8)0.0037 (8)0.0001 (7)
C110.0414 (19)0.0319 (15)0.0207 (13)0.0061 (15)0.0065 (14)0.0039 (10)
O50.0453 (9)0.0544 (10)0.0332 (8)0.0020 (7)0.0055 (7)0.0002 (7)
C120.0284 (13)0.0305 (13)0.0321 (13)0.0021 (10)0.0025 (10)0.0054 (10)
C130.0406 (12)0.0521 (14)0.0503 (14)0.0084 (11)0.0072 (11)0.0174 (11)
C140.0444 (12)0.0354 (11)0.0334 (11)0.0099 (9)0.0070 (9)0.0085 (9)
C150.0345 (11)0.0476 (12)0.0269 (10)0.0115 (9)0.0037 (8)0.0061 (9)
C160.0228 (9)0.0308 (10)0.0247 (10)0.0026 (7)0.0054 (7)0.0025 (8)
C170.0262 (10)0.0504 (13)0.0378 (12)0.0071 (9)0.0000 (9)0.0083 (10)
C180.0325 (11)0.0380 (12)0.0630 (15)0.0085 (9)0.0140 (10)0.0017 (11)
C190.0405 (12)0.0563 (13)0.0291 (11)0.0124 (10)0.0147 (9)0.0018 (10)
Geometric parameters (Å, º) top
Si1—O11.6832 (12)C11—H11A0.98
Si1—C151.849 (2)C11—H11B0.98
Si1—C141.861 (2)C11—H11C0.98
Si1—C161.8756 (19)C11A—H11D0.98
O1—C11.363 (2)C11A—H11E0.98
O2—C101.372 (2)C11A—H11F0.98
O2—C91.443 (2)O5—C12A1.262 (11)
O3—C101.196 (2)O5—C131.440 (3)
O4—C51.382 (2)O5—C121.448 (3)
O4—C11A1.40 (2)C12—C131.460 (3)
O4—C111.446 (3)C12—H121
C1—C21.396 (2)C12A—C131.439 (10)
C1—C61.400 (2)C12A—H12A1
C2—C31.381 (2)C13—H13A0.99
C2—C101.476 (2)C13—H13B0.99
C3—C41.386 (2)C14—H14A0.98
C3—C91.502 (2)C14—H14B0.98
C4—C51.401 (3)C14—H14C0.98
C4—C8A1.45 (8)C15—H15A0.98
C4—C81.510 (15)C15—H15B0.98
C5—C61.405 (2)C15—H15C0.98
C6—C71.510 (2)C16—C191.531 (3)
C7—C121.484 (3)C16—C181.534 (3)
C7—C12A1.559 (10)C16—C171.536 (3)
C7—H7A0.99C17—H17A0.98
C7—H7B0.99C17—H17B0.98
C8—H8A0.98C17—H17C0.98
C8—H8B0.98C18—H18A0.98
C8—H8C0.98C18—H18B0.98
C8A—H8D0.98C18—H18C0.98
C8A—H8E0.98C19—H19A0.98
C8A—H8F0.98C19—H19B0.98
C9—H9A0.99C19—H19C0.98
C9—H9B0.99
O1—Si1—C15111.75 (8)O4—C11A—H11E109.5
O1—Si1—C14109.52 (8)H11D—C11A—H11E109.5
C15—Si1—C14108.02 (10)O4—C11A—H11F109.5
O1—Si1—C16103.39 (7)H11D—C11A—H11F109.5
C15—Si1—C16112.72 (9)H11E—C11A—H11F109.5
C14—Si1—C16111.40 (9)C12A—O5—C1363.9 (5)
C1—O1—Si1127.45 (11)C12A—O5—C1253.0 (5)
C10—O2—C9111.07 (13)C13—O5—C1260.73 (14)
C5—O4—C11A119.2 (9)O5—C12—C1359.37 (15)
C5—O4—C11113.62 (16)O5—C12—C7115.98 (18)
O1—C1—C2121.69 (15)C13—C12—C7123.0 (2)
O1—C1—C6120.15 (15)O5—C12—H12115.5
C2—C1—C6118.10 (16)C13—C12—H12115.5
C3—C2—C1121.01 (16)C7—C12—H12115.5
C3—C2—C10108.34 (15)O5—C12A—C1364.1 (5)
C1—C2—C10130.62 (16)O5—C12A—C7123.3 (8)
C2—C3—C4123.09 (16)C13—C12A—C7119.3 (7)
C2—C3—C9108.42 (15)O5—C12A—H12A113.8
C4—C3—C9128.48 (16)C13—C12A—H12A113.8
C3—C4—C5115.14 (16)C7—C12A—H12A113.8
C3—C4—C8A121 (2)O5—C12A—H13B93.9
C5—C4—C8A123 (2)C7—C12A—H13B122.4
C3—C4—C8121.9 (5)H12A—C12A—H13B81.1
C5—C4—C8122.9 (5)C12A—C13—O552.0 (5)
O4—C5—C4118.72 (15)C12A—C13—C1249.8 (5)
O4—C5—C6117.61 (15)O5—C13—C1259.90 (14)
C4—C5—C6123.58 (16)O5—C13—H13A117.8
C1—C6—C5118.91 (15)C12—C13—H13A117.8
C1—C6—C7120.43 (15)C12A—C13—H13B79.2
C5—C6—C7120.65 (15)O5—C13—H13B117.7
C12—C7—C6112.79 (16)C12—C13—H13B117.8
C12—C7—C12A47.3 (4)H13A—C13—H13B114.9
C6—C7—C12A111.4 (4)Si1—C14—H14A109.5
C12—C7—H7A109Si1—C14—H14B109.5
C6—C7—H7A109H14A—C14—H14B109.5
C12A—C7—H7A138.9Si1—C14—H14C109.5
C12—C7—H7B109H14A—C14—H14C109.5
C6—C7—H7B109H14B—C14—H14C109.5
C12A—C7—H7B65.2Si1—C15—H15A109.5
H7A—C7—H7B107.8Si1—C15—H15B109.5
C4—C8—H8A109.5H15A—C15—H15B109.5
C4—C8—H8B109.5Si1—C15—H15C109.5
H8A—C8—H8B109.5H15A—C15—H15C109.5
C4—C8—H8C109.5H15B—C15—H15C109.5
H8A—C8—H8C109.5C19—C16—C18109.91 (17)
H8B—C8—H8C109.5C19—C16—C17108.83 (16)
C4—C8A—H8D109.5C18—C16—C17109.13 (17)
C4—C8A—H8E109.5C19—C16—Si1109.37 (13)
H8D—C8A—H8E109.5C18—C16—Si1109.24 (13)
C4—C8A—H8F109.5C17—C16—Si1110.36 (13)
H8D—C8A—H8F109.5C16—C17—H17A109.5
H8E—C8A—H8F109.5C16—C17—H17B109.5
O2—C9—C3104.40 (14)H17A—C17—H17B109.5
O2—C9—H9A110.9C16—C17—H17C109.5
C3—C9—H9A110.9H17A—C17—H17C109.5
O2—C9—H9B110.9H17B—C17—H17C109.5
C3—C9—H9B110.9C16—C18—H18A109.5
H9A—C9—H9B108.9C16—C18—H18B109.5
O3—C10—O2120.90 (16)H18A—C18—H18B109.5
O3—C10—C2131.42 (18)C16—C18—H18C109.5
O2—C10—C2107.67 (15)H18A—C18—H18C109.5
O4—C11—H11A109.5H18B—C18—H18C109.5
O4—C11—H11B109.5C16—C19—H19A109.5
H11A—C11—H11B109.5C16—C19—H19B109.5
O4—C11—H11C109.5H19A—C19—H19B109.5
H11A—C11—H11C109.5C16—C19—H19C109.5
H11B—C11—H11C109.5H19A—C19—H19C109.5
O4—C11A—H11D109.5H19B—C19—H19C109.5
C15—Si1—O1—C149.33 (16)C10—O2—C9—C31.70 (19)
C14—Si1—O1—C170.33 (16)C2—C3—C9—O20.31 (19)
C16—Si1—O1—C1170.83 (14)C4—C3—C9—O2179.97 (16)
Si1—O1—C1—C285.05 (19)C9—O2—C10—O3175.75 (17)
Si1—O1—C1—C697.84 (17)C9—O2—C10—C22.94 (19)
O1—C1—C2—C3179.33 (15)C3—C2—C10—O3175.4 (2)
C6—C1—C2—C33.5 (2)C1—C2—C10—O32.7 (3)
O1—C1—C2—C102.8 (3)C3—C2—C10—O23.1 (2)
C6—C1—C2—C10174.42 (17)C1—C2—C10—O2178.78 (16)
C1—C2—C3—C40.1 (3)C12A—O5—C12—C1378.0 (6)
C10—C2—C3—C4178.22 (16)C12A—O5—C12—C736.6 (6)
C1—C2—C3—C9179.64 (15)C13—O5—C12—C7114.6 (2)
C10—C2—C3—C92.03 (19)C6—C7—C12—O567.0 (2)
C2—C3—C4—C52.0 (3)C12A—C7—C12—O531.7 (6)
C9—C3—C4—C5178.31 (17)C6—C7—C12—C13136.0 (2)
C2—C3—C4—C8A175 (3)C12A—C7—C12—C1337.3 (6)
C9—C3—C4—C8A5 (3)C12—O5—C12A—C1371.7 (4)
C2—C3—C4—C8176.3 (5)C13—O5—C12A—C7109.4 (9)
C9—C3—C4—C83.4 (6)C12—O5—C12A—C737.6 (6)
C11A—O4—C5—C463.1 (9)C12—C7—C12A—O540.4 (6)
C11—O4—C5—C485.5 (2)C6—C7—C12A—O561.4 (9)
C11A—O4—C5—C6120.1 (9)C12—C7—C12A—C1336.2 (5)
C11—O4—C5—C697.7 (2)C6—C7—C12A—C13138.0 (7)
C3—C4—C5—O4177.35 (15)C7—C12A—C13—O5115.3 (10)
C8A—C4—C5—O41 (3)O5—C12A—C13—C1280.0 (5)
C8—C4—C5—O40.9 (6)C7—C12A—C13—C1235.3 (5)
C3—C4—C5—C60.8 (3)C12—O5—C13—C12A60.4 (6)
C8A—C4—C5—C6176 (3)C12A—O5—C13—C1260.4 (6)
C8—C4—C5—C6177.5 (6)O5—C12—C13—C12A63.8 (6)
O1—C1—C6—C5178.18 (14)C7—C12—C13—C12A39.1 (6)
C2—C1—C6—C54.6 (2)C7—C12—C13—O5102.8 (2)
O1—C1—C6—C73.2 (2)O1—Si1—C16—C19179.28 (13)
C2—C1—C6—C7174.04 (15)C15—Si1—C16—C1959.87 (16)
O4—C5—C6—C1174.07 (15)C14—Si1—C16—C1961.75 (16)
C4—C5—C6—C12.6 (3)O1—Si1—C16—C1860.38 (15)
O4—C5—C6—C77.3 (2)C15—Si1—C16—C1860.46 (17)
C4—C5—C6—C7176.07 (16)C14—Si1—C16—C18177.91 (14)
C1—C6—C7—C1266.9 (2)O1—Si1—C16—C1759.59 (15)
C5—C6—C7—C12111.68 (19)C15—Si1—C16—C17179.56 (14)
C1—C6—C7—C12A118.2 (5)C14—Si1—C16—C1757.94 (16)
C5—C6—C7—C12A60.4 (5)

Experimental details

Crystal data
Chemical formulaC19H28O5Si
Mr364.5
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)7.5682 (3), 12.2488 (4), 20.6905 (8)
β (°) 93.990 (4)
V3)1913.39 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.55 × 0.44 × 0.35
Data collection
DiffractometerAgilent Xcalibur
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.938, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
6727, 3430, 2858
Rint0.017
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.09
No. of reflections3430
No. of parameters243
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.18

Computer programs: CrysAlis PRO (Agilent, 2010), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010), PLATON (Spek, 2009), WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006).

 

Acknowledgements

We would like to thank the National Centre for Research and Development (Poland) for financial support (grant No. LIDER/07/581L-2/10/NCBiR/2011)

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBerthalon, S., Motta-Viola, L., Regnouf-de-Vains, J.-B., Lamartine, R., Lecocq, S. & Perrin, M. (1999). Eur. J. Org. Chem. pp. 2269–2274.  CrossRef Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLanger, V. & Becker, H.-D. (1993). Z. Kristallogr. 207, 153–155.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPadwa, A. & Murphree, S. S. (2006). ARKIVOC, iii, 6–33.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatterson, J. W. (1995). J. Org. Chem. 60, 4542–4548.  CrossRef CAS Web of Science Google Scholar
First citationPlé, P. A., Hamon, A. & Jones, G. (1997). Tetrahedron, 53, 3395–3400.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds