organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(Furan-2-yl)-1-(4-meth­­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India, and bChemistry Department, Saurashtra University, Rajkot 360 005, India
*Correspondence e-mail: rkant.ju@gmail.com

(Received 12 September 2011; accepted 21 October 2011; online 5 November 2011)

In the title mol­ecule, C14H12O3, the prop-2-en-1-one unit forms dihedral angles of 12.96 (5) and 7.89 (7)° with the 4-meth­oxy­phenyl group and the furan ring, respectively. The furan and benzene rings form a dihedral angle of 8.56 (5)°. In the crystal, C—H⋯π and ππ inter­actions are observed between the benzene and heterocyclic rings [centroid–centroid distance = 3.760 (1) Å].

Related literature

For biological properties of chalcone derivatives, see: Hsieh et al. (1998[Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39-46.]); Anto et al. (1994[Anto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73-80.]); Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]); Xue et al. (2004[Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745-753.]). For the effectiveness of chalcones against cancer, see: De Vincenzo et al. (2000[De Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305-312.]); Dimmock et al. (1998[Dimmock, J. R., et al. (1998). J. Med. Chem. 41, 1014-1026.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1467.]); Guo et al. (2008[Guo, H.-M., Wang, X.-B. & Jian, F.-F. (2008). Acta Cryst. E64, o1951.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12O3

  • Mr = 228.24

  • Monoclinic, P 21 /n

  • a = 7.1583 (3) Å

  • b = 19.1516 (8) Å

  • c = 8.4293 (3) Å

  • β = 94.357 (4)°

  • V = 1152.26 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.976, Tmax = 1.000

  • 13386 measured reflections

  • 2027 independent reflections

  • 1546 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.096

  • S = 1.03

  • 2027 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg1i 0.93 2.76 3.592 (2) 149
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Chalcones and its derivatives have attracted particular interest during the last few decades due to use of such system as the core structure in many drug substances covering wide range of pharmacological application. Chalcone derivatives are reported to possess a broad spectrum of biological properties (Bhat et al., 2005; Xue et al., 2004; Hsieh et al.,1998; Anto et al., 1994; De Vincenzo et al.,2000; Dimmock et al., 1998). The bond lengths and angles observed in (I) show normal values and are comparable with related structures (Fun et al., 2008; Guo et al., 2008). In (I), the molecule exhibits an E configuration with respect to the C2=C3 double bond with the C1—C2—C3—C4 torsion angle being 179.95 (15)°. The least-square plane through the enone moiety (O15C1C2C3) makes dihedral angles of 12.96 (5)° and 7.89 (7)° with the benzene and furan rings, respectively. The dihedral angle between the 4-methoxy-phenyl group and furan ring is 8.56 (5)°, indicating that they are slightly twisted reletive to each other. While no classical hydrogen bonds are present, the C—H···π hydrogen bonds (Cg1 is the centroid of the furan ring and Cg2 is the centroid of the benzene ring are stabilizing the crystal structure. The crystal structure is further stabilized by π-π interactions between the benzene ring at (x, y, z)and furan ring at (1 + x, y, z) [centroid separation = 3.760 (1) Å, interplanar spacing = 3.510 Å and centroid shift = 1.35 Å].

Related literature top

For biological properties of chalcone derivatives, see: Hsieh et al. (1998); Anto et al. (1994); Bhat et al. (2005); Xue et al. (2004). For the effectiveness of chalcones against cancer, see: De Vincenzo et al. (2000); Dimmock et al. (1998). For related structures, see: Fun et al. (2008); Guo et al. (2008).

Experimental top

A mixture of the p-methoxyacetophenone (1.5 g, 0.01 mol), furfural (0.9 ml, 0.01 mol) and 40% NaOH (1 ml) was stirred in methanol (8 ml) for 24 h to afford the title compound (m.p. 341 K). Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature.

Refinement top

All H atoms were positioned geometrically and treated as riding atoms [C—H = 0.93–0.96 Å].

Structure description top

Chalcones and its derivatives have attracted particular interest during the last few decades due to use of such system as the core structure in many drug substances covering wide range of pharmacological application. Chalcone derivatives are reported to possess a broad spectrum of biological properties (Bhat et al., 2005; Xue et al., 2004; Hsieh et al.,1998; Anto et al., 1994; De Vincenzo et al.,2000; Dimmock et al., 1998). The bond lengths and angles observed in (I) show normal values and are comparable with related structures (Fun et al., 2008; Guo et al., 2008). In (I), the molecule exhibits an E configuration with respect to the C2=C3 double bond with the C1—C2—C3—C4 torsion angle being 179.95 (15)°. The least-square plane through the enone moiety (O15C1C2C3) makes dihedral angles of 12.96 (5)° and 7.89 (7)° with the benzene and furan rings, respectively. The dihedral angle between the 4-methoxy-phenyl group and furan ring is 8.56 (5)°, indicating that they are slightly twisted reletive to each other. While no classical hydrogen bonds are present, the C—H···π hydrogen bonds (Cg1 is the centroid of the furan ring and Cg2 is the centroid of the benzene ring are stabilizing the crystal structure. The crystal structure is further stabilized by π-π interactions between the benzene ring at (x, y, z)and furan ring at (1 + x, y, z) [centroid separation = 3.760 (1) Å, interplanar spacing = 3.510 Å and centroid shift = 1.35 Å].

For biological properties of chalcone derivatives, see: Hsieh et al. (1998); Anto et al. (1994); Bhat et al. (2005); Xue et al. (2004). For the effectiveness of chalcones against cancer, see: De Vincenzo et al. (2000); Dimmock et al. (1998). For related structures, see: Fun et al. (2008); Guo et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title molecule with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the c axis.
(E)-3-(Furan-2-yl)-1-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C14H12O3F(000) = 480
Mr = 228.24Dx = 1.316 Mg m3
Monoclinic, P21/nMelting point: 341 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.1583 (3) ÅCell parameters from 5366 reflections
b = 19.1516 (8) Åθ = 3.6–29.0°
c = 8.4293 (3) ŵ = 0.09 mm1
β = 94.357 (4)°T = 293 K
V = 1152.26 (8) Å3Block, yellow
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
2027 independent reflections
Radiation source: fine-focus sealed tube1546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.1049 pixels mm-1θmax = 25.0°, θmin = 3.6°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 2222
Tmin = 0.976, Tmax = 1.000l = 1010
13386 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.2369P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2027 reflectionsΔρmax = 0.13 e Å3
156 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0089 (17)
Crystal data top
C14H12O3V = 1152.26 (8) Å3
Mr = 228.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1583 (3) ŵ = 0.09 mm1
b = 19.1516 (8) ÅT = 293 K
c = 8.4293 (3) Å0.3 × 0.2 × 0.2 mm
β = 94.357 (4)°
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
2027 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
1546 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 1.000Rint = 0.028
13386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.03Δρmax = 0.13 e Å3
2027 reflectionsΔρmin = 0.13 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5604 (2)0.90359 (8)0.00421 (19)0.0538 (4)
C20.3963 (2)0.85830 (8)0.01140 (19)0.0553 (4)
H20.39540.82900.09930.066*
C30.2496 (2)0.85775 (8)0.09527 (19)0.0548 (4)
H30.25460.88770.18180.066*
C40.0853 (2)0.81579 (8)0.09015 (19)0.0543 (4)
C60.0871 (3)0.73468 (11)0.0068 (2)0.0783 (6)
H60.12710.69940.07200.094*
C70.1863 (3)0.75916 (11)0.1198 (2)0.0774 (6)
H70.30480.74460.15910.093*
C80.0767 (2)0.81144 (10)0.1830 (2)0.0701 (5)
H80.10950.83830.27270.084*
C90.7104 (2)0.90560 (8)0.12703 (18)0.0481 (4)
C100.7260 (2)0.85704 (8)0.24994 (19)0.0545 (4)
H100.63480.82270.25520.065*
C110.8739 (2)0.85887 (8)0.3638 (2)0.0581 (4)
H110.88270.82540.44400.070*
C121.0100 (2)0.91016 (8)0.36004 (19)0.0519 (4)
C130.9963 (2)0.95944 (8)0.2403 (2)0.0582 (4)
H131.08630.99430.23650.070*
C140.8480 (2)0.95650 (8)0.1263 (2)0.0571 (4)
H140.83990.98990.04600.068*
C171.3024 (2)0.95549 (10)0.4718 (2)0.0740 (5)
H17A1.36000.94900.37370.111*
H17B1.39310.94710.55960.111*
H17C1.25671.00250.47730.111*
O50.08105 (16)0.76778 (6)0.02948 (13)0.0675 (4)
O150.57315 (17)0.93872 (7)0.12483 (15)0.0750 (4)
O161.14981 (16)0.90766 (6)0.47907 (14)0.0687 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0570 (10)0.0505 (9)0.0550 (10)0.0044 (8)0.0116 (8)0.0056 (8)
C20.0572 (10)0.0542 (10)0.0547 (10)0.0003 (8)0.0049 (8)0.0055 (8)
C30.0612 (10)0.0509 (9)0.0527 (9)0.0065 (8)0.0076 (8)0.0005 (8)
C40.0568 (10)0.0557 (10)0.0503 (9)0.0069 (8)0.0032 (7)0.0081 (8)
C60.0736 (13)0.0847 (14)0.0782 (13)0.0259 (11)0.0153 (10)0.0189 (11)
C70.0565 (11)0.0969 (15)0.0789 (14)0.0069 (11)0.0047 (10)0.0358 (12)
C80.0661 (12)0.0820 (13)0.0605 (11)0.0119 (10)0.0062 (9)0.0151 (10)
C90.0499 (9)0.0438 (8)0.0519 (9)0.0006 (7)0.0129 (7)0.0024 (7)
C100.0534 (9)0.0495 (9)0.0609 (10)0.0112 (7)0.0077 (8)0.0065 (8)
C110.0611 (10)0.0533 (10)0.0596 (10)0.0100 (8)0.0024 (8)0.0121 (8)
C120.0513 (9)0.0496 (9)0.0554 (10)0.0028 (7)0.0089 (7)0.0027 (8)
C130.0574 (10)0.0506 (10)0.0675 (11)0.0128 (8)0.0112 (8)0.0023 (8)
C140.0622 (10)0.0494 (9)0.0609 (10)0.0050 (8)0.0126 (8)0.0119 (8)
C170.0587 (11)0.0759 (12)0.0871 (14)0.0184 (9)0.0024 (9)0.0030 (11)
O50.0650 (8)0.0726 (8)0.0642 (8)0.0123 (6)0.0009 (6)0.0002 (6)
O150.0731 (8)0.0854 (9)0.0663 (8)0.0068 (7)0.0035 (6)0.0267 (7)
O160.0625 (7)0.0702 (8)0.0717 (8)0.0168 (6)0.0055 (6)0.0065 (6)
Geometric parameters (Å, º) top
C1—O151.2284 (18)C9—C141.386 (2)
C1—C21.474 (2)C9—C101.390 (2)
C1—C91.483 (2)C10—C111.374 (2)
C2—C31.330 (2)C10—H100.9300
C2—H20.9300C11—C121.385 (2)
C3—C41.428 (2)C11—H110.9300
C3—H30.9300C12—O161.3633 (18)
C4—C81.351 (2)C12—C131.380 (2)
C4—O51.3667 (19)C13—C141.378 (2)
C6—C71.322 (3)C13—H130.9300
C6—O51.361 (2)C14—H140.9300
C6—H60.9300C17—O161.4307 (19)
C7—C81.402 (3)C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—H80.9300C17—H17C0.9600
O15—C1—C2120.42 (15)C11—C10—C9121.16 (14)
O15—C1—C9120.53 (15)C11—C10—H10119.4
C2—C1—C9119.05 (14)C9—C10—H10119.4
C3—C2—C1122.54 (15)C10—C11—C12120.51 (15)
C3—C2—H2118.7C10—C11—H11119.7
C1—C2—H2118.7C12—C11—H11119.7
C2—C3—C4126.45 (15)O16—C12—C13124.72 (14)
C2—C3—H3116.8O16—C12—C11115.88 (14)
C4—C3—H3116.8C13—C12—C11119.40 (15)
C8—C4—O5108.66 (15)C14—C13—C12119.35 (15)
C8—C4—C3133.60 (17)C14—C13—H13120.3
O5—C4—C3117.73 (13)C12—C13—H13120.3
C7—C6—O5111.29 (18)C13—C14—C9122.40 (15)
C7—C6—H6124.4C13—C14—H14118.8
O5—C6—H6124.4C9—C14—H14118.8
C6—C7—C8106.16 (17)O16—C17—H17A109.5
C6—C7—H7126.9O16—C17—H17B109.5
C8—C7—H7126.9H17A—C17—H17B109.5
C4—C8—C7107.71 (18)O16—C17—H17C109.5
C4—C8—H8126.1H17A—C17—H17C109.5
C7—C8—H8126.1H17B—C17—H17C109.5
C14—C9—C10117.17 (15)C6—O5—C4106.19 (14)
C14—C9—C1119.32 (14)C12—O16—C17117.81 (13)
C10—C9—C1123.45 (14)
O15—C1—C2—C35.9 (2)C1—C9—C10—C11176.21 (15)
C9—C1—C2—C3174.64 (15)C9—C10—C11—C121.1 (3)
C1—C2—C3—C4179.95 (14)C10—C11—C12—O16179.49 (15)
C2—C3—C4—C8176.35 (18)C10—C11—C12—C130.3 (2)
C2—C3—C4—O54.8 (2)O16—C12—C13—C14179.98 (15)
O5—C6—C7—C80.2 (2)C11—C12—C13—C140.3 (2)
O5—C4—C8—C70.07 (19)C12—C13—C14—C90.1 (2)
C3—C4—C8—C7179.02 (17)C10—C9—C14—C130.7 (2)
C6—C7—C8—C40.1 (2)C1—C9—C14—C13176.87 (15)
O15—C1—C9—C1411.8 (2)C7—C6—O5—C40.3 (2)
C2—C1—C9—C14168.82 (13)C8—C4—O5—C60.21 (18)
O15—C1—C9—C10165.65 (15)C3—C4—O5—C6179.35 (14)
C2—C1—C9—C1013.8 (2)C13—C12—O16—C176.0 (2)
C14—C9—C10—C111.2 (2)C11—C12—O16—C17174.30 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.932.763.592 (2)149
C17—H17C···Cg2ii0.963.073.788 (2)132
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H12O3
Mr228.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.1583 (3), 19.1516 (8), 8.4293 (3)
β (°) 94.357 (4)
V3)1152.26 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur S
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.976, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13386, 2027, 1546
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.03
No. of reflections2027
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.932.7613.592 (2)149
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

RK acknowledges the Department of Science and Technology for use of the single-crystal X-ray diffractometer, sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to UGC for funding under a research project [No. 3704154/2009 (J&K) (SR)].

References

First citationAnto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73–80.  CrossRef CAS Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305–312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., et al. (1998). J. Med. Chem. 41, 1014–1026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, H.-M., Wang, X.-B. & Jian, F.-F. (2008). Acta Cryst. E64, o1951.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39–46.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds