organic compounds
(E)-3-(Furan-2-yl)-1-(4-methoxyphenyl)prop-2-en-1-one
aX-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India, and bChemistry Department, Saurashtra University, Rajkot 360 005, India
*Correspondence e-mail: rkant.ju@gmail.com
In the title molecule, C14H12O3, the prop-2-en-1-one unit forms dihedral angles of 12.96 (5) and 7.89 (7)° with the 4-methoxyphenyl group and the furan ring, respectively. The furan and benzene rings form a dihedral angle of 8.56 (5)°. In the crystal, C—H⋯π and π–π interactions are observed between the benzene and heterocyclic rings [centroid–centroid distance = 3.760 (1) Å].
Related literature
For biological properties of chalcone derivatives, see: Hsieh et al. (1998); Anto et al. (1994); Bhat et al. (2005); Xue et al. (2004). For the effectiveness of against cancer, see: De Vincenzo et al. (2000); Dimmock et al. (1998). For related structures, see: Fun et al. (2008); Guo et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Supporting information
https://doi.org/10.1107/S160053681104373X/gk2411sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681104373X/gk2411Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S160053681104373X/gk2411Isup3.cml
A mixture of the p-methoxyacetophenone (1.5 g, 0.01 mol), furfural (0.9 ml, 0.01 mol) and 40% NaOH (1 ml) was stirred in methanol (8 ml) for 24 h to afford the title compound (m.p. 341 K). Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature.
All H atoms were positioned geometrically and treated as riding atoms [C—H = 0.93–0.96 Å].
Chalcones and its derivatives have attracted particular interest during the last few decades due to use of such system as the core structure in many drug substances covering wide range of pharmacological application. Chalcone derivatives are reported to possess a broad spectrum of biological properties (Bhat et al., 2005; Xue et al., 2004; Hsieh et al.,1998; Anto et al., 1994; De Vincenzo et al.,2000; Dimmock et al., 1998). The bond lengths and angles observed in (I) show normal values and are comparable with related structures (Fun et al., 2008; Guo et al., 2008). In (I), the molecule exhibits an E configuration with respect to the C2=C3 double bond with the C1—C2—C3—C4 torsion angle being 179.95 (15)°. The least-square plane through the enone moiety (O15C1C2C3) makes dihedral angles of 12.96 (5)° and 7.89 (7)° with the benzene and furan rings, respectively. The dihedral angle between the 4-methoxy-phenyl group and furan ring is 8.56 (5)°, indicating that they are slightly twisted reletive to each other. While no classical hydrogen bonds are present, the C—H···π hydrogen bonds (Cg1 is the centroid of the furan ring and Cg2 is the centroid of the benzene ring are stabilizing the The is further stabilized by π-π interactions between the benzene ring at (x, y, z)and furan ring at (1 + x, y, z) [centroid separation = 3.760 (1) Å, = 3.510 Å and centroid shift = 1.35 Å].
For biological properties of chalcone derivatives, see: Hsieh et al. (1998); Anto et al. (1994); Bhat et al. (2005); Xue et al. (2004). For the effectiveness of
against cancer, see: De Vincenzo et al. (2000); Dimmock et al. (1998). For related structures, see: Fun et al. (2008); Guo et al. (2008).Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).C14H12O3 | F(000) = 480 |
Mr = 228.24 | Dx = 1.316 Mg m−3 |
Monoclinic, P21/n | Melting point: 341 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1583 (3) Å | Cell parameters from 5366 reflections |
b = 19.1516 (8) Å | θ = 3.6–29.0° |
c = 8.4293 (3) Å | µ = 0.09 mm−1 |
β = 94.357 (4)° | T = 293 K |
V = 1152.26 (8) Å3 | Block, yellow |
Z = 4 | 0.3 × 0.2 × 0.2 mm |
Oxford Diffraction Xcalibur S diffractometer | 2027 independent reflections |
Radiation source: fine-focus sealed tube | 1546 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 25.0°, θmin = 3.6° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | k = −22→22 |
Tmin = 0.976, Tmax = 1.000 | l = −10→10 |
13386 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0349P)2 + 0.2369P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2027 reflections | Δρmax = 0.13 e Å−3 |
156 parameters | Δρmin = −0.13 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0089 (17) |
C14H12O3 | V = 1152.26 (8) Å3 |
Mr = 228.24 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.1583 (3) Å | µ = 0.09 mm−1 |
b = 19.1516 (8) Å | T = 293 K |
c = 8.4293 (3) Å | 0.3 × 0.2 × 0.2 mm |
β = 94.357 (4)° |
Oxford Diffraction Xcalibur S diffractometer | 2027 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | 1546 reflections with I > 2σ(I) |
Tmin = 0.976, Tmax = 1.000 | Rint = 0.028 |
13386 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.13 e Å−3 |
2027 reflections | Δρmin = −0.13 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5604 (2) | 0.90359 (8) | −0.00421 (19) | 0.0538 (4) | |
C2 | 0.3963 (2) | 0.85830 (8) | 0.01140 (19) | 0.0553 (4) | |
H2 | 0.3954 | 0.8290 | 0.0993 | 0.066* | |
C3 | 0.2496 (2) | 0.85775 (8) | −0.09527 (19) | 0.0548 (4) | |
H3 | 0.2546 | 0.8877 | −0.1818 | 0.066* | |
C4 | 0.0853 (2) | 0.81579 (8) | −0.09015 (19) | 0.0543 (4) | |
C6 | −0.0871 (3) | 0.73468 (11) | 0.0068 (2) | 0.0783 (6) | |
H6 | −0.1271 | 0.6994 | 0.0720 | 0.094* | |
C7 | −0.1863 (3) | 0.75916 (11) | −0.1198 (2) | 0.0774 (6) | |
H7 | −0.3048 | 0.7446 | −0.1591 | 0.093* | |
C8 | −0.0767 (2) | 0.81144 (10) | −0.1830 (2) | 0.0701 (5) | |
H8 | −0.1095 | 0.8383 | −0.2727 | 0.084* | |
C9 | 0.7104 (2) | 0.90560 (8) | 0.12703 (18) | 0.0481 (4) | |
C10 | 0.7260 (2) | 0.85704 (8) | 0.24994 (19) | 0.0545 (4) | |
H10 | 0.6348 | 0.8227 | 0.2552 | 0.065* | |
C11 | 0.8739 (2) | 0.85887 (8) | 0.3638 (2) | 0.0581 (4) | |
H11 | 0.8827 | 0.8254 | 0.4440 | 0.070* | |
C12 | 1.0100 (2) | 0.91016 (8) | 0.36004 (19) | 0.0519 (4) | |
C13 | 0.9963 (2) | 0.95944 (8) | 0.2403 (2) | 0.0582 (4) | |
H13 | 1.0863 | 0.9943 | 0.2365 | 0.070* | |
C14 | 0.8480 (2) | 0.95650 (8) | 0.1263 (2) | 0.0571 (4) | |
H14 | 0.8399 | 0.9899 | 0.0460 | 0.068* | |
C17 | 1.3024 (2) | 0.95549 (10) | 0.4718 (2) | 0.0740 (5) | |
H17A | 1.3600 | 0.9490 | 0.3737 | 0.111* | |
H17B | 1.3931 | 0.9471 | 0.5596 | 0.111* | |
H17C | 1.2567 | 1.0025 | 0.4773 | 0.111* | |
O5 | 0.08105 (16) | 0.76778 (6) | 0.02948 (13) | 0.0675 (4) | |
O15 | 0.57315 (17) | 0.93872 (7) | −0.12483 (15) | 0.0750 (4) | |
O16 | 1.14981 (16) | 0.90766 (6) | 0.47907 (14) | 0.0687 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0570 (10) | 0.0505 (9) | 0.0550 (10) | 0.0044 (8) | 0.0116 (8) | 0.0056 (8) |
C2 | 0.0572 (10) | 0.0542 (10) | 0.0547 (10) | −0.0003 (8) | 0.0049 (8) | 0.0055 (8) |
C3 | 0.0612 (10) | 0.0509 (9) | 0.0527 (9) | 0.0065 (8) | 0.0076 (8) | −0.0005 (8) |
C4 | 0.0568 (10) | 0.0557 (10) | 0.0503 (9) | 0.0069 (8) | 0.0032 (7) | −0.0081 (8) |
C6 | 0.0736 (13) | 0.0847 (14) | 0.0782 (13) | −0.0259 (11) | 0.0153 (10) | −0.0189 (11) |
C7 | 0.0565 (11) | 0.0969 (15) | 0.0789 (14) | −0.0069 (11) | 0.0047 (10) | −0.0358 (12) |
C8 | 0.0661 (12) | 0.0820 (13) | 0.0605 (11) | 0.0119 (10) | −0.0062 (9) | −0.0151 (10) |
C9 | 0.0499 (9) | 0.0438 (8) | 0.0519 (9) | 0.0006 (7) | 0.0129 (7) | 0.0024 (7) |
C10 | 0.0534 (9) | 0.0495 (9) | 0.0609 (10) | −0.0112 (7) | 0.0077 (8) | 0.0065 (8) |
C11 | 0.0611 (10) | 0.0533 (10) | 0.0596 (10) | −0.0100 (8) | 0.0024 (8) | 0.0121 (8) |
C12 | 0.0513 (9) | 0.0496 (9) | 0.0554 (10) | −0.0028 (7) | 0.0089 (7) | −0.0027 (8) |
C13 | 0.0574 (10) | 0.0506 (10) | 0.0675 (11) | −0.0128 (8) | 0.0112 (8) | 0.0023 (8) |
C14 | 0.0622 (10) | 0.0494 (9) | 0.0609 (10) | −0.0050 (8) | 0.0126 (8) | 0.0119 (8) |
C17 | 0.0587 (11) | 0.0759 (12) | 0.0871 (14) | −0.0184 (9) | 0.0024 (9) | −0.0030 (11) |
O5 | 0.0650 (8) | 0.0726 (8) | 0.0642 (8) | −0.0123 (6) | −0.0009 (6) | −0.0002 (6) |
O15 | 0.0731 (8) | 0.0854 (9) | 0.0663 (8) | −0.0068 (7) | 0.0035 (6) | 0.0267 (7) |
O16 | 0.0625 (7) | 0.0702 (8) | 0.0717 (8) | −0.0168 (6) | −0.0055 (6) | 0.0065 (6) |
C1—O15 | 1.2284 (18) | C9—C14 | 1.386 (2) |
C1—C2 | 1.474 (2) | C9—C10 | 1.390 (2) |
C1—C9 | 1.483 (2) | C10—C11 | 1.374 (2) |
C2—C3 | 1.330 (2) | C10—H10 | 0.9300 |
C2—H2 | 0.9300 | C11—C12 | 1.385 (2) |
C3—C4 | 1.428 (2) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | C12—O16 | 1.3633 (18) |
C4—C8 | 1.351 (2) | C12—C13 | 1.380 (2) |
C4—O5 | 1.3667 (19) | C13—C14 | 1.378 (2) |
C6—C7 | 1.322 (3) | C13—H13 | 0.9300 |
C6—O5 | 1.361 (2) | C14—H14 | 0.9300 |
C6—H6 | 0.9300 | C17—O16 | 1.4307 (19) |
C7—C8 | 1.402 (3) | C17—H17A | 0.9600 |
C7—H7 | 0.9300 | C17—H17B | 0.9600 |
C8—H8 | 0.9300 | C17—H17C | 0.9600 |
O15—C1—C2 | 120.42 (15) | C11—C10—C9 | 121.16 (14) |
O15—C1—C9 | 120.53 (15) | C11—C10—H10 | 119.4 |
C2—C1—C9 | 119.05 (14) | C9—C10—H10 | 119.4 |
C3—C2—C1 | 122.54 (15) | C10—C11—C12 | 120.51 (15) |
C3—C2—H2 | 118.7 | C10—C11—H11 | 119.7 |
C1—C2—H2 | 118.7 | C12—C11—H11 | 119.7 |
C2—C3—C4 | 126.45 (15) | O16—C12—C13 | 124.72 (14) |
C2—C3—H3 | 116.8 | O16—C12—C11 | 115.88 (14) |
C4—C3—H3 | 116.8 | C13—C12—C11 | 119.40 (15) |
C8—C4—O5 | 108.66 (15) | C14—C13—C12 | 119.35 (15) |
C8—C4—C3 | 133.60 (17) | C14—C13—H13 | 120.3 |
O5—C4—C3 | 117.73 (13) | C12—C13—H13 | 120.3 |
C7—C6—O5 | 111.29 (18) | C13—C14—C9 | 122.40 (15) |
C7—C6—H6 | 124.4 | C13—C14—H14 | 118.8 |
O5—C6—H6 | 124.4 | C9—C14—H14 | 118.8 |
C6—C7—C8 | 106.16 (17) | O16—C17—H17A | 109.5 |
C6—C7—H7 | 126.9 | O16—C17—H17B | 109.5 |
C8—C7—H7 | 126.9 | H17A—C17—H17B | 109.5 |
C4—C8—C7 | 107.71 (18) | O16—C17—H17C | 109.5 |
C4—C8—H8 | 126.1 | H17A—C17—H17C | 109.5 |
C7—C8—H8 | 126.1 | H17B—C17—H17C | 109.5 |
C14—C9—C10 | 117.17 (15) | C6—O5—C4 | 106.19 (14) |
C14—C9—C1 | 119.32 (14) | C12—O16—C17 | 117.81 (13) |
C10—C9—C1 | 123.45 (14) | ||
O15—C1—C2—C3 | −5.9 (2) | C1—C9—C10—C11 | 176.21 (15) |
C9—C1—C2—C3 | 174.64 (15) | C9—C10—C11—C12 | 1.1 (3) |
C1—C2—C3—C4 | 179.95 (14) | C10—C11—C12—O16 | 179.49 (15) |
C2—C3—C4—C8 | 176.35 (18) | C10—C11—C12—C13 | −0.3 (2) |
C2—C3—C4—O5 | −4.8 (2) | O16—C12—C13—C14 | 179.98 (15) |
O5—C6—C7—C8 | −0.2 (2) | C11—C12—C13—C14 | −0.3 (2) |
O5—C4—C8—C7 | 0.07 (19) | C12—C13—C14—C9 | 0.1 (2) |
C3—C4—C8—C7 | 179.02 (17) | C10—C9—C14—C13 | 0.7 (2) |
C6—C7—C8—C4 | 0.1 (2) | C1—C9—C14—C13 | −176.87 (15) |
O15—C1—C9—C14 | 11.8 (2) | C7—C6—O5—C4 | 0.3 (2) |
C2—C1—C9—C14 | −168.82 (13) | C8—C4—O5—C6 | −0.21 (18) |
O15—C1—C9—C10 | −165.65 (15) | C3—C4—O5—C6 | −179.35 (14) |
C2—C1—C9—C10 | 13.8 (2) | C13—C12—O16—C17 | −6.0 (2) |
C14—C9—C10—C11 | −1.2 (2) | C11—C12—O16—C17 | 174.30 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···Cg1i | 0.93 | 2.76 | 3.592 (2) | 149 |
C17—H17C···Cg2ii | 0.96 | 3.07 | 3.788 (2) | 132 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H12O3 |
Mr | 228.24 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 7.1583 (3), 19.1516 (8), 8.4293 (3) |
β (°) | 94.357 (4) |
V (Å3) | 1152.26 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.3 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur S |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.976, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13386, 2027, 1546 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.096, 1.03 |
No. of reflections | 2027 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.13 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···Cg1i | 0.93 | 2.761 | 3.592 (2) | 149 |
Symmetry code: (i) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
RK acknowledges the Department of Science and Technology for use of the single-crystal X-ray diffractometer, sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to UGC for funding under a research project [No. 3704154/2009 (J&K) (SR)].
References
Anto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73–80. CrossRef CAS Google Scholar
Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180. Web of Science CrossRef PubMed CAS Google Scholar
De Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305–312. Web of Science CrossRef PubMed CAS Google Scholar
Dimmock, J. R., et al. (1998). J. Med. Chem. 41, 1014–1026. Web of Science CSD CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Patil, P. S., Jebas, S. R. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guo, H.-M., Wang, X.-B. & Jian, F.-F. (2008). Acta Cryst. E64, o1951. Web of Science CrossRef IUCr Journals Google Scholar
Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39–46. Web of Science CrossRef CAS PubMed Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcones and its derivatives have attracted particular interest during the last few decades due to use of such system as the core structure in many drug substances covering wide range of pharmacological application. Chalcone derivatives are reported to possess a broad spectrum of biological properties (Bhat et al., 2005; Xue et al., 2004; Hsieh et al.,1998; Anto et al., 1994; De Vincenzo et al.,2000; Dimmock et al., 1998). The bond lengths and angles observed in (I) show normal values and are comparable with related structures (Fun et al., 2008; Guo et al., 2008). In (I), the molecule exhibits an E configuration with respect to the C2=C3 double bond with the C1—C2—C3—C4 torsion angle being 179.95 (15)°. The least-square plane through the enone moiety (O15C1C2C3) makes dihedral angles of 12.96 (5)° and 7.89 (7)° with the benzene and furan rings, respectively. The dihedral angle between the 4-methoxy-phenyl group and furan ring is 8.56 (5)°, indicating that they are slightly twisted reletive to each other. While no classical hydrogen bonds are present, the C—H···π hydrogen bonds (Cg1 is the centroid of the furan ring and Cg2 is the centroid of the benzene ring are stabilizing the crystal structure. The crystal structure is further stabilized by π-π interactions between the benzene ring at (x, y, z)and furan ring at (1 + x, y, z) [centroid separation = 3.760 (1) Å, interplanar spacing = 3.510 Å and centroid shift = 1.35 Å].