metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[tris­­(ethyl­enedi­amine-κ2N,N′)cobalt(III)] octa­kis-μ-3-oxido-hexa­deca-μ2-oxido-tetra­deca­oxido-μ12-tetra­oxo­silicato-octa­molybdenum(VI)hexa­vanadium(IV,V) hexa­hydrate

aCollege of Science and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao Shandong 266555, People's Republic of China, and bCollege of Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao Shandong 266555, People's Republic of China
*Correspondence e-mail: lyk@upc.edu.cn

(Received 7 October 2011; accepted 14 November 2011; online 19 November 2011)

The title compound, [Co(C2H8N2)3]2[SiMo8V4O40(VO)2]·6H2O, was prepared under hydro­thermal conditions. The asymmetric unit consists of a transition metal complex [Co(en)3]3+ cation (en is ethyl­enediamine), one half of an [SiMo8V4O40(VO)2]6− heteropolyanion, two solvent water mol­ecules in general positions and two half-mol­ecules of water located on a mirror plane. In the complex cation, the Co3+ ion is in a distorted octa­hedral coordination environment formed by six N atoms of the three chelating en ligands. One of the en ligands exhibits disorder of its aliphatic chain over two sets of sites of equal occupancy. The [SiMo8V4O40(VO)2]6− heteropolyanion is a four-electron reduced bivanadyl-capped α-Keggin-type molybdenum–vanadium–oxide cluster. In the crystal, it is located on a mirror plane, which results in disorder of the central tetra­hedral SiO4 group: the O atoms of this group occupy two sets of sites related by a mirror plane. Furthermore, all of the eight μ2-oxide groups are also disordered over two sets of sites with equal occupancy. There are extensive inter­molecular N—H⋯O hydrogen bonds between the complex cations and inorganic polyoxidoanions, leading to a three-dimensional supra­molecular network.

Related literature

For general background to polyoxidometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34-48.]); Hill (1998[Hill, C. L. (1998). Chem. Rev. 98, 1-2.]); Kurth et al. (2001[Kurth, D. G., Volkmer, D., Pope, M. T. & Müller, A. (2001). Polyoxometalate Chemistry, p. 301. Dordrecht: Kluwer.]). For bicapped Keggin-type anions, see: Chen & Hill (1996[Chen, Q. & Hill, C. L. (1996). Inorg. Chem. 35, 2403-2405.]); Lu, Cui, Liu et al. (2009[Lu, Y. K., Cui, X. B., Liu, Y. B., Yang, Q. F., Shi, S. Y., Xu, J. Q. & Wang, T. G. (2009). J. Solid State Chem. 182, 690-697.]); Lu, Cui et al. (2010[Lu, Y. K., Cui, X. B., Xu, J. N., Gao, Q., Chen, Y., Jin, J., Shi, S. Y., Xu, J. Q. & Wang, T. G. (2010). J. Coord. Chem. 63, 394-405.]); Lu, Xu & Yu (2010[Lu, Y., Xu, J. & Yu, H. (2010). Acta Cryst. E66, m263-m264.]); Luan et al. (2002[Luan, G. Y., Li, Y. G., Wang, E. B., Han, Z. B., Hu, C. W., Hu, N. H. & Jia, H. Q. (2002). J. Solid State Chem. 165, 1-5.]); Müller et al. (1994[Müller, A., Krickemeyer, E., Dillinger, S., Bögge, H., Plass, W., Proust, A., Dloczik, L., Menke, C., Meyer, J. & Rohlfing, R. (1994). Z. Anorg. Allg. Chem. 620, 599-619.]); Xu et al. (1998[Xu, Y., Xu, J. Q., Yang, G. Y., Wang, T. G., Xing, Y., Lin, Y. H. & Hu, N. H. (1998). Polyhedron, 17, 2441-2445.]). For general background to bond-valence calculations, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). For the structure and chemistry of reduced heteropolyanions, see: Khan et al. (1993[Khan, M. I., Chen, Q. & Zubieta, J. (1993). Inorg. Chem. 32, 2924-2928.]); Lu, Cui, Chen et al. (2009[Lu, Y. K., Cui, X. B., Chen, Y., Xu, J. N., Zhang, Q. B., Liu, Y. B., Xu, J. Q. & Wang, T. G. (2009). J. Solid State Chem. 182, 2111-2117.]), Lu, Xu, Cui et al. (2010[Lu, Y. K., Xu, J. N., Cui, X. B., Jin, J., Shi, S. Y. & Xu, J. Q. (2010). Inorg. Chem. Commun. 13, 46-49.]); Müller et al. (1994[Müller, A., Krickemeyer, E., Dillinger, S., Bögge, H., Plass, W., Proust, A., Dloczik, L., Menke, C., Meyer, J. & Rohlfing, R. (1994). Z. Anorg. Allg. Chem. 620, 599-619.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H8N2)3]2[SiMo8V4O40(VO)2]·6H2O

  • Mr = 2359.83

  • Orthorhombic, P n m a

  • a = 20.744 (4) Å

  • b = 21.498 (4) Å

  • c = 13.623 (3) Å

  • V = 6075 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.13 mm−1

  • T = 293 K

  • 0.22 × 0.21 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.508, Tmax = 0.552

  • 45336 measured reflections

  • 5404 independent reflections

  • 3951 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.133

  • S = 1.05

  • 5404 reflections

  • 505 parameters

  • H-atom parameters constrained

  • Δρmax = 2.04 e Å−3

  • Δρmin = −1.07 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O4i 0.90 2.08 2.918 (10) 154
N1—H1D⋯O14ii 0.90 2.48 2.988 (16) 117
N2—H2D⋯O10iii 0.90 2.24 3.040 (9) 148
N2—H2C⋯O12iv 0.90 2.22 3.034 (11) 151
N3—H3D⋯O19ii 0.90 1.97 2.765 (15) 147
N4—H4D⋯O3v 0.90 2.17 3.042 (9) 164
N4—H4C⋯O15vi 0.90 2.09 2.770 (16) 131
N5—H5D⋯O7ii 0.90 2.26 2.923 (10) 130
N5—H5C⋯O7vi 0.90 2.12 2.905 (11) 145
N5—H5D⋯O13ii 0.90 2.07 2.835 (18) 142
N6—H6C⋯O4i 0.90 2.31 3.126 (11) 150
N6—H6D⋯O10iii 0.90 2.57 3.109 (9) 120
N6—H6C⋯O18i 0.90 2.37 2.972 (11) 124
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (vi) x-1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of polyoxometalates (POMs) has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991; Hill, 1998). Most of the structures in these compounds contain fragments of several well known polyoxoanions, such as Keggin, Lindquist and Dawson anion, or their derivatives, which are the basis for numerous POMs. The Keggin-type structure was of epoch-making signifcance in the history of POM chemistry (Kurth, 2001). In our research group, transition metal complexes (TMCs), such as [Ni(phen)3]2+, [Ni(en)3]2+, [Ni(en)2(H2O)2]2+, [Ni(en)2]2+ and [Cu(en)2(H2O)]2+, are used to effectively modify POMs under hydrothermal conditions (Lu, Cui, Liu et al. 2009; Lu, Cui, Chen et al.. 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Fig. 1, single crystal X-ray diffraction analysis reveals that the title compound consists of a bi-capped α-Keggin polyoxoanion [SiMo8V4O40(VO)2]6–, two TMCs countercations [Co(en)3]3+ and six lattice water molecules. The CoIII ion is in a distorted octahedral coordination geometry, bonded by six N atoms from the three chelating en ligands. The Co—N bond lengths are in the range of 1.948 (8)–1.975 (8) Å. The heteropolyanion [SiMo8V4O40(VO)2]6– can be described as a pseudo-Keggin core [SiMo8V4O40]10– with two additional five-coordinate terminal {VO}2+ units capping two opposite {Mo4O4} square holes. This α-Keggin core [SiMo8V4O40]10–, similar to those of [XMo8V4O40]n– (X= Si, As and P) (Luan et al., 2002; Müller et al., 1994; Xu et al., 1998), consists of four internally edge-shared octahedral {Mo2VO13} connected with each other by corner-sharing oxygen atoms and enwrapping the central disordered SiO4 tetrahedron; to look at it another way, it also a sandwich structure consisting of two {Mo4} rings and one {V4} belt distributed alternately. Furthermore, all of the eight doubly bridging oxide groups (O13–O16, O19–O22) are also disordered with the occupancy factor of 0.5 for each O atom.

The SiO4 tetrahedron has Si—O distances of 1.623 (10)–1.674 (11) Å and bond angles in the range of 108.1 (5)–110.9 (6)°.V1, V2 and all Mo atoms have a distorted {MO6} octahedral environment, and the capped V atoms (V3 and V4) show a distorted {VO5} square pyramidal geometry, respectively. According to the kind of oxygen atoms bonded to the Mo/V atoms, the Mo/V–O bond lengths are divided in three groups: Mo—Oc 2.365 (11)–2.429 (11) Å, V—Oc 2.328 (11)–2.454 (10) Å (Oc, central O atoms); Mo—Ob 1.643 (15)–2.067 (6) Å, V—Ob 1.794 (16)–2.156 (17) Å (Ob, bridged O atoms); Mo—Ot 1.656 (10)–1.698 (8), V—Ot 1.573 (7)–1.649 (8) Å (Ot, terminal O atoms). All of the Si—O, Mo—O and V—O bond lengths are within the normal ranges.

The bond valence sums (BVS) for the Mo and V centers were calculated by using parameters given by Brown (Brown & Altermatt, 1985). The values are 6.15, 6.21, 6.32, 6.30, 6.12 and 6.29 for Mo1, Mo2, Mo3, Mo4, Mo5 and Mo6, and the calculated valence sums for V1, V2, V3 and V4 are 4.47, 4.42, 4.16 and 3.96, respectively. The calculated results indicate that the oxidation state of all Mo centers are +6, V1 and V2 centers have a mixed valence state (+4 and +5), and the capped V atoms are +4, respectively; similar to the reported representative (Xu et al., 1998). We consider that oxalic acid acts as reducing agent reducing VV to VIV in the synthesis.

The molecules are linked into a three-dimensional network by a combination of intermolecular N—H···O and C—H···O hydrogen bonds (Fig. 2).

Related literature top

For general background to polyoxidometalates, see: Pope & Müller (1991); Hill (1998); Kurth et al. (2001). For bicapped Keggin-type structures, see: Chen & Hill (1996); Lu, Cui, Liu et al. (2009); Lu, Cui et al. (2010); Lu, Xu & Yu (2010); Luan et al. (2002); Müller et al. (1994); Xu et al. (1998). For general background to bond-valence calculations, see: Brown & Altermatt (1985). For the structure and chemistry of reduced heteropolyanions, see: Khan et al. (1993); Lu, Cui, Chen et al. (2009), Lu, Xu, Cui et al. (2010); Müller et al. (1994).

Experimental top

A mixture of Na2SiO3.9H2O (0.28 g, 1 mmol), MoO3.2H2O (0.54 g, 3.0 mmol), V2O5 (0.54 g, 3.0 mmol), Co(NO3)2.6H2O (0.44 g, 1.5 mmol), C2H2O4.2H2O (0.25 g, 2.0 mmol) and 18 ml water was stirred for 2 h in air; it was adjusted to pH = 6 with en and was heated in a 30 ml stainless steel reactor with a Teflon-liner at 180°C for 6 days, and then cooled to room temperature. Black prism crystals were isolated with 55% yield (based on Mo). Elemental analysis: calcd: C, 6.11; H, 2.56; N, 7.12; found: C, 6.09; H, 2.51; N, 7.18.

Refinement top

H atoms bonded to C and N atoms were positioned geometrically and refined as riding atoms, with C–H = 0.97 Å, N–H = 0.90 Å and Uiso(H) = 1.2Ueq(C, N). The hydrogen atoms of four crystallographic water molecules could not be located unambiguously from difference Fourier maps, probably due to disorder of the water molecules.Thus the structure was refined without the H atoms of the water molecules (which include the water O atoms O1W, O2W, O3W and O4W). In the SiO4 unit, the four oxygen atoms (O23—O26) are equally disordered about the mirror plane. All of eight µ2-oxide groups are also disordered with an occupancy factor of 0.5 for each O atom. In complex cation, the C3 and C3' atoms were disordered with a 0.5 occupancy and refined isotropically. In the final difference Fourier map, the highest residual electron density was found at 1.74 Å away from O1W atom and the deepest hole at 0.92 Å from Mo4.

Structure description top

The design and synthesis of polyoxometalates (POMs) has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991; Hill, 1998). Most of the structures in these compounds contain fragments of several well known polyoxoanions, such as Keggin, Lindquist and Dawson anion, or their derivatives, which are the basis for numerous POMs. The Keggin-type structure was of epoch-making signifcance in the history of POM chemistry (Kurth, 2001). In our research group, transition metal complexes (TMCs), such as [Ni(phen)3]2+, [Ni(en)3]2+, [Ni(en)2(H2O)2]2+, [Ni(en)2]2+ and [Cu(en)2(H2O)]2+, are used to effectively modify POMs under hydrothermal conditions (Lu, Cui, Liu et al. 2009; Lu, Cui, Chen et al.. 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Fig. 1, single crystal X-ray diffraction analysis reveals that the title compound consists of a bi-capped α-Keggin polyoxoanion [SiMo8V4O40(VO)2]6–, two TMCs countercations [Co(en)3]3+ and six lattice water molecules. The CoIII ion is in a distorted octahedral coordination geometry, bonded by six N atoms from the three chelating en ligands. The Co—N bond lengths are in the range of 1.948 (8)–1.975 (8) Å. The heteropolyanion [SiMo8V4O40(VO)2]6– can be described as a pseudo-Keggin core [SiMo8V4O40]10– with two additional five-coordinate terminal {VO}2+ units capping two opposite {Mo4O4} square holes. This α-Keggin core [SiMo8V4O40]10–, similar to those of [XMo8V4O40]n– (X= Si, As and P) (Luan et al., 2002; Müller et al., 1994; Xu et al., 1998), consists of four internally edge-shared octahedral {Mo2VO13} connected with each other by corner-sharing oxygen atoms and enwrapping the central disordered SiO4 tetrahedron; to look at it another way, it also a sandwich structure consisting of two {Mo4} rings and one {V4} belt distributed alternately. Furthermore, all of the eight doubly bridging oxide groups (O13–O16, O19–O22) are also disordered with the occupancy factor of 0.5 for each O atom.

The SiO4 tetrahedron has Si—O distances of 1.623 (10)–1.674 (11) Å and bond angles in the range of 108.1 (5)–110.9 (6)°.V1, V2 and all Mo atoms have a distorted {MO6} octahedral environment, and the capped V atoms (V3 and V4) show a distorted {VO5} square pyramidal geometry, respectively. According to the kind of oxygen atoms bonded to the Mo/V atoms, the Mo/V–O bond lengths are divided in three groups: Mo—Oc 2.365 (11)–2.429 (11) Å, V—Oc 2.328 (11)–2.454 (10) Å (Oc, central O atoms); Mo—Ob 1.643 (15)–2.067 (6) Å, V—Ob 1.794 (16)–2.156 (17) Å (Ob, bridged O atoms); Mo—Ot 1.656 (10)–1.698 (8), V—Ot 1.573 (7)–1.649 (8) Å (Ot, terminal O atoms). All of the Si—O, Mo—O and V—O bond lengths are within the normal ranges.

The bond valence sums (BVS) for the Mo and V centers were calculated by using parameters given by Brown (Brown & Altermatt, 1985). The values are 6.15, 6.21, 6.32, 6.30, 6.12 and 6.29 for Mo1, Mo2, Mo3, Mo4, Mo5 and Mo6, and the calculated valence sums for V1, V2, V3 and V4 are 4.47, 4.42, 4.16 and 3.96, respectively. The calculated results indicate that the oxidation state of all Mo centers are +6, V1 and V2 centers have a mixed valence state (+4 and +5), and the capped V atoms are +4, respectively; similar to the reported representative (Xu et al., 1998). We consider that oxalic acid acts as reducing agent reducing VV to VIV in the synthesis.

The molecules are linked into a three-dimensional network by a combination of intermolecular N—H···O and C—H···O hydrogen bonds (Fig. 2).

For general background to polyoxidometalates, see: Pope & Müller (1991); Hill (1998); Kurth et al. (2001). For bicapped Keggin-type structures, see: Chen & Hill (1996); Lu, Cui, Liu et al. (2009); Lu, Cui et al. (2010); Lu, Xu & Yu (2010); Luan et al. (2002); Müller et al. (1994); Xu et al. (1998). For general background to bond-valence calculations, see: Brown & Altermatt (1985). For the structure and chemistry of reduced heteropolyanions, see: Khan et al. (1993); Lu, Cui, Chen et al. (2009), Lu, Xu, Cui et al. (2010); Müller et al. (1994).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted. [Symmetry codes: (i) x, 1.5 - y, z]
[Figure 2] Fig. 2. Ball-and-stick representation of the three-dimensional supramolecular network structure of the title compound. Dashed lines represent hydrogen bonds.
Bis[tris(ethylenediamine-κ2N,N')cobalt(III)] octakis-µ-3-oxido-hexadeca-µ2-oxido-tetradecaoxido-µ12- tetraoxosilicato-octamolybdenum(VI)hexavanadium(IV,V) hexahydrate top
Crystal data top
[Co(C2H8N2)3]2[Mo8V6O42Si]·6H2OF(000) = 4568
Mr = 2359.83Dx = 2.580 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4213 reflections
a = 20.744 (4) Åθ = 2.2–24.6°
b = 21.498 (4) ŵ = 3.13 mm1
c = 13.623 (3) ÅT = 293 K
V = 6075 (2) Å3Prism, black
Z = 40.22 × 0.21 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5404 independent reflections
Radiation source: fine-focus sealed tube3951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 10 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 2424
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2525
Tmin = 0.508, Tmax = 0.552l = 1616
45336 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0462P)2 + 70.2923P]
where P = (Fo2 + 2Fc2)/3
5404 reflections(Δ/σ)max = 0.001
505 parametersΔρmax = 2.04 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
[Co(C2H8N2)3]2[Mo8V6O42Si]·6H2OV = 6075 (2) Å3
Mr = 2359.83Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 20.744 (4) ŵ = 3.13 mm1
b = 21.498 (4) ÅT = 293 K
c = 13.623 (3) Å0.22 × 0.21 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5404 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3951 reflections with I > 2σ(I)
Tmin = 0.508, Tmax = 0.552Rint = 0.080
45336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0462P)2 + 70.2923P]
where P = (Fo2 + 2Fc2)/3
5404 reflectionsΔρmax = 2.04 e Å3
505 parametersΔρmin = 1.07 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.79072 (15)0.75000.4979 (2)0.0178 (6)
Mo10.81179 (4)0.62748 (3)0.32716 (5)0.0268 (2)
Mo20.93678 (6)0.75000.36362 (9)0.0397 (3)
Mo30.68820 (6)0.75000.28998 (9)0.0421 (3)
Mo40.76924 (5)0.62768 (4)0.66713 (6)0.0417 (3)
Mo50.89334 (6)0.75000.70708 (8)0.0315 (3)
Mo60.64507 (5)0.75000.63260 (9)0.0307 (3)
V10.90955 (7)0.63391 (7)0.53319 (12)0.0301 (4)
V20.67036 (8)0.63275 (7)0.46240 (13)0.0362 (4)
V30.82853 (10)0.75000.20876 (15)0.0262 (5)
V40.75451 (10)0.75000.78757 (15)0.0263 (5)
Co10.15902 (6)0.58507 (5)0.49030 (9)0.0294 (3)
O10.8208 (5)0.5771 (3)0.2354 (5)0.069 (3)
O21.0004 (4)0.75000.2891 (7)0.041 (2)
O30.6514 (4)0.75000.1786 (6)0.032 (2)
O40.7561 (3)0.5756 (3)0.7579 (5)0.0425 (17)
O50.9315 (5)0.75000.8150 (8)0.066 (3)
O60.5836 (5)0.75000.7100 (8)0.068 (4)
O70.9608 (4)0.5803 (3)0.5471 (6)0.059 (2)
O80.6172 (3)0.5813 (3)0.4485 (6)0.055 (2)
O90.8449 (5)0.75000.0929 (6)0.042 (2)
O100.7337 (4)0.75000.9044 (6)0.032 (2)
O110.8795 (3)0.6921 (3)0.2825 (6)0.051 (2)
O120.7616 (3)0.6916 (3)0.2466 (6)0.0496 (19)
O130.8744 (8)0.5921 (7)0.4047 (12)0.024 (4)0.50
O13'0.8578 (8)0.6084 (8)0.4344 (12)0.028 (4)0.50
O140.7342 (7)0.5892 (7)0.3626 (11)0.028 (3)0.50
O14'0.7450 (7)0.6127 (7)0.4009 (12)0.033 (4)0.50
O150.9674 (7)0.6750 (7)0.4339 (12)0.031 (4)0.50
O15'0.9469 (7)0.6987 (7)0.4560 (11)0.025 (3)0.50
O160.6450 (7)0.6751 (6)0.3373 (11)0.030 (3)0.50
O16'0.6558 (7)0.7021 (7)0.3700 (11)0.031 (3)0.50
O170.8201 (3)0.6912 (3)0.7494 (6)0.051 (2)
O180.7034 (4)0.6918 (3)0.7116 (6)0.050 (2)
O190.8543 (6)0.5898 (6)0.6344 (10)0.025 (3)0.50
O19'0.8298 (6)0.6092 (6)0.5944 (9)0.024 (3)0.50
O200.7004 (8)0.5936 (6)0.5894 (10)0.029 (3)0.50
O20'0.7329 (7)0.6084 (7)0.5620 (11)0.037 (4)0.50
O210.9410 (8)0.6804 (7)0.6581 (11)0.026 (3)0.50
O21'0.9223 (8)0.6960 (7)0.6245 (12)0.030 (4)0.50
O220.6116 (8)0.6835 (9)0.5654 (14)0.036 (4)0.50
O22'0.6377 (8)0.6928 (8)0.5391 (13)0.030 (4)0.50
O230.8434 (5)0.7057 (5)0.4442 (8)0.024 (3)0.50
O240.7554 (5)0.7053 (5)0.4148 (8)0.022 (2)0.50
O250.7361 (5)0.7084 (5)0.5529 (8)0.025 (3)0.50
O260.8291 (5)0.7039 (5)0.5777 (8)0.025 (3)0.50
O1W0.0645 (5)0.75000.5774 (7)0.044 (2)
O2W0.9546 (8)0.6028 (10)0.1408 (12)0.185 (7)
O3W1.007 (2)0.75000.066 (3)0.288 (18)*
O4W0.0681 (10)0.4140 (10)0.1905 (15)0.206 (8)*
N10.2251 (4)0.5308 (4)0.5456 (6)0.0379 (19)
H1C0.22580.53500.61130.045*
H1D0.21560.49090.53150.045*
N20.2313 (4)0.6400 (3)0.4554 (6)0.0338 (18)
H2C0.23580.64110.38970.041*
H2D0.22300.67890.47640.041*
N30.1632 (5)0.5377 (4)0.3662 (6)0.048 (2)
H3C0.20470.52870.35330.058*
H3D0.14220.50140.37430.058*
N40.0946 (4)0.6364 (3)0.4228 (6)0.040 (2)
H4C0.06130.64410.46320.048*
H4D0.11230.67310.40530.048*
N50.0914 (4)0.5316 (3)0.5451 (6)0.039 (2)
H5C0.05300.54160.51870.047*
H5D0.09980.49150.53080.047*
N60.1472 (4)0.6323 (4)0.6110 (6)0.0370 (19)
H6C0.18380.63070.64640.044*
H6D0.13980.67240.59580.044*
C10.2897 (5)0.5464 (5)0.5050 (8)0.043 (2)
H1A0.29490.52890.43990.051*
H1B0.32360.53030.54710.051*
C20.2923 (4)0.6171 (4)0.5011 (7)0.037 (2)
H2A0.29670.63390.56690.044*
H2B0.32910.63050.46260.044*
C30.1369 (11)0.5689 (10)0.2849 (15)0.038 (5)*0.50
H3A0.12550.53990.23300.046*0.50
H3B0.16660.59970.25920.046*0.50
C3'0.1067 (15)0.5577 (14)0.298 (2)0.072 (8)*0.50
H3'10.12430.57060.23570.086*0.50
H3'20.07940.52190.28660.086*0.50
C40.0713 (6)0.6024 (6)0.3326 (8)0.060 (3)
H4A0.05220.63120.28610.072*
H4B0.03940.57130.35010.072*
C50.0891 (5)0.5400 (5)0.6519 (8)0.047 (3)
H5A0.12510.51870.68270.057*
H5B0.04940.52290.67810.057*
C60.0927 (5)0.6084 (5)0.6722 (8)0.041 (2)
H6A0.05260.62860.65400.049*
H6B0.10080.61590.74130.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0198 (15)0.0138 (14)0.0199 (16)0.0000.0007 (13)0.000
Mo10.0369 (4)0.0179 (4)0.0257 (4)0.0019 (3)0.0021 (3)0.0007 (3)
Mo20.0262 (6)0.0633 (9)0.0295 (7)0.0000.0013 (5)0.000
Mo30.0292 (6)0.0651 (9)0.0321 (7)0.0000.0075 (5)0.000
Mo40.0806 (7)0.0171 (4)0.0273 (4)0.0061 (4)0.0081 (4)0.0004 (3)
Mo50.0343 (6)0.0316 (6)0.0287 (6)0.0000.0043 (5)0.000
Mo60.0295 (6)0.0271 (6)0.0354 (7)0.0000.0054 (5)0.000
V10.0286 (8)0.0191 (7)0.0427 (9)0.0037 (6)0.0029 (7)0.0059 (7)
V20.0369 (9)0.0250 (8)0.0468 (10)0.0107 (7)0.0121 (8)0.0075 (7)
V30.0336 (12)0.0215 (10)0.0235 (11)0.0000.0011 (9)0.000
V40.0364 (12)0.0185 (10)0.0239 (11)0.0000.0033 (10)0.000
Co10.0360 (7)0.0185 (6)0.0335 (7)0.0002 (5)0.0013 (6)0.0028 (5)
O10.154 (9)0.028 (4)0.025 (4)0.007 (5)0.006 (5)0.006 (3)
O20.031 (5)0.049 (6)0.042 (6)0.0000.010 (4)0.000
O30.032 (5)0.034 (5)0.030 (5)0.0000.015 (4)0.000
O40.063 (5)0.026 (3)0.039 (4)0.003 (3)0.008 (3)0.006 (3)
O50.045 (6)0.114 (10)0.038 (6)0.0000.013 (5)0.000
O60.038 (6)0.125 (11)0.041 (6)0.0000.012 (5)0.000
O70.061 (5)0.036 (4)0.078 (5)0.027 (4)0.043 (4)0.023 (4)
O80.044 (4)0.037 (4)0.084 (6)0.017 (3)0.006 (4)0.016 (4)
O90.063 (7)0.041 (6)0.022 (5)0.0000.010 (5)0.000
O100.046 (5)0.029 (5)0.021 (4)0.0000.001 (4)0.000
O110.043 (4)0.040 (4)0.071 (5)0.015 (3)0.025 (4)0.028 (4)
O120.028 (3)0.040 (4)0.081 (5)0.004 (3)0.003 (4)0.034 (4)
O130.035 (10)0.017 (8)0.019 (10)0.003 (6)0.005 (7)0.003 (6)
O13'0.029 (9)0.040 (11)0.013 (9)0.004 (7)0.003 (6)0.013 (7)
O140.027 (7)0.017 (8)0.039 (9)0.003 (6)0.008 (7)0.003 (6)
O14'0.033 (8)0.020 (9)0.047 (11)0.001 (7)0.007 (7)0.000 (7)
O150.020 (8)0.030 (9)0.041 (9)0.007 (6)0.009 (6)0.004 (7)
O15'0.028 (9)0.016 (7)0.030 (8)0.001 (6)0.003 (6)0.003 (6)
O160.036 (8)0.014 (8)0.040 (10)0.006 (7)0.008 (7)0.008 (6)
O16'0.036 (8)0.020 (8)0.037 (9)0.002 (7)0.006 (7)0.003 (6)
O170.046 (4)0.027 (4)0.081 (5)0.009 (3)0.024 (4)0.029 (4)
O180.067 (5)0.013 (3)0.070 (5)0.006 (3)0.035 (4)0.008 (3)
O190.033 (8)0.018 (7)0.024 (7)0.001 (6)0.003 (6)0.006 (6)
O19'0.037 (8)0.020 (7)0.014 (7)0.003 (6)0.008 (6)0.004 (5)
O200.057 (10)0.010 (7)0.020 (7)0.005 (7)0.005 (7)0.006 (5)
O20'0.040 (9)0.028 (8)0.045 (10)0.002 (7)0.014 (7)0.009 (7)
O210.031 (9)0.020 (8)0.028 (9)0.011 (6)0.005 (7)0.001 (6)
O21'0.029 (9)0.020 (8)0.041 (11)0.002 (6)0.011 (7)0.006 (7)
O220.027 (10)0.042 (10)0.040 (11)0.003 (8)0.017 (7)0.004 (8)
O22'0.034 (10)0.022 (8)0.034 (10)0.011 (8)0.004 (8)0.001 (7)
O230.035 (7)0.010 (5)0.027 (6)0.010 (5)0.005 (5)0.001 (5)
O240.025 (6)0.009 (5)0.031 (6)0.003 (4)0.005 (5)0.004 (5)
O250.025 (6)0.021 (6)0.030 (6)0.009 (5)0.004 (5)0.006 (5)
O260.031 (6)0.026 (6)0.017 (6)0.002 (5)0.005 (5)0.007 (5)
O1W0.049 (6)0.033 (5)0.051 (6)0.0000.000 (5)0.000
O2W0.145 (13)0.26 (2)0.146 (13)0.044 (14)0.035 (11)0.015 (14)
N10.044 (5)0.025 (4)0.045 (5)0.001 (4)0.002 (4)0.004 (4)
N20.041 (4)0.029 (4)0.032 (4)0.001 (4)0.000 (4)0.003 (3)
N30.068 (6)0.033 (5)0.045 (5)0.005 (4)0.003 (5)0.018 (4)
N40.046 (5)0.024 (4)0.049 (5)0.004 (4)0.003 (4)0.005 (4)
N50.044 (5)0.020 (4)0.053 (5)0.005 (4)0.000 (4)0.001 (4)
N60.038 (4)0.028 (4)0.045 (5)0.003 (4)0.003 (4)0.004 (4)
C10.045 (6)0.037 (5)0.047 (6)0.016 (5)0.003 (5)0.005 (5)
C20.036 (5)0.038 (5)0.036 (5)0.000 (5)0.003 (4)0.012 (5)
C40.057 (7)0.074 (8)0.049 (7)0.001 (7)0.020 (6)0.006 (6)
C50.047 (6)0.033 (5)0.062 (7)0.009 (5)0.007 (5)0.016 (5)
C60.033 (5)0.044 (6)0.045 (6)0.009 (5)0.004 (5)0.010 (5)
Geometric parameters (Å, º) top
Si1—O231.623 (10)V2—O14'1.811 (16)
Si1—O251.628 (11)V2—O20'1.949 (16)
Si1—O241.655 (11)V2—O16'1.974 (15)
Si1—O261.674 (11)V2—O162.002 (14)
Mo1—O11.665 (7)V2—O202.022 (13)
Mo1—O14'1.742 (16)V2—O142.117 (16)
Mo1—O13'1.793 (18)V2—O222.156 (17)
Mo1—O131.839 (18)V2—O242.441 (10)
Mo1—O141.871 (14)V2—O252.454 (10)
Mo1—O122.046 (6)V3—O91.614 (9)
Mo1—O112.067 (6)V3—O111.918 (7)
Mo1—O242.365 (11)V3—O121.941 (7)
Mo1—O232.409 (11)V3—Mo1i3.1080 (14)
Mo1—V33.1080 (14)V4—O101.649 (8)
Mo2—O21.666 (9)V4—O171.928 (7)
Mo2—O15'1.686 (15)V4—O181.939 (6)
Mo2—O151.980 (15)V4—Mo4i3.1144 (14)
Mo2—O112.046 (7)Co1—N61.948 (8)
Mo2—O232.422 (11)Co1—N11.952 (8)
Mo2—V33.081 (2)Co1—N51.961 (8)
Mo3—O16'1.643 (15)Co1—N41.962 (8)
Mo3—O31.698 (8)Co1—N21.967 (8)
Mo3—O161.952 (14)Co1—N31.975 (8)
Mo3—O122.060 (7)O25—O25i1.79 (2)
Mo3—O242.400 (11)N1—C11.488 (13)
Mo3—V33.114 (3)N1—H1C0.9000
Mo4—O19'1.649 (12)N1—H1D0.9000
Mo4—O20'1.671 (16)N2—C21.494 (11)
Mo4—O41.689 (6)N2—H2C0.9000
Mo4—O201.923 (14)N2—H2D0.9000
Mo4—O191.994 (13)N3—C31.41 (2)
Mo4—O182.032 (7)N3—C3'1.55 (3)
Mo4—O172.059 (7)N3—H3C0.9000
Mo4—O262.389 (11)N3—H3D0.9000
Mo4—O252.429 (11)N4—C41.509 (13)
Mo4—V43.1144 (14)N4—H4C0.9000
Mo5—O51.669 (10)N4—H4D0.9000
Mo5—O21'1.724 (17)N5—C51.467 (13)
Mo5—O211.912 (15)N5—H5C0.9000
Mo5—O172.058 (7)N5—H5D0.9000
Mo5—O262.422 (11)N6—C61.497 (12)
Mo5—V43.082 (2)N6—H6C0.9000
Mo6—O61.656 (10)N6—H6D0.9000
Mo6—O22'1.777 (17)C1—C21.521 (14)
Mo6—O221.835 (19)C1—H1A0.9700
Mo6—O182.047 (6)C1—H1B0.9700
Mo6—O252.355 (11)C2—H2A0.9700
Mo6—V43.100 (2)C2—H2B0.9700
V1—O71.579 (6)C3—C41.67 (2)
V1—O13'1.807 (18)C3—H3A0.9700
V1—O21'1.844 (17)C3—H3B0.9700
V1—O15'1.910 (15)C3'—C41.30 (3)
V1—O19'1.927 (12)C3'—H3'10.9700
V1—O152.013 (15)C3'—H3'20.9700
V1—O192.028 (12)C4—H4A0.9700
V1—O212.079 (16)C4—H4B0.9700
V1—O132.099 (17)C5—C61.498 (14)
V1—O262.328 (11)C5—H5A0.9700
V1—O232.395 (11)C5—H5B0.9700
V2—O81.573 (7)C6—H6A0.9700
V2—O22'1.794 (16)C6—H6B0.9700
O23i—Si1—O2371.8 (8)O13'—V1—O21160.4 (6)
O23i—Si1—O25177.4 (6)O15'—V1—O2188.4 (6)
O23—Si1—O25110.7 (6)O19'—V1—O2192.7 (6)
O23i—Si1—O25i110.7 (6)O15—V1—O2198.7 (7)
O23—Si1—O25i177.4 (6)O19—V1—O2181.1 (6)
O25—Si1—O25i66.7 (8)O7—V1—O1391.2 (5)
O23i—Si1—O24109.4 (6)O21'—V1—O13157.3 (6)
O23—Si1—O2469.5 (6)O15'—V1—O1389.7 (6)
O25—Si1—O2471.8 (5)O19'—V1—O1386.8 (6)
O25i—Si1—O24109.0 (6)O15—V1—O1380.5 (7)
O23i—Si1—O24i69.5 (6)O19—V1—O1399.8 (6)
O23—Si1—O24i109.4 (6)O21—V1—O13176.3 (6)
O25—Si1—O24i109.0 (6)O7—V1—O26157.4 (4)
O25i—Si1—O24i71.8 (5)O13'—V1—O2687.9 (6)
O24—Si1—O24i71.0 (7)O21'—V1—O2657.3 (6)
O23i—Si1—O26i68.0 (5)O15'—V1—O2687.9 (5)
O23—Si1—O26i108.7 (6)O19'—V1—O2656.6 (5)
O25—Si1—O26i110.9 (6)O15—V1—O26108.6 (5)
O25i—Si1—O26i72.8 (6)O19—V1—O2673.7 (4)
O24—Si1—O26i177.3 (6)O21—V1—O2672.6 (5)
O24i—Si1—O26i108.1 (5)O13—V1—O26104.2 (5)
O23i—Si1—O26108.7 (6)O7—V1—O23156.4 (4)
O23—Si1—O2668.0 (5)O13'—V1—O2358.5 (6)
O25—Si1—O2672.8 (6)O21'—V1—O2387.5 (5)
O25i—Si1—O26110.9 (6)O15'—V1—O2358.9 (5)
O24—Si1—O26108.1 (5)O19'—V1—O2384.5 (5)
O24i—Si1—O26177.3 (6)O15—V1—O2373.7 (5)
O26i—Si1—O2672.7 (8)O19—V1—O23108.8 (5)
O1—Mo1—O14'113.8 (6)O21—V1—O23106.5 (5)
O1—Mo1—O13'113.8 (6)O13—V1—O2369.8 (5)
O14'—Mo1—O13'84.9 (7)O26—V1—O2345.9 (4)
O1—Mo1—O1394.8 (5)O8—V2—O22'108.2 (6)
O14'—Mo1—O1398.9 (7)O8—V2—O14'112.0 (6)
O1—Mo1—O1490.2 (6)O22'—V2—O14'139.7 (7)
O13'—Mo1—O1498.4 (7)O8—V2—O20'111.1 (5)
O13—Mo1—O14106.1 (7)O22'—V2—O20'92.3 (7)
O1—Mo1—O1295.3 (4)O14'—V2—O20'71.9 (7)
O14'—Mo1—O1291.6 (5)O8—V2—O16'110.3 (5)
O13'—Mo1—O12149.5 (6)O22'—V2—O16'76.7 (7)
O13—Mo1—O12161.1 (6)O14'—V2—O16'90.9 (6)
O14—Mo1—O1289.9 (5)O20'—V2—O16'138.5 (6)
O1—Mo1—O1198.0 (4)O8—V2—O1691.9 (5)
O14'—Mo1—O11146.5 (5)O22'—V2—O1693.9 (7)
O13'—Mo1—O1191.8 (6)O14'—V2—O1686.6 (7)
O13—Mo1—O1188.1 (6)O20'—V2—O16152.9 (6)
O14—Mo1—O11163.0 (5)O8—V2—O2091.5 (5)
O12—Mo1—O1174.7 (3)O22'—V2—O2085.3 (7)
O1—Mo1—O24153.5 (4)O14'—V2—O2091.9 (7)
O14'—Mo1—O2456.2 (6)O16'—V2—O20155.1 (6)
O13'—Mo1—O2490.8 (5)O16—V2—O20176.6 (6)
O13—Mo1—O24110.6 (5)O8—V2—O1492.8 (5)
O14—Mo1—O2475.8 (5)O22'—V2—O14158.3 (7)
O12—Mo1—O2462.8 (3)O20'—V2—O1484.9 (6)
O11—Mo1—O2490.6 (3)O16'—V2—O1491.2 (6)
O1—Mo1—O23157.1 (4)O16—V2—O1479.6 (6)
O14'—Mo1—O2387.8 (6)O20—V2—O1499.9 (6)
O13'—Mo1—O2358.3 (6)O8—V2—O2292.2 (5)
O13—Mo1—O2373.5 (5)O14'—V2—O22154.8 (7)
O14—Mo1—O23111.8 (5)O20'—V2—O2293.4 (7)
O12—Mo1—O2391.3 (3)O16'—V2—O2287.0 (7)
O11—Mo1—O2362.7 (3)O16—V2—O22100.1 (7)
O24—Mo1—O2346.1 (4)O20—V2—O2280.1 (7)
O2—Mo2—O15'i110.9 (6)O14—V2—O22175.0 (6)
O2—Mo2—O15'110.9 (6)O8—V2—O24157.4 (4)
O15'i—Mo2—O15'81.7 (10)O22'—V2—O2488.1 (6)
O2—Mo2—O15i92.3 (5)O14'—V2—O2454.0 (5)
O15'—Mo2—O15i97.6 (6)O20'—V2—O2482.9 (5)
O2—Mo2—O1592.3 (5)O16'—V2—O2457.3 (5)
O15'i—Mo2—O1597.6 (6)O16—V2—O2471.0 (5)
O15i—Mo2—O15109.1 (10)O20—V2—O24105.7 (5)
O2—Mo2—O1197.5 (3)O14—V2—O2470.1 (5)
O15'i—Mo2—O11150.9 (6)O22—V2—O24105.0 (5)
O15'—Mo2—O1194.4 (5)O8—V2—O25156.3 (4)
O15i—Mo2—O11160.7 (5)O22'—V2—O2556.0 (6)
O15—Mo2—O1187.2 (5)O14'—V2—O2585.1 (6)
O2—Mo2—O11i97.5 (3)O20'—V2—O2557.2 (5)
O15'i—Mo2—O11i94.4 (5)O16'—V2—O2584.6 (5)
O15'—Mo2—O11i150.9 (6)O16—V2—O25105.8 (5)
O15i—Mo2—O11i87.2 (5)O20—V2—O2571.0 (5)
O15—Mo2—O11i160.7 (5)O14—V2—O25105.6 (5)
O11—Mo2—O11i75.0 (4)O22—V2—O2569.6 (5)
O2—Mo2—O23i155.6 (3)O24—V2—O2546.3 (4)
O15'i—Mo2—O23i60.3 (6)O9—V3—O11i113.3 (4)
O15'—Mo2—O23i91.0 (6)O9—V3—O11113.3 (4)
O15i—Mo2—O23i73.6 (5)O11i—V3—O1181.0 (4)
O15—Mo2—O23i111.0 (5)O9—V3—O12i114.2 (4)
O11—Mo2—O23i91.1 (3)O11i—V3—O12i80.5 (3)
O11i—Mo2—O23i62.7 (3)O11—V3—O12i132.5 (4)
O2—Mo2—O23155.6 (3)O9—V3—O12114.2 (4)
O15'i—Mo2—O2391.0 (6)O11i—V3—O12132.5 (4)
O15'—Mo2—O2360.3 (6)O11—V3—O1280.5 (3)
O15i—Mo2—O23111.0 (5)O12i—V3—O1280.6 (4)
O15—Mo2—O2373.6 (5)O10—V4—O17i116.4 (3)
O11—Mo2—O2362.7 (3)O10—V4—O17116.4 (3)
O11i—Mo2—O2391.1 (3)O17i—V4—O1781.9 (4)
O23i—Mo2—O2346.3 (5)O10—V4—O18111.9 (3)
O16'i—Mo3—O16'77.6 (10)O17i—V4—O18131.7 (4)
O16'i—Mo3—O3114.1 (6)O17—V4—O1879.6 (3)
O16'—Mo3—O3114.1 (6)O10—V4—O18i111.9 (3)
O16'i—Mo3—O1696.3 (7)O17i—V4—O18i79.6 (3)
O3—Mo3—O1695.1 (5)O17—V4—O18i131.7 (4)
O16'—Mo3—O16i96.3 (7)O18—V4—O18i80.4 (4)
O3—Mo3—O16i95.1 (5)N6—Co1—N194.2 (3)
O16—Mo3—O16i111.1 (9)N6—Co1—N583.9 (3)
O16'i—Mo3—O12151.0 (6)N1—Co1—N590.3 (3)
O16'—Mo3—O1296.3 (5)N6—Co1—N491.0 (3)
O3—Mo3—O1294.4 (3)N1—Co1—N4174.7 (4)
O16—Mo3—O1286.1 (5)N5—Co1—N491.3 (3)
O16i—Mo3—O12159.5 (5)N6—Co1—N289.2 (3)
O16'i—Mo3—O12i96.3 (5)N1—Co1—N285.2 (3)
O16'—Mo3—O12i151.0 (6)N5—Co1—N2171.5 (3)
O3—Mo3—O12i94.4 (3)N4—Co1—N293.9 (3)
O16—Mo3—O12i159.5 (5)N6—Co1—N3175.3 (4)
O16i—Mo3—O12i86.1 (5)N1—Co1—N389.5 (4)
O12—Mo3—O12i75.1 (4)N5—Co1—N393.2 (4)
O16'i—Mo3—O24i61.1 (6)N4—Co1—N385.4 (4)
O16'—Mo3—O24i91.1 (6)N2—Co1—N394.0 (4)
O3—Mo3—O24i153.4 (3)V3—O11—Mo2102.0 (3)
O16—Mo3—O24i111.3 (5)V3—O11—Mo1102.5 (3)
O16i—Mo3—O24i72.7 (5)Mo2—O11—Mo1130.1 (4)
O12—Mo3—O24i91.0 (3)V3—O12—Mo1102.4 (3)
O12i—Mo3—O24i62.0 (3)V3—O12—Mo3102.2 (3)
O16'i—Mo3—O2491.1 (6)Mo1—O12—Mo3129.3 (4)
O16'—Mo3—O2461.1 (6)Mo1—O13—V1123.2 (7)
O3—Mo3—O24153.4 (3)Mo1—O13'—V1148.7 (12)
O16—Mo3—O2472.7 (5)Mo1—O14—V2120.6 (7)
O16i—Mo3—O24111.3 (5)Mo1—O14'—V2154.6 (9)
O12—Mo3—O2462.0 (3)Mo2—O15—V1119.4 (7)
O12i—Mo3—O2491.0 (3)Mo2—O15'—V1146.9 (9)
O24i—Mo3—O2447.2 (5)Mo3—O16—V2122.4 (8)
O19'—Mo4—O20'76.7 (7)Mo3—O16'—V2146.5 (9)
O19'—Mo4—O4113.8 (5)V4—O17—Mo5101.2 (3)
O20'—Mo4—O4112.9 (6)V4—O17—Mo4102.7 (3)
O19'—Mo4—O2098.2 (6)Mo5—O17—Mo4129.3 (4)
O4—Mo4—O2091.8 (5)V4—O18—Mo4103.3 (3)
O20'—Mo4—O1996.1 (6)V4—O18—Mo6102.1 (3)
O4—Mo4—O1992.1 (4)Mo4—O18—Mo6130.9 (4)
O20—Mo4—O19112.2 (5)Mo4—O19—V1117.5 (6)
O19'—Mo4—O18148.7 (5)Mo4—O19'—V1148.0 (7)
O20'—Mo4—O1896.9 (5)Mo4—O20—V2122.8 (7)
O4—Mo4—O1897.0 (3)Mo4—O20'—V2146.1 (9)
O20—Mo4—O1885.6 (4)Mo5—O21—V1120.0 (7)
O19—Mo4—O18159.7 (4)Mo5—O21'—V1151.3 (10)
O19'—Mo4—O1795.5 (5)Mo6—O22—V2120.3 (8)
O20'—Mo4—O17149.7 (6)Mo6—O22'—V2152.0 (10)
O4—Mo4—O1797.1 (3)Si1—O23—V1122.4 (6)
O20—Mo4—O17159.0 (4)Si1—O23—Mo1121.6 (6)
O19—Mo4—O1786.5 (4)V1—O23—Mo192.3 (3)
O18—Mo4—O1774.5 (3)Si1—O23—Mo2120.8 (5)
O19'—Mo4—O2657.5 (5)V1—O23—Mo291.4 (4)
O20'—Mo4—O2688.2 (6)Mo1—O23—Mo2101.1 (4)
O4—Mo4—O26155.6 (4)Si1—O24—Mo1122.4 (6)
O20—Mo4—O26111.5 (5)Si1—O24—Mo3120.6 (5)
O19—Mo4—O2672.9 (4)Mo1—O24—Mo3102.3 (4)
O18—Mo4—O2692.1 (3)Si1—O24—V2120.6 (6)
O17—Mo4—O2663.7 (3)Mo1—O24—V292.3 (3)
O19'—Mo4—O2590.1 (6)Mo3—O24—V291.4 (4)
O20'—Mo4—O2560.0 (6)Si1—O25—Mo6124.2 (6)
O4—Mo4—O25153.6 (4)Si1—O25—Mo4119.4 (6)
O20—Mo4—O2573.1 (5)Mo6—O25—Mo4101.7 (4)
O19—Mo4—O25113.5 (5)Si1—O25—V2121.3 (6)
O18—Mo4—O2561.1 (3)Mo6—O25—V292.2 (4)
O17—Mo4—O2591.2 (3)Mo4—O25—V290.4 (4)
O26—Mo4—O2548.0 (4)Si1—O26—V1123.7 (6)
O5—Mo5—O21'114.2 (6)Si1—O26—Mo4119.4 (6)
O5—Mo5—O21'i114.2 (6)V1—O26—Mo493.6 (4)
O21'—Mo5—O21'i84.6 (11)Si1—O26—Mo5119.5 (6)
O5—Mo5—O21i93.6 (5)V1—O26—Mo593.4 (4)
O21'—Mo5—O21i96.8 (6)Mo4—O26—Mo5101.3 (4)
O21'i—Mo5—O21i20.9 (5)C1—N1—Co1110.8 (6)
O5—Mo5—O2193.6 (5)C1—N1—H1C109.5
O21'i—Mo5—O2196.8 (6)Co1—N1—H1C109.5
O21i—Mo5—O21102.9 (10)C1—N1—H1D109.5
O5—Mo5—O1795.9 (4)Co1—N1—H1D109.5
O21'—Mo5—O1791.5 (6)H1C—N1—H1D108.1
O21'i—Mo5—O17148.6 (6)C2—N2—Co1110.3 (5)
O21i—Mo5—O17163.5 (5)C2—N2—H2C109.6
O21—Mo5—O1790.0 (5)Co1—N2—H2C109.6
O5—Mo5—O17i95.9 (4)C2—N2—H2D109.6
O21'—Mo5—O17i148.6 (6)Co1—N2—H2D109.6
O21'i—Mo5—O17i91.5 (6)H2C—N2—H2D108.1
O21i—Mo5—O17i90.0 (5)C3—N3—Co1114.3 (10)
O21—Mo5—O17i163.5 (5)C3'—N3—Co1109.4 (12)
O17—Mo5—O17i75.7 (4)C3—N3—H3C108.7
O5—Mo5—O26154.3 (3)C3'—N3—H3C131.7
O21'—Mo5—O2656.1 (6)Co1—N3—H3C108.7
O21'i—Mo5—O2689.6 (6)C3—N3—H3D108.7
O21i—Mo5—O26110.5 (5)C3'—N3—H3D86.9
O21—Mo5—O2673.2 (5)Co1—N3—H3D108.7
O17—Mo5—O2663.0 (3)H3C—N3—H3D107.6
O17i—Mo5—O2692.8 (3)C4—N4—Co1109.1 (7)
O5—Mo5—O26i154.3 (3)C4—N4—H4C109.9
O21'—Mo5—O26i89.6 (6)Co1—N4—H4C109.9
O21'i—Mo5—O26i56.1 (6)C4—N4—H4D109.9
O21i—Mo5—O26i73.2 (5)Co1—N4—H4D109.9
O21—Mo5—O26i110.5 (5)H4C—N4—H4D108.3
O17—Mo5—O26i92.8 (3)C5—N5—Co1109.2 (6)
O17i—Mo5—O26i63.0 (3)C5—N5—H5C109.8
O26—Mo5—O26i48.3 (5)Co1—N5—H5C109.8
O6—Mo6—O22'113.0 (6)C5—N5—H5D109.8
O6—Mo6—O22'i113.0 (6)Co1—N5—H5D109.8
O22'—Mo6—O22'i87.5 (11)H5C—N5—H5D108.3
O6—Mo6—O2291.5 (5)C6—N6—Co1112.7 (6)
O22'i—Mo6—O2298.6 (6)C6—N6—H6C109.1
O6—Mo6—O22i91.5 (5)Co1—N6—H6C109.1
O22'—Mo6—O22i98.6 (6)C6—N6—H6D109.1
O22—Mo6—O22i102.4 (13)Co1—N6—H6D109.1
O6—Mo6—O18i96.9 (4)H6C—N6—H6D107.8
O22'—Mo6—O18i148.3 (6)N1—C1—C2105.7 (8)
O22'i—Mo6—O18i90.3 (6)N1—C1—H1A110.6
O22—Mo6—O18i164.3 (6)C2—C1—H1A110.6
O22i—Mo6—O18i90.6 (7)N1—C1—H1B110.6
O6—Mo6—O1896.9 (4)C2—C1—H1B110.6
O22'—Mo6—O1890.3 (6)H1A—C1—H1B108.7
O22'i—Mo6—O18148.3 (6)N2—C2—C1108.3 (8)
O22—Mo6—O1890.6 (7)N2—C2—H2A110.0
O22i—Mo6—O18164.3 (6)C1—C2—H2A110.0
O18i—Mo6—O1875.4 (3)N2—C2—H2B110.0
O6—Mo6—O25i155.7 (3)C1—C2—H2B110.0
O22'—Mo6—O25i90.1 (6)H2A—C2—H2B108.4
O22'i—Mo6—O25i58.4 (6)N3—C3—C4102.5 (14)
O22—Mo6—O25i111.7 (5)N3—C3—H3A111.3
O22i—Mo6—O25i77.2 (6)C4—C3—H3A111.3
O18i—Mo6—O25i62.3 (4)N3—C3—H3B111.3
O18—Mo6—O25i90.0 (3)C4—C3—H3B111.3
O6—Mo6—O25155.7 (3)H3A—C3—H3B109.2
O22'—Mo6—O2558.4 (6)C4—C3'—N3115 (2)
O22'i—Mo6—O2590.1 (6)C4—C3'—H3'1108.6
O22—Mo6—O2577.2 (6)N3—C3'—H3'1108.6
O22i—Mo6—O25111.7 (5)C4—C3'—H3'2108.6
O18i—Mo6—O2590.0 (3)N3—C3'—H3'2108.6
O18—Mo6—O2562.3 (4)H3'1—C3'—H3'2107.5
O25i—Mo6—O2544.7 (5)C3'—C4—N4118.0 (16)
O7—V1—O13'105.6 (6)N4—C4—C3105.3 (10)
O7—V1—O21'110.5 (5)C3'—C4—H4A118.0
O13'—V1—O21'143.8 (7)N4—C4—H4A110.7
O7—V1—O15'109.0 (6)C3—C4—H4A110.7
O13'—V1—O15'93.0 (7)C3'—C4—H4B87.9
O21'—V1—O15'77.6 (7)N4—C4—H4B110.7
O7—V1—O19'109.0 (5)C3—C4—H4B110.7
O13'—V1—O19'74.2 (7)H4A—C4—H4B108.8
O21'—V1—O19'91.8 (6)N5—C5—C6107.6 (8)
O15'—V1—O19'141.9 (6)N5—C5—H5A110.2
O7—V1—O1589.9 (5)C6—C5—H5A110.2
O13'—V1—O1589.3 (7)N5—C5—H5B110.2
O21'—V1—O1592.9 (7)C6—C5—H5B110.2
O19'—V1—O15157.5 (6)H5A—C5—H5B108.5
O7—V1—O1987.6 (5)N6—C6—C5105.8 (8)
O13'—V1—O1991.6 (7)N6—C6—H6A110.6
O21'—V1—O1987.7 (6)C5—C6—H6A110.6
O15'—V1—O19160.8 (6)N6—C6—H6B110.6
O15—V1—O19177.5 (6)C5—C6—H6B110.6
O7—V1—O2192.4 (5)H6A—C6—H6B108.7
Co1—N1—C1—C240.8 (9)N3—C3'—C4—C371 (4)
Co1—N2—C2—C133.3 (9)Co1—N4—C4—C3'19 (2)
N1—C1—C2—N247.4 (10)Co1—N4—C4—C339.7 (12)
C3'—N3—C3—C445 (3)N3—C3—C4—C3'76 (4)
Co1—N3—C3—C440.2 (16)N3—C3—C4—N451.1 (16)
C3—N3—C3'—C4102 (4)Co1—N5—C5—C644.7 (10)
Co1—N3—C3'—C44 (3)Co1—N6—C6—C530.4 (10)
N3—C3'—C4—N410 (3)N5—C5—C6—N647.8 (11)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4ii0.902.082.918 (10)154
N1—H1D···O14iii0.902.482.988 (16)117
N2—H2D···O10iv0.902.243.040 (9)148
N2—H2C···O12v0.902.223.034 (11)151
N3—H3D···O19iii0.901.972.765 (15)147
N4—H4D···O3vi0.902.173.042 (9)164
N4—H4C···O15vii0.902.092.770 (16)131
N5—H5D···O7iii0.902.262.923 (10)130
N5—H5C···O7vii0.902.122.905 (11)145
N5—H5D···O13iii0.902.072.835 (18)142
N6—H6C···O4ii0.902.313.126 (11)150
N6—H6D···O10iv0.902.573.109 (9)120
N6—H6C···O18ii0.902.372.972 (11)124
Symmetry codes: (ii) x1/2, y, z+3/2; (iii) x+1, y+1, z+1; (iv) x1/2, y+3/2, z+3/2; (v) x1/2, y, z+1/2; (vi) x1/2, y+3/2, z+1/2; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C2H8N2)3]2[Mo8V6O42Si]·6H2O
Mr2359.83
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)20.744 (4), 21.498 (4), 13.623 (3)
V3)6075 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.13
Crystal size (mm)0.22 × 0.21 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.508, 0.552
No. of measured, independent and
observed [I > 2σ(I)] reflections
45336, 5404, 3951
Rint0.080
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.133, 1.05
No. of reflections5404
No. of parameters505
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0462P)2 + 70.2923P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.04, 1.07

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4i0.902.082.918 (10)154
N1—H1D···O14ii0.902.482.988 (16)117
N2—H2D···O10iii0.902.243.040 (9)148
N2—H2C···O12iv0.902.223.034 (11)151
N3—H3D···O19ii0.901.972.765 (15)147
N4—H4D···O3v0.902.173.042 (9)164
N4—H4C···O15vi0.902.092.770 (16)131
N5—H5D···O7ii0.902.262.923 (10)130
N5—H5C···O7vi0.902.122.905 (11)145
N5—H5D···O13ii0.902.072.835 (18)142
N6—H6C···O4i0.902.313.126 (11)150
N6—H6D···O10iii0.902.573.109 (9)120
N6—H6C···O18i0.902.372.972 (11)124
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z+3/2; (iv) x1/2, y, z+1/2; (v) x1/2, y+3/2, z+1/2; (vi) x1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (ZR2011BQ004) and the Fundamental Research Funds for the Central Universities (09CX04045A).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChen, Q. & Hill, C. L. (1996). Inorg. Chem. 35, 2403–2405.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHill, C. L. (1998). Chem. Rev. 98, 1–2.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKhan, M. I., Chen, Q. & Zubieta, J. (1993). Inorg. Chem. 32, 2924–2928.  CrossRef CAS Web of Science Google Scholar
First citationKurth, D. G., Volkmer, D., Pope, M. T. & Müller, A. (2001). Polyoxometalate Chemistry, p. 301. Dordrecht: Kluwer.  Google Scholar
First citationLu, Y. K., Cui, X. B., Chen, Y., Xu, J. N., Zhang, Q. B., Liu, Y. B., Xu, J. Q. & Wang, T. G. (2009). J. Solid State Chem. 182, 2111–2117.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Y. K., Cui, X. B., Liu, Y. B., Yang, Q. F., Shi, S. Y., Xu, J. Q. & Wang, T. G. (2009). J. Solid State Chem. 182, 690–697.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Y. K., Cui, X. B., Xu, J. N., Gao, Q., Chen, Y., Jin, J., Shi, S. Y., Xu, J. Q. & Wang, T. G. (2010). J. Coord. Chem. 63, 394–405.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Y. K., Xu, J. N., Cui, X. B., Jin, J., Shi, S. Y. & Xu, J. Q. (2010). Inorg. Chem. Commun. 13, 46–49.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Y., Xu, J. & Yu, H. (2010). Acta Cryst. E66, m263–m264.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuan, G. Y., Li, Y. G., Wang, E. B., Han, Z. B., Hu, C. W., Hu, N. H. & Jia, H. Q. (2002). J. Solid State Chem. 165, 1–5.  Web of Science CSD CrossRef CAS Google Scholar
First citationMüller, A., Krickemeyer, E., Dillinger, S., Bögge, H., Plass, W., Proust, A., Dloczik, L., Menke, C., Meyer, J. & Rohlfing, R. (1994). Z. Anorg. Allg. Chem. 620, 599–619.  Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34–48.  CrossRef Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y., Xu, J. Q., Yang, G. Y., Wang, T. G., Xing, Y., Lin, Y. H. & Hu, N. H. (1998). Polyhedron, 17, 2441–2445.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds