metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,4-Di­chloro­benz­yl)pyridinium bis­­(2-sulfanyl­­idene-1,3-di­thiole-4,5-di­thiol­ato-κ2S,S′)nickelate(III)

aDepartment of Chemistry, Nanjing Xiaozhuang University, Nanjing 211171, People's Republic of China
*Correspondence e-mail: njuliugx@gmail.com

(Received 7 October 2011; accepted 27 October 2011; online 2 November 2011)

In the title compound, (C12H10Cl2N)[Ni(C3S5)2], the NiIII atom is chelated by two bidentate 2-sulfanyl­idene-1,3-dithiole-4,5-dithiol­ate (dmit) dianions and shows a distorted square-planar geometry. The two dmit ligands are twisted with respect to each other by 3.21 (2)°. In the cation, the two aromatic groups linked by the methyl­ene bridging group form a dihedral angle of 68.09 (2)°. S⋯S [3.6212 (11) and 3.5573 (9) Å] and Ni⋯S [3.566 (2)Å] inter­actions influence the arrangement of the anions in the crystal.

Related literature

For potential applications of bis­(dithiol­ate)-metal complexes, see: Cassoux (1999[Cassoux, P. (1999). Coord. Chem. Rev. 185-186, 213-232.]). For the oxidation of NiII compounds, see: Cassoux et al. (1991[Cassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. & Underhill, A. (1991). Coord. Chem. Rev. 110, 115-160.]). For the synthesis, see: Wang et al. (1998[Wang, C.-S., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615-1618.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H10Cl2N)[Ni(C3S5)2]

  • Mr = 690.48

  • Monoclinic, P 21 /c

  • a = 14.4614 (5) Å

  • b = 8.2158 (3) Å

  • c = 21.8894 (8) Å

  • β = 107.231 (1)°

  • V = 2484.00 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 293 K

  • 0.26 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.645, Tmax = 0.837

  • 18903 measured reflections

  • 4615 independent reflections

  • 3992 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.04

  • 4615 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The bis(dithiolate)-metal complexes and their analogues with interesting structures and/or potential applications such as conducting/magnetic or non-linear optical (NLO) materials have been reported in recent years (Cassoux, 1999). We report herein the crystal structure of the title bis-dithiolate-metal complex. In this compound, the NiII cations of NiCl2.6H2O have been oxidized to NiIII cation by I3- (Cassoux et al., 1991). The NiIII cation is coordinated with two dmit2- anions. As shown in Fig. 1, the asymmetric unit of the title compound contains one [Ni(dmit)2]- anion and one [DiClPy]+ cation. Each nickel(III) ion is coordinated by four S atoms from two dmit ligands to complete a square-planar geometry, with Ni—S bond lengths ranging from 2.1589 (7) to 2.1640 (7) Å. The [Ni(dmit)2]- anions related by inversion center form dimers with the S atom of one anion placed directly above the Ni atom of another anion with Ni···S distance of 3.566 (2)Å (Ni1···S2i: symmetry code: (i) -x, -y, -z], indicating the existence of electrostatic Ni···S interactions. The dimers linked through S3···S5ii [3.6212 (11)Å] and S4···S8iii [3.5573 (9)Å] [symmetry code: (ii) -x, 1/2 + y, 1/2 - z; (iii) x, 1/2 - y;1/2 + z] interactions form a two-dimensional layer structure, as depicted in Fig 2. The (C12H10Cl2N)+ cation adopts a Λ-shaped conformation, and the dihedral angles formed by the C12/C13/N1 plane with the benzene and pyridinium rings are 76.44 (2) and 86.75 (2)°, respectively.

Related literature top

For potential applications of bis(dithiolate)-metal complexes, see: Cassoux (1999). For the oxidation of NiII compounds, see: Cassoux et al. (1991). For the synthesis, see: Wang et al. (1998).

Experimental top

4,5-Di(thiobenzoyl)-1,3-dithiole-2-thione (812 mg, 2 mmol) was suspended in methanol (10 ml). Sodium methoxide in methanol (prepared form 184 mg of sodium in 10 ml of methanol) was added to the above mixture under argon atmosphere at room temperature from 30 min to give a dark red solution. To this solution, NiCl2.6H2O (238 mg, 1 mmol) was added. After 30 min, a solution of I2 (127 mg, 1 mmol) and NaI (150 mg, 1 mmol) in methanol (20 ml) was added (the monoanionic [Ni(dmit)2]- are obtained from the dianionic [Ni(dmit)2]2- by I3- oxidation). After another 10 min, a solution of 1-(2,4-dichlorobenzyl)pyridinium bromide [(DiClPy)Br] (317 mg, 1 mmol) in methanol (20 ml) was added to the reaction mixture. The solution was stirred for 30 min and cooled in a refrigerator overnight. The resultant dark green crystal was collected by filtration, and purified by recrystallization using a mixed solvent of acetonitrile and benzene.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C).

Structure description top

The bis(dithiolate)-metal complexes and their analogues with interesting structures and/or potential applications such as conducting/magnetic or non-linear optical (NLO) materials have been reported in recent years (Cassoux, 1999). We report herein the crystal structure of the title bis-dithiolate-metal complex. In this compound, the NiII cations of NiCl2.6H2O have been oxidized to NiIII cation by I3- (Cassoux et al., 1991). The NiIII cation is coordinated with two dmit2- anions. As shown in Fig. 1, the asymmetric unit of the title compound contains one [Ni(dmit)2]- anion and one [DiClPy]+ cation. Each nickel(III) ion is coordinated by four S atoms from two dmit ligands to complete a square-planar geometry, with Ni—S bond lengths ranging from 2.1589 (7) to 2.1640 (7) Å. The [Ni(dmit)2]- anions related by inversion center form dimers with the S atom of one anion placed directly above the Ni atom of another anion with Ni···S distance of 3.566 (2)Å (Ni1···S2i: symmetry code: (i) -x, -y, -z], indicating the existence of electrostatic Ni···S interactions. The dimers linked through S3···S5ii [3.6212 (11)Å] and S4···S8iii [3.5573 (9)Å] [symmetry code: (ii) -x, 1/2 + y, 1/2 - z; (iii) x, 1/2 - y;1/2 + z] interactions form a two-dimensional layer structure, as depicted in Fig 2. The (C12H10Cl2N)+ cation adopts a Λ-shaped conformation, and the dihedral angles formed by the C12/C13/N1 plane with the benzene and pyridinium rings are 76.44 (2) and 86.75 (2)°, respectively.

For potential applications of bis(dithiolate)-metal complexes, see: Cassoux (1999). For the oxidation of NiII compounds, see: Cassoux et al. (1991). For the synthesis, see: Wang et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cation and anion in the title compound with displacement ellipsoids drawn at the30% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Two-dimensional supramolecular structure of [Ni(dmit)2]- anions through S···S and Ni···S contacts. Dashed lines indicate weak interactions.
1-(2,4-Dichlorobenzyl)pyridinium bis(2-sulfanylidene-1,3-dithiole- 4,5-dithiolato-κ2S,S')nickelate(III) top
Crystal data top
(C12H10Cl2N)[Ni(C3S5)2]F(000) = 1388
Mr = 690.48Dx = 1.846 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9920 reflections
a = 14.4614 (5) Åθ = 2.7–27.6°
b = 8.2158 (3) ŵ = 1.85 mm1
c = 21.8894 (8) ÅT = 293 K
β = 107.231 (1)°Needle, black
V = 2484.00 (15) Å30.26 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4615 independent reflections
Radiation source: sealed tube3992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
phi and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1417
Tmin = 0.645, Tmax = 0.837k = 99
18903 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.8363P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4615 reflectionsΔρmax = 0.59 e Å3
290 parametersΔρmin = 0.69 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (5)
Crystal data top
(C12H10Cl2N)[Ni(C3S5)2]V = 2484.00 (15) Å3
Mr = 690.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4614 (5) ŵ = 1.85 mm1
b = 8.2158 (3) ÅT = 293 K
c = 21.8894 (8) Å0.26 × 0.12 × 0.10 mm
β = 107.231 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4615 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3992 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.837Rint = 0.085
18903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.04Δρmax = 0.59 e Å3
4615 reflectionsΔρmin = 0.69 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.11672 (2)0.16527 (4)0.035816 (14)0.03166 (12)
S10.17227 (5)0.00117 (9)0.11477 (3)0.03781 (17)
S20.02108 (5)0.18995 (9)0.05446 (3)0.04024 (18)
S30.10016 (4)0.02836 (9)0.15211 (3)0.03853 (18)
S40.07706 (5)0.14743 (9)0.20813 (3)0.03956 (18)
S50.07945 (6)0.17259 (11)0.26887 (4)0.0588 (2)
S60.25347 (5)0.13324 (9)0.01601 (3)0.04044 (18)
S70.06384 (5)0.33985 (9)0.04061 (3)0.03918 (18)
S80.15951 (5)0.48291 (9)0.13470 (3)0.04262 (19)
S90.33185 (5)0.28997 (9)0.08385 (3)0.04294 (19)
S100.31807 (6)0.49623 (10)0.19673 (4)0.0494 (2)
C10.07448 (18)0.0249 (3)0.14306 (11)0.0311 (5)
C20.00959 (17)0.0580 (3)0.11635 (11)0.0319 (5)
C30.03719 (18)0.1004 (3)0.21241 (12)0.0372 (6)
C40.24237 (18)0.2678 (3)0.04584 (11)0.0337 (5)
C50.16105 (18)0.3563 (3)0.07046 (11)0.0326 (5)
C60.27173 (19)0.4270 (3)0.14143 (12)0.0375 (6)
C70.47163 (18)0.4200 (3)0.30763 (12)0.0369 (6)
C80.5031 (2)0.5037 (3)0.36482 (13)0.0424 (7)
H80.56730.49750.39000.051*
C90.4369 (2)0.5968 (4)0.38364 (13)0.0427 (6)
C100.3420 (2)0.6087 (4)0.34687 (14)0.0459 (7)
H100.29830.67300.35990.055*
C110.3131 (2)0.5234 (4)0.29039 (14)0.0452 (7)
H110.24890.53140.26530.054*
C120.37567 (19)0.4262 (3)0.26942 (12)0.0378 (6)
C130.3383 (2)0.3300 (3)0.20858 (13)0.0446 (7)
H13A0.38400.24420.20770.054*
H13B0.27730.27930.20760.054*
C140.3970 (2)0.4626 (4)0.12692 (14)0.0505 (7)
H140.45700.41540.14610.061*
C150.3849 (3)0.5594 (5)0.07450 (15)0.0648 (9)
H150.43620.57770.05790.078*
C160.2968 (4)0.6292 (5)0.04666 (16)0.0733 (11)
H160.28780.69690.01130.088*
C170.2219 (3)0.5989 (4)0.07112 (16)0.0687 (11)
H170.16140.64510.05220.082*
C180.2361 (2)0.5005 (4)0.12343 (15)0.0533 (8)
H180.18510.47900.14000.064*
Cl10.55699 (6)0.30754 (10)0.28410 (4)0.0559 (2)
Cl20.47396 (7)0.70086 (12)0.45557 (4)0.0695 (3)
N10.32373 (16)0.4347 (3)0.15097 (10)0.0396 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02757 (19)0.0410 (2)0.02521 (18)0.00030 (13)0.00600 (13)0.00174 (13)
S10.0295 (3)0.0497 (4)0.0341 (3)0.0068 (3)0.0091 (3)0.0074 (3)
S20.0306 (3)0.0546 (4)0.0353 (3)0.0089 (3)0.0092 (3)0.0151 (3)
S30.0270 (3)0.0512 (4)0.0370 (4)0.0023 (3)0.0087 (3)0.0107 (3)
S40.0352 (4)0.0480 (4)0.0353 (3)0.0090 (3)0.0100 (3)0.0125 (3)
S50.0494 (5)0.0755 (6)0.0598 (5)0.0147 (4)0.0289 (4)0.0336 (4)
S60.0314 (3)0.0527 (4)0.0376 (4)0.0076 (3)0.0108 (3)0.0118 (3)
S70.0300 (3)0.0521 (4)0.0365 (3)0.0072 (3)0.0114 (3)0.0102 (3)
S80.0403 (4)0.0524 (4)0.0373 (4)0.0070 (3)0.0149 (3)0.0117 (3)
S90.0341 (4)0.0571 (5)0.0409 (4)0.0063 (3)0.0161 (3)0.0082 (3)
S100.0524 (5)0.0580 (5)0.0453 (4)0.0010 (3)0.0263 (4)0.0070 (3)
C10.0312 (13)0.0358 (13)0.0250 (11)0.0017 (10)0.0060 (10)0.0011 (10)
C20.0317 (13)0.0371 (14)0.0259 (11)0.0016 (10)0.0072 (10)0.0007 (10)
C30.0309 (13)0.0436 (15)0.0351 (13)0.0004 (11)0.0067 (11)0.0040 (12)
C40.0310 (13)0.0433 (14)0.0272 (12)0.0017 (11)0.0094 (10)0.0028 (11)
C50.0334 (13)0.0395 (14)0.0255 (12)0.0016 (11)0.0097 (10)0.0009 (10)
C60.0367 (14)0.0404 (15)0.0346 (13)0.0036 (11)0.0093 (11)0.0030 (11)
C70.0343 (14)0.0400 (15)0.0369 (13)0.0001 (11)0.0116 (11)0.0064 (11)
C80.0355 (15)0.0531 (18)0.0359 (14)0.0070 (12)0.0065 (12)0.0017 (12)
C90.0455 (16)0.0477 (16)0.0350 (14)0.0146 (13)0.0120 (12)0.0065 (12)
C100.0398 (16)0.0488 (17)0.0505 (17)0.0050 (13)0.0156 (13)0.0090 (14)
C110.0291 (14)0.0540 (18)0.0481 (16)0.0027 (12)0.0045 (12)0.0045 (13)
C120.0397 (15)0.0354 (14)0.0362 (14)0.0080 (11)0.0080 (11)0.0014 (11)
C130.0484 (17)0.0397 (15)0.0416 (15)0.0063 (12)0.0070 (13)0.0025 (12)
C140.0462 (17)0.067 (2)0.0377 (15)0.0049 (15)0.0109 (13)0.0032 (14)
C150.078 (3)0.076 (2)0.0428 (17)0.004 (2)0.0214 (17)0.0046 (17)
C160.115 (3)0.057 (2)0.0365 (17)0.000 (2)0.006 (2)0.0055 (15)
C170.070 (2)0.059 (2)0.053 (2)0.0159 (18)0.0184 (18)0.0065 (17)
C180.0400 (17)0.0571 (19)0.0533 (18)0.0019 (14)0.0008 (14)0.0100 (15)
Cl10.0503 (4)0.0688 (5)0.0517 (4)0.0169 (4)0.0200 (4)0.0074 (4)
Cl20.0677 (6)0.0911 (7)0.0480 (5)0.0198 (5)0.0144 (4)0.0287 (4)
N10.0406 (13)0.0401 (13)0.0336 (11)0.0008 (10)0.0037 (10)0.0076 (10)
Geometric parameters (Å, º) top
Ni1—S22.1589 (7)C8—C91.381 (4)
Ni1—S62.1624 (7)C8—H80.9300
Ni1—S12.1633 (7)C9—C101.374 (4)
Ni1—S72.1640 (7)C9—Cl21.732 (3)
S1—C11.715 (2)C10—C111.374 (4)
S2—C21.704 (2)C10—H100.9300
S3—C31.726 (3)C11—C121.384 (4)
S3—C21.731 (2)C11—H110.9300
S4—C31.726 (3)C12—C131.505 (4)
S4—C11.736 (2)C13—N11.489 (3)
S5—C31.643 (3)C13—H13A0.9700
S6—C41.718 (3)C13—H13B0.9700
S7—C51.722 (2)C14—N11.335 (4)
S8—C61.734 (3)C14—C151.364 (4)
S8—C51.744 (2)C14—H140.9300
S9—C61.721 (3)C15—C161.365 (5)
S9—C41.743 (2)C15—H150.9300
S10—C61.649 (3)C16—C171.365 (6)
C1—C21.365 (3)C16—H160.9300
C4—C51.352 (4)C17—C181.367 (5)
C7—C81.382 (4)C17—H170.9300
C7—C121.393 (4)C18—N11.345 (4)
C7—Cl11.738 (3)C18—H180.9300
S2—Ni1—S6178.26 (3)C7—C8—H8120.8
S2—Ni1—S193.06 (3)C10—C9—C8121.7 (3)
S6—Ni1—S186.45 (3)C10—C9—Cl2118.9 (2)
S2—Ni1—S787.10 (3)C8—C9—Cl2119.3 (2)
S6—Ni1—S793.46 (3)C9—C10—C11118.4 (3)
S1—Ni1—S7177.67 (3)C9—C10—H10120.8
C1—S1—Ni1102.09 (8)C11—C10—H10120.8
C2—S2—Ni1102.27 (9)C10—C11—C12122.6 (3)
C3—S3—C297.68 (12)C10—C11—H11118.7
C3—S4—C197.25 (12)C12—C11—H11118.7
C4—S6—Ni1101.67 (9)C11—C12—C7117.1 (2)
C5—S7—Ni1101.78 (9)C11—C12—C13119.9 (2)
C6—S8—C596.99 (12)C7—C12—C13123.0 (3)
C6—S9—C497.61 (12)N1—C13—C12111.7 (2)
C2—C1—S1120.93 (19)N1—C13—H13A109.3
C2—C1—S4116.16 (19)C12—C13—H13A109.3
S1—C1—S4122.87 (14)N1—C13—H13B109.3
C1—C2—S2121.51 (19)C12—C13—H13B109.3
C1—C2—S3115.69 (19)H13A—C13—H13B107.9
S2—C2—S3122.71 (15)N1—C14—C15120.8 (3)
S5—C3—S3124.54 (16)N1—C14—H14119.6
S5—C3—S4122.34 (16)C15—C14—H14119.6
S3—C3—S4113.12 (14)C14—C15—C16119.4 (3)
C5—C4—S6121.83 (19)C14—C15—H15120.3
C5—C4—S9115.77 (19)C16—C15—H15120.3
S6—C4—S9122.29 (15)C15—C16—C17119.5 (3)
C4—C5—S7121.21 (19)C15—C16—H16120.3
C4—C5—S8116.37 (19)C17—C16—H16120.3
S7—C5—S8122.40 (15)C16—C17—C18119.8 (3)
S10—C6—S9122.42 (16)C16—C17—H17120.1
S10—C6—S8124.40 (16)C18—C17—H17120.1
S9—C6—S8113.18 (15)N1—C18—C17120.0 (3)
C8—C7—C12121.9 (3)N1—C18—H18120.0
C8—C7—Cl1117.4 (2)C17—C18—H18120.0
C12—C7—Cl1120.7 (2)C14—N1—C18120.5 (3)
C9—C8—C7118.3 (3)C14—N1—C13120.2 (2)
C9—C8—H8120.8C18—N1—C13119.3 (3)
C12—C7—C8—C90.5 (4)C11—C12—C13—N177.2 (3)
Cl1—C7—C8—C9178.5 (2)C7—C12—C13—N1104.5 (3)
C7—C8—C9—C100.6 (4)N1—C14—C15—C160.4 (5)
C7—C8—C9—Cl2179.2 (2)C14—C15—C16—C171.0 (5)
C8—C9—C10—C110.8 (4)C15—C16—C17—C180.6 (5)
Cl2—C9—C10—C11179.0 (2)C16—C17—C18—N10.5 (5)
C9—C10—C11—C120.2 (4)C15—C14—N1—C180.7 (4)
C10—C11—C12—C71.3 (4)C15—C14—N1—C13179.4 (3)
C10—C11—C12—C13177.2 (3)C17—C18—N1—C141.1 (4)
C8—C7—C12—C111.5 (4)C17—C18—N1—C13179.0 (3)
Cl1—C7—C12—C11177.6 (2)C12—C13—N1—C1486.7 (3)
C8—C7—C12—C13176.9 (3)C12—C13—N1—C1893.4 (3)
Cl1—C7—C12—C134.0 (4)

Experimental details

Crystal data
Chemical formula(C12H10Cl2N)[Ni(C3S5)2]
Mr690.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.4614 (5), 8.2158 (3), 21.8894 (8)
β (°) 107.231 (1)
V3)2484.00 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.26 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.645, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
18903, 4615, 3992
Rint0.085
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.04
No. of reflections4615
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.69

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20971004), the Key Project of the Chinese Ministry of Education (No. 210102) and the Natural Science Foundation of Anhui Province (No. 11040606M45).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCassoux, P. (1999). Coord. Chem. Rev. 185–186, 213–232.  Web of Science CrossRef CAS Google Scholar
First citationCassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. & Underhill, A. (1991). Coord. Chem. Rev. 110, 115–160.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-S., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615–1618.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds