metal-organic compounds
Tetraaquabis(2-{[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetato)cobalt(II) monohydrate
aDepartment of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: yangguangrui@ncwu.edu.cn
In the title compound, [Co(C9H6N3O3S)2(H2O)4]·H2O, the two 2-{[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetate ligands are monodentate. One coordinates the metal atom via the pyridyl N atom whereas the other coordinates via the carboxylate O atom. The CoII atom adopts a slightly distorted octahedral coordination geometry with four O atoms of the coordinated water molecules located in the equatorial plane and the N and O atoms of the two POA ligands in axial positions. In the crystal, the components are connected through O—H⋯O and O—H⋯N hydrogen bonds into a three-dimensional framework.
Related literature
For metal-assisted transformation of N-benzoyldithiocarbazate to 5-phenyl-1,3,4-oxadiazole-2-thiol (pot) in the presence of ethylenediamine, and its transition metal complexes, see: Tripathi et al. (2007). For zinc and cadmium metal-organic polymers formed with 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, see: Du et al. (2006). For the synthesis of 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, see: Young & Wood (1955).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811046526/gk2415sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811046526/gk2415Isup2.hkl
The sodium salt of 2-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-ylthio)acetic acid (HPOA) was synthesized in the following process. To a solution of sodium hydroxide (1.60 g, 40 mmol) and 95% alcohol (50 mL) was added 5-pyridyl-2-mercapto-1,3,4-oxadiazole (3.58 g, 20 mmol) and the resulting mixture was refluxed for half an hour. And then a solution of chloroactic acid (1.89 g, 20 mmol) and 95% alcohol (70 mL) was dropwise added to the mixture with continuous refluxing for 3 hours. Pale yellow precipitate was filtered. After recrystallized from alcohol/water (2:1), the obtained pure product was 2.76 g. Yield: 51%. Selected IR (cm-1, KBr pellet): 3489(w), 1598(s),
1464(m), 1402(s), 1220(m), 1190(m), 1084(m), 909(m), 835(m), 704(w), 519(m).
The title compound (1), was prepared according to the following process. A mixture of NaPOA (51.8 mg, 0.2 mmol), CoCl2.6H2O (23.8 mg, 0.1 mmol) and deionized water (20 ml) was stirred for 30 minutes and then filtered. The filtrate was allowed to evaporate at room temperature for a week, and then red block crystals were obtain in 57% yield. Selected IR (cm-1, KBr pellet): 3228(m), 1571(s), 1496(m), 1449(s), 142(m), 1390(s), 1226(s), 1197(m), 1062(m), 1004(s), 873(w), 841(m), 800(w), 710(s), 584(w), 523(w).
The H atoms of water molecules were located from difference Fourier maps and refined with restraints imposed on O-H and H···H distances and with Uiso(H) = 1.5Ueq(O). The remaining hydrogen atom positions were generated geometrically. All H atoms were allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C).
Recently, pyridyl-containing 1,3,4-oxadiazole-2-thiones have been systematically explored as promising bridging ligands in coordination chemistry (Du et al., 2006; Tripathi et al., 2007). Our contribution to these studies is synthesis of the multifunctional ligand ,{[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetic acid (HPOA), and reported herein structure of a new complex [Co(POA)2(H2O)4].H2O (I).
As shown in Fig. 1 (I) is a mononuclear complex. The
consists of the complex molecule and one water of crystallization. In (I) the CoII center is ligated by four O atoms from four water molecules located in the equatorial plane, and two monodentate POA anions. One POA anion coordinates the metal center via the pyridyl N atom whereas the other via the carboxylate O atom. The CoII ion is in a slightly distorted octahedral coordination environement with the in-plane and axial-trans angles being 175.09 (15), 177.66 (14) and 178.54 (13)°, and the bond distances Co—O and Co—N ranging from 2.074 (4) to 2.164 (4) Å.In (I) the hydrogen-bonding interactions result in a 3D supramolecular network as shown in Fig. 2. The 3D hydrogen-bonded network is stabilized through the intermolecular π···π interactions with a center-to-center distance of pyridyl groups being 3.662 Å and a center-to-center distance of oxadiazole groups being 3.375 Å, respectively. There are complicated hydrogen-bonding system in (I): each coordination water molecule forms two O—H···O hydrogen bonds while every uncoordinated carboxyl group of POA in one monomer adopts bridging and chelating coordination modes to links with two other monomers through the formed three O—H···O hydrogen bonds, and especially the lattice water O11 acting as a tetrahedral hydrogen-bonding connector binds with four monomers (1) through three O···O hydrogen bonds and one O···N hydrogen bond. In this way monomers of (I) are linked into the 3D supramolecular architecture.
For metal-assited transformation of N-benzoyldithiocarbazate to 5-phenyl-1,3,4-oxadiazole-2-thiol (pot) in the presence of ethylenediamine, and its transition metal complexes, see: Tripathi et al. (2007). For zinc(II) and cadmium(II) metal-organic polymers formed with 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, see: Du et al. (2006). For the synthesis of 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, see: Young & Wood (1955).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. ORTEP diagram of of the title compound with 30% probability ellipsoids for all non-hydrogen atoms. | |
Fig. 2. A complicated hydrogen-bond network in the title compound (1). |
[Co(C9H6N3O3S)2(H2O)4]·H2O | Z = 2 |
Mr = 621.47 | F(000) = 638 |
Triclinic, P1 | Dx = 1.681 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.393 (4) Å | Cell parameters from 2275 reflections |
b = 11.122 (6) Å | θ = 2.7–25.1° |
c = 16.014 (8) Å | µ = 0.94 mm−1 |
α = 103.904 (6)° | T = 293 K |
β = 96.040 (6)° | Block, red |
γ = 103.017 (6)° | 0.40 × 0.25 × 0.15 mm |
V = 1227.5 (11) Å3 |
Siemens SMART CCD diffractometer | 2975 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.056 |
Graphite monochromator | θmax = 25.0°, θmin = 2.7° |
ω scan | h = −8→8 |
8804 measured reflections | k = −13→13 |
4234 independent reflections | l = −19→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.182 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.1108P)2] where P = (Fo2 + 2Fc2)/3 |
4234 reflections | (Δ/σ)max < 0.001 |
373 parameters | Δρmax = 1.51 e Å−3 |
14 restraints | Δρmin = −0.82 e Å−3 |
[Co(C9H6N3O3S)2(H2O)4]·H2O | γ = 103.017 (6)° |
Mr = 621.47 | V = 1227.5 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.393 (4) Å | Mo Kα radiation |
b = 11.122 (6) Å | µ = 0.94 mm−1 |
c = 16.014 (8) Å | T = 293 K |
α = 103.904 (6)° | 0.40 × 0.25 × 0.15 mm |
β = 96.040 (6)° |
Siemens SMART CCD diffractometer | 2975 reflections with I > 2σ(I) |
8804 measured reflections | Rint = 0.056 |
4234 independent reflections |
R[F2 > 2σ(F2)] = 0.065 | 14 restraints |
wR(F2) = 0.182 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 1.51 e Å−3 |
4234 reflections | Δρmin = −0.82 e Å−3 |
373 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.78325 (9) | 0.30500 (6) | 0.54979 (4) | 0.0341 (2) | |
S1 | 0.75640 (19) | 0.10713 (12) | 0.18118 (8) | 0.0428 (4) | |
S2 | 0.63708 (19) | 0.46656 (12) | 1.16857 (8) | 0.0440 (4) | |
O1 | 0.8385 (5) | 0.3050 (3) | 0.4234 (2) | 0.0402 (8) | |
O2 | 0.6631 (6) | 0.1130 (3) | 0.3422 (2) | 0.0572 (10) | |
O3 | 0.8313 (5) | 0.0864 (3) | 0.0228 (2) | 0.0405 (8) | |
O4 | 0.3915 (5) | 0.3743 (3) | 1.3574 (2) | 0.0462 (9) | |
O5 | 0.6136 (5) | 0.5403 (3) | 1.3476 (2) | 0.0497 (9) | |
O6 | 0.6559 (5) | 0.4033 (3) | 0.9999 (2) | 0.0424 (8) | |
O7 | 0.5077 (5) | 0.3243 (3) | 0.5123 (2) | 0.0389 (8) | |
O8 | 0.8788 (5) | 0.5034 (3) | 0.5868 (2) | 0.0457 (9) | |
O9 | 1.0481 (5) | 0.2784 (4) | 0.5833 (3) | 0.0483 (9) | |
O10 | 0.6705 (5) | 0.1073 (3) | 0.5044 (2) | 0.0452 (9) | |
O11 | 0.1925 (6) | 0.1010 (4) | 0.4736 (2) | 0.0570 (10) | |
N1 | 0.9855 (6) | 0.2754 (4) | 0.1118 (3) | 0.0473 (11) | |
N2 | 1.0274 (6) | 0.2712 (4) | 0.0278 (3) | 0.0481 (11) | |
N3 | 0.8966 (6) | 0.0086 (4) | −0.2939 (3) | 0.0492 (11) | |
N4 | 0.7224 (5) | 0.3085 (4) | 0.6795 (3) | 0.0362 (9) | |
N5 | 0.4802 (7) | 0.2040 (4) | 0.9494 (3) | 0.0505 (12) | |
N6 | 0.4768 (6) | 0.2448 (4) | 1.0384 (3) | 0.0487 (11) | |
C1 | 0.7812 (6) | 0.2151 (4) | 0.3525 (3) | 0.0350 (11) | |
C2 | 0.8695 (7) | 0.2403 (5) | 0.2745 (3) | 0.0399 (12) | |
H2A | 1.0065 | 0.2479 | 0.2856 | 0.048* | |
H2B | 0.8508 | 0.3211 | 0.2641 | 0.048* | |
C3 | 0.8697 (7) | 0.1655 (5) | 0.1053 (3) | 0.0363 (11) | |
C4 | 0.9354 (7) | 0.1611 (4) | −0.0218 (3) | 0.0370 (11) | |
C5 | 0.9225 (7) | 0.1068 (5) | −0.1155 (3) | 0.0379 (11) | |
C6 | 0.7994 (7) | −0.0095 (5) | −0.1589 (3) | 0.0436 (12) | |
H6 | 0.7221 | −0.0581 | −0.1285 | 0.052* | |
C7 | 0.7907 (7) | −0.0541 (5) | −0.2484 (3) | 0.0445 (12) | |
H7 | 0.7041 | −0.1339 | −0.2785 | 0.053* | |
C8 | 1.0126 (8) | 0.1215 (5) | −0.2516 (3) | 0.0477 (13) | |
H8 | 1.0851 | 0.1686 | −0.2845 | 0.057* | |
C9 | 1.0345 (7) | 0.1750 (5) | −0.1624 (3) | 0.0425 (12) | |
H9 | 1.1224 | 0.2551 | −0.1343 | 0.051* | |
C10 | 0.4996 (7) | 0.4344 (5) | 1.3167 (3) | 0.0376 (11) | |
C11 | 0.4767 (7) | 0.3688 (5) | 1.2190 (3) | 0.0377 (11) | |
H11A | 0.3455 | 0.3558 | 1.1908 | 0.045* | |
H11B | 0.5032 | 0.2837 | 1.2108 | 0.045* | |
C12 | 0.5816 (7) | 0.3609 (5) | 1.0651 (3) | 0.0381 (11) | |
C13 | 0.5860 (7) | 0.2988 (5) | 0.9296 (3) | 0.0391 (12) | |
C14 | 0.6358 (6) | 0.3042 (4) | 0.8441 (3) | 0.0332 (10) | |
C15 | 0.5456 (7) | 0.2050 (5) | 0.7710 (3) | 0.0412 (12) | |
H15 | 0.4529 | 0.1337 | 0.7760 | 0.049* | |
C16 | 0.5918 (7) | 0.2109 (5) | 0.6909 (3) | 0.0405 (12) | |
H16 | 0.5283 | 0.1426 | 0.6412 | 0.049* | |
C17 | 0.8101 (7) | 0.4028 (5) | 0.7512 (3) | 0.0398 (12) | |
H17 | 0.9044 | 0.4719 | 0.7446 | 0.048* | |
C18 | 0.7718 (7) | 0.4056 (5) | 0.8338 (3) | 0.0408 (12) | |
H18 | 0.8369 | 0.4753 | 0.8826 | 0.049* | |
H7B | 0.503 (8) | 0.355 (5) | 0.469 (2) | 0.061* | |
H7A | 0.471 (8) | 0.379 (4) | 0.548 (3) | 0.061* | |
H8A | 0.793 (6) | 0.540 (5) | 0.599 (4) | 0.061* | |
H9B | 1.087 (8) | 0.226 (4) | 0.547 (3) | 0.061* | |
H9A | 1.144 (5) | 0.340 (3) | 0.604 (4) | 0.061* | |
H8B | 0.966 (5) | 0.554 (4) | 0.573 (4) | 0.061* | |
H10A | 0.709 (8) | 0.044 (4) | 0.512 (4) | 0.061* | |
H11C | 0.163 (6) | 0.082 (5) | 0.4196 (8) | 0.061* | |
H10B | 0.657 (8) | 0.105 (6) | 0.4512 (12) | 0.061* | |
H11D | 0.3009 (12) | 0.1571 (12) | 0.481 (3) | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0346 (4) | 0.0291 (4) | 0.0268 (4) | −0.0062 (3) | 0.0043 (3) | −0.0008 (3) |
S1 | 0.0500 (8) | 0.0355 (7) | 0.0281 (6) | −0.0053 (6) | 0.0019 (6) | −0.0019 (5) |
S2 | 0.0508 (8) | 0.0391 (7) | 0.0300 (7) | −0.0028 (6) | 0.0082 (6) | −0.0001 (5) |
O1 | 0.044 (2) | 0.0313 (17) | 0.0313 (18) | −0.0080 (16) | 0.0090 (15) | −0.0019 (14) |
O2 | 0.064 (2) | 0.044 (2) | 0.035 (2) | −0.025 (2) | 0.0006 (18) | −0.0034 (16) |
O3 | 0.049 (2) | 0.0304 (18) | 0.0276 (17) | −0.0054 (16) | 0.0009 (15) | −0.0017 (14) |
O4 | 0.057 (2) | 0.043 (2) | 0.0319 (18) | 0.0023 (18) | 0.0133 (17) | 0.0046 (16) |
O5 | 0.045 (2) | 0.046 (2) | 0.0345 (19) | −0.0126 (18) | 0.0057 (16) | −0.0090 (16) |
O6 | 0.052 (2) | 0.0395 (19) | 0.0273 (18) | 0.0007 (17) | 0.0102 (16) | 0.0036 (15) |
O7 | 0.040 (2) | 0.039 (2) | 0.0289 (18) | 0.0010 (16) | 0.0042 (15) | 0.0029 (15) |
O8 | 0.045 (2) | 0.0286 (19) | 0.052 (2) | −0.0057 (16) | 0.0163 (19) | 0.0014 (17) |
O9 | 0.036 (2) | 0.045 (2) | 0.048 (2) | −0.0013 (17) | 0.0039 (17) | −0.0032 (18) |
O10 | 0.058 (2) | 0.0292 (18) | 0.038 (2) | −0.0055 (17) | 0.0087 (18) | 0.0054 (17) |
O11 | 0.062 (2) | 0.051 (2) | 0.040 (2) | −0.005 (2) | 0.0034 (19) | −0.0016 (18) |
N1 | 0.051 (3) | 0.041 (2) | 0.035 (2) | −0.004 (2) | 0.008 (2) | −0.0046 (19) |
N2 | 0.053 (3) | 0.042 (3) | 0.033 (2) | −0.005 (2) | 0.007 (2) | −0.002 (2) |
N3 | 0.054 (3) | 0.049 (3) | 0.035 (2) | 0.002 (2) | 0.003 (2) | 0.005 (2) |
N4 | 0.036 (2) | 0.031 (2) | 0.033 (2) | −0.0024 (18) | 0.0025 (17) | 0.0020 (17) |
N5 | 0.060 (3) | 0.048 (3) | 0.031 (2) | −0.005 (2) | 0.010 (2) | 0.003 (2) |
N6 | 0.056 (3) | 0.049 (3) | 0.031 (2) | −0.002 (2) | 0.013 (2) | 0.006 (2) |
C1 | 0.033 (3) | 0.031 (3) | 0.029 (2) | −0.004 (2) | −0.001 (2) | 0.000 (2) |
C2 | 0.046 (3) | 0.034 (3) | 0.027 (2) | −0.004 (2) | 0.006 (2) | −0.002 (2) |
C3 | 0.038 (3) | 0.036 (3) | 0.024 (2) | 0.004 (2) | 0.000 (2) | −0.005 (2) |
C4 | 0.035 (3) | 0.030 (3) | 0.039 (3) | 0.003 (2) | 0.003 (2) | 0.002 (2) |
C5 | 0.040 (3) | 0.033 (3) | 0.035 (3) | 0.008 (2) | 0.001 (2) | 0.004 (2) |
C6 | 0.048 (3) | 0.040 (3) | 0.033 (3) | 0.000 (3) | 0.004 (2) | 0.004 (2) |
C7 | 0.040 (3) | 0.043 (3) | 0.038 (3) | 0.000 (2) | 0.001 (2) | 0.001 (2) |
C8 | 0.051 (3) | 0.053 (3) | 0.036 (3) | 0.008 (3) | 0.007 (2) | 0.012 (3) |
C9 | 0.044 (3) | 0.033 (3) | 0.041 (3) | 0.001 (2) | −0.001 (2) | 0.003 (2) |
C10 | 0.042 (3) | 0.040 (3) | 0.027 (2) | 0.011 (2) | 0.004 (2) | 0.002 (2) |
C11 | 0.039 (3) | 0.034 (3) | 0.029 (2) | −0.001 (2) | 0.003 (2) | −0.001 (2) |
C12 | 0.040 (3) | 0.039 (3) | 0.029 (3) | 0.006 (2) | 0.003 (2) | 0.003 (2) |
C13 | 0.046 (3) | 0.036 (3) | 0.028 (3) | 0.005 (2) | 0.006 (2) | 0.000 (2) |
C14 | 0.036 (3) | 0.032 (2) | 0.030 (2) | 0.005 (2) | 0.008 (2) | 0.006 (2) |
C15 | 0.045 (3) | 0.035 (3) | 0.033 (3) | −0.006 (2) | 0.008 (2) | 0.004 (2) |
C16 | 0.046 (3) | 0.034 (3) | 0.028 (2) | −0.005 (2) | 0.003 (2) | −0.001 (2) |
C17 | 0.041 (3) | 0.035 (3) | 0.032 (3) | −0.007 (2) | 0.006 (2) | 0.003 (2) |
C18 | 0.044 (3) | 0.035 (3) | 0.028 (2) | −0.006 (2) | −0.001 (2) | −0.004 (2) |
Co1—O8 | 2.074 (4) | N3—C7 | 1.322 (7) |
Co1—O9 | 2.080 (4) | N3—C8 | 1.325 (7) |
Co1—O10 | 2.083 (4) | N4—C17 | 1.340 (6) |
Co1—O1 | 2.107 (3) | N4—C16 | 1.343 (6) |
Co1—O7 | 2.135 (4) | N5—C13 | 1.291 (6) |
Co1—N4 | 2.164 (4) | N5—N6 | 1.394 (6) |
S1—C3 | 1.718 (5) | N6—C12 | 1.290 (7) |
S1—C2 | 1.800 (5) | C1—C2 | 1.525 (6) |
S2—C12 | 1.732 (5) | C2—H2A | 0.9900 |
S2—C11 | 1.812 (5) | C2—H2B | 0.9900 |
O1—C1 | 1.277 (5) | C4—C5 | 1.461 (7) |
O2—C1 | 1.229 (6) | C5—C6 | 1.375 (7) |
O3—C3 | 1.359 (5) | C5—C9 | 1.396 (7) |
O3—C4 | 1.381 (6) | C6—C7 | 1.389 (7) |
O4—C10 | 1.261 (6) | C6—H6 | 0.9500 |
O5—C10 | 1.236 (6) | C7—H7 | 0.9500 |
O6—C12 | 1.361 (6) | C8—C9 | 1.386 (7) |
O6—C13 | 1.365 (6) | C8—H8 | 0.9500 |
O7—H7B | 0.841 (10) | C9—H9 | 0.9500 |
O7—H7A | 0.843 (10) | C10—C11 | 1.532 (6) |
O8—H8A | 0.839 (10) | C11—H11A | 0.9900 |
O8—H8B | 0.837 (10) | C11—H11B | 0.9900 |
O9—H9B | 0.840 (10) | C13—C14 | 1.466 (6) |
O9—H9A | 0.838 (11) | C14—C15 | 1.385 (7) |
O10—H10A | 0.842 (7) | C14—C18 | 1.388 (7) |
O10—H10B | 0.841 (10) | C15—C16 | 1.373 (7) |
O11—H11C | 0.831 (10) | C15—H15 | 0.9500 |
O11—H11D | 0.875 (8) | C16—H16 | 0.9500 |
N1—C3 | 1.298 (6) | C17—C18 | 1.377 (6) |
N1—N2 | 1.404 (6) | C17—H17 | 0.9500 |
N2—C4 | 1.280 (6) | C18—H18 | 0.9500 |
O8—Co1—O9 | 93.76 (15) | N1—C3—S1 | 131.2 (4) |
O8—Co1—O10 | 175.09 (15) | O3—C3—S1 | 116.2 (3) |
O9—Co1—O10 | 90.39 (15) | N2—C4—O3 | 112.4 (4) |
O8—Co1—O1 | 88.89 (13) | N2—C4—C5 | 130.1 (5) |
O9—Co1—O1 | 90.15 (14) | O3—C4—C5 | 117.5 (4) |
O10—Co1—O1 | 88.47 (13) | C6—C5—C9 | 119.1 (5) |
O8—Co1—O7 | 88.48 (14) | C6—C5—C4 | 121.3 (5) |
O9—Co1—O7 | 177.66 (14) | C9—C5—C4 | 119.6 (5) |
O10—Co1—O7 | 87.35 (15) | C5—C6—C7 | 118.3 (5) |
O1—Co1—O7 | 89.22 (13) | C5—C6—H6 | 120.8 |
O8—Co1—N4 | 90.21 (14) | C7—C6—H6 | 120.8 |
O9—Co1—N4 | 91.06 (15) | N3—C7—C6 | 123.4 (5) |
O10—Co1—N4 | 92.35 (14) | N3—C7—H7 | 118.3 |
O1—Co1—N4 | 178.54 (13) | C6—C7—H7 | 118.3 |
O7—Co1—N4 | 89.61 (14) | N3—C8—C9 | 123.9 (5) |
C3—S1—C2 | 97.1 (2) | N3—C8—H8 | 118.1 |
C12—S2—C11 | 96.7 (2) | C9—C8—H8 | 118.1 |
C1—O1—Co1 | 128.8 (3) | C8—C9—C5 | 117.4 (5) |
C3—O3—C4 | 102.2 (4) | C8—C9—H9 | 121.3 |
C12—O6—C13 | 102.0 (4) | C5—C9—H9 | 121.3 |
Co1—O7—H7B | 111 (4) | O5—C10—O4 | 126.2 (5) |
Co1—O7—H7A | 116 (4) | O5—C10—C11 | 118.9 (4) |
H7B—O7—H7A | 99 (5) | O4—C10—C11 | 114.8 (4) |
Co1—O8—H8A | 113 (4) | C10—C11—S2 | 110.1 (3) |
Co1—O8—H8B | 132 (4) | C10—C11—H11A | 109.6 |
H8A—O8—H8B | 109 (5) | S2—C11—H11A | 109.6 |
Co1—O9—H9B | 119 (4) | C10—C11—H11B | 109.6 |
Co1—O9—H9A | 122 (4) | S2—C11—H11B | 109.6 |
H9B—O9—H9A | 103 (6) | H11A—C11—H11B | 108.2 |
Co1—O10—H10A | 133 (4) | N6—C12—O6 | 112.9 (4) |
Co1—O10—H10B | 95 (4) | N6—C12—S2 | 129.8 (4) |
H10A—O10—H10B | 110 (6) | O6—C12—S2 | 117.4 (4) |
H11C—O11—H11D | 100.1 (15) | N5—C13—O6 | 112.5 (4) |
C3—N1—N2 | 106.1 (4) | N5—C13—C14 | 127.9 (4) |
C4—N2—N1 | 106.7 (4) | O6—C13—C14 | 119.6 (4) |
C7—N3—C8 | 117.7 (5) | C15—C14—C18 | 118.5 (4) |
C17—N4—C16 | 116.7 (4) | C15—C14—C13 | 119.4 (4) |
C17—N4—Co1 | 123.8 (3) | C18—C14—C13 | 122.1 (4) |
C16—N4—Co1 | 119.5 (3) | C16—C15—C14 | 119.2 (4) |
C13—N5—N6 | 106.5 (4) | C16—C15—H15 | 120.4 |
C12—N6—N5 | 106.1 (4) | C14—C15—H15 | 120.4 |
O2—C1—O1 | 126.2 (4) | N4—C16—C15 | 123.3 (4) |
O2—C1—C2 | 118.4 (4) | N4—C16—H16 | 118.4 |
O1—C1—C2 | 115.3 (4) | C15—C16—H16 | 118.4 |
C1—C2—S1 | 107.5 (3) | N4—C17—C18 | 124.1 (4) |
C1—C2—H2A | 110.2 | N4—C17—H17 | 118.0 |
S1—C2—H2A | 110.2 | C18—C17—H17 | 118.0 |
C1—C2—H2B | 110.2 | C17—C18—C14 | 118.3 (4) |
S1—C2—H2B | 110.2 | C17—C18—H18 | 120.9 |
H2A—C2—H2B | 108.5 | C14—C18—H18 | 120.9 |
N1—C3—O3 | 112.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10B···O2 | 0.84 (1) | 1.77 (1) | 2.608 (5) | 172 (6) |
O11—H11D···O7 | 0.88 (1) | 2.04 (1) | 2.886 (5) | 163 (2) |
O10—H10A···O11i | 0.84 (1) | 1.97 (1) | 2.810 (6) | 178 (6) |
O7—H7A···O5ii | 0.84 (1) | 1.94 (2) | 2.741 (5) | 160 (5) |
O8—H8A···O4ii | 0.84 (1) | 1.93 (2) | 2.767 (5) | 172 (6) |
O9—H9B···O11iii | 0.84 (1) | 1.96 (1) | 2.793 (5) | 174 (6) |
O7—H7B···O4iv | 0.84 (1) | 1.97 (3) | 2.762 (5) | 156 (6) |
O8—H8B···O1v | 0.84 (1) | 1.87 (2) | 2.677 (5) | 163 (6) |
O9—H9A···O5vi | 0.84 (1) | 1.93 (2) | 2.761 (5) | 170 (5) |
O11—H11C···N3vii | 0.83 (1) | 1.98 (2) | 2.785 (6) | 165 (5) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+2; (iii) x+1, y, z; (iv) x, y, z−1; (v) −x+2, −y+1, −z+1; (vi) −x+2, −y+1, −z+2; (vii) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C9H6N3O3S)2(H2O)4]·H2O |
Mr | 621.47 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.393 (4), 11.122 (6), 16.014 (8) |
α, β, γ (°) | 103.904 (6), 96.040 (6), 103.017 (6) |
V (Å3) | 1227.5 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.94 |
Crystal size (mm) | 0.40 × 0.25 × 0.15 |
Data collection | |
Diffractometer | Siemens SMART CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8804, 4234, 2975 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.182, 1.00 |
No. of reflections | 4234 |
No. of parameters | 373 |
No. of restraints | 14 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.51, −0.82 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Co1—O8 | 2.074 (4) | Co1—O1 | 2.107 (3) |
Co1—O9 | 2.080 (4) | Co1—O7 | 2.135 (4) |
Co1—O10 | 2.083 (4) | Co1—N4 | 2.164 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10B···O2 | 0.841 (10) | 1.773 (14) | 2.608 (5) | 172 (6) |
O11—H11D···O7 | 0.875 (8) | 2.039 (8) | 2.886 (5) | 163 (2) |
O10—H10A···O11i | 0.842 (7) | 1.968 (10) | 2.810 (6) | 178 (6) |
O7—H7A···O5ii | 0.843 (10) | 1.94 (2) | 2.741 (5) | 160 (5) |
O8—H8A···O4ii | 0.839 (10) | 1.933 (15) | 2.767 (5) | 172 (6) |
O9—H9B···O11iii | 0.840 (10) | 1.956 (13) | 2.793 (5) | 174 (6) |
O7—H7B···O4iv | 0.841 (10) | 1.97 (3) | 2.762 (5) | 156 (6) |
O8—H8B···O1v | 0.837 (10) | 1.87 (2) | 2.677 (5) | 163 (6) |
O9—H9A···O5vi | 0.838 (11) | 1.931 (15) | 2.761 (5) | 170 (5) |
O11—H11C···N3vii | 0.831 (10) | 1.975 (18) | 2.785 (6) | 165 (5) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+2; (iii) x+1, y, z; (iv) x, y, z−1; (v) −x+2, −y+1, −z+1; (vi) −x+2, −y+1, −z+2; (vii) −x+1, −y, −z. |
Acknowledgements
This work was supported by the Natural Science Foundation of China.
References
Du, M., Zhang, Z. H., Zhao, X.-J. & Xu, Q. (2006). Inorg. Chem. 45, 5785–5792. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Tripathi, P., Pal, A., Jancik, V., Pandey, A. K., Singh, J. & Singh, N. K. (2007). Polyhedron, 26, 2597–2602. Web of Science CSD CrossRef CAS Google Scholar
Young, R. W. & Wood, K. H. (1955). J. Am. Chem. Soc. 77, 400–403. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, pyridyl-containing 1,3,4-oxadiazole-2-thiones have been systematically explored as promising bridging ligands in coordination chemistry (Du et al., 2006; Tripathi et al., 2007). Our contribution to these studies is synthesis of the multifunctional ligand ,{[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetic acid (HPOA), and reported herein structure of a new complex [Co(POA)2(H2O)4].H2O (I).
As shown in Fig. 1 (I) is a mononuclear complex. The asymmetric unit consists of the complex molecule and one water of crystallization. In (I) the CoII center is ligated by four O atoms from four water molecules located in the equatorial plane, and two monodentate POA anions. One POA anion coordinates the metal center via the pyridyl N atom whereas the other via the carboxylate O atom. The CoII ion is in a slightly distorted octahedral coordination environement with the in-plane and axial-trans angles being 175.09 (15), 177.66 (14) and 178.54 (13)°, and the bond distances Co—O and Co—N ranging from 2.074 (4) to 2.164 (4) Å.
In (I) the hydrogen-bonding interactions result in a 3D supramolecular network as shown in Fig. 2. The 3D hydrogen-bonded network is stabilized through the intermolecular π···π interactions with a center-to-center distance of pyridyl groups being 3.662 Å and a center-to-center distance of oxadiazole groups being 3.375 Å, respectively. There are complicated hydrogen-bonding system in (I): each coordination water molecule forms two O—H···O hydrogen bonds while every uncoordinated carboxyl group of POA in one monomer adopts bridging and chelating coordination modes to links with two other monomers through the formed three O—H···O hydrogen bonds, and especially the lattice water O11 acting as a tetrahedral hydrogen-bonding connector binds with four monomers (1) through three O···O hydrogen bonds and one O···N hydrogen bond. In this way monomers of (I) are linked into the 3D supramolecular architecture.