metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ3-Dodeca­tungsto(V,VI)aluminato-κ3O:O′:O′′-tris­­[aqua­bis­­(ethyl­ene­di­amine-κ2N,N′)copper(II)]

aState Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao Shandong 266555, People's Republic of China, and bState Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao Shandong 266555, People's Republic of China
*Correspondence e-mail: lyk@upc.edu.cn

(Received 10 October 2011; accepted 14 November 2011; online 19 November 2011)

The title compound, [AlCu3W12O40(C2H8N2)6(H2O)3], was prepared under hydro­thermal conditions. The Cu2+ ion displays an elongated octa­hedral geometry defined by one bridging O atom from the polyoxidoanion and a coordinated water mol­ecule in axial positions and four N atoms of the two chelating ethyl­enediamine (en) ligands in equatorial positions. The one-electron reduced [AlW12O40]6− anion coordinates three [Cu(en)(H2O)]2+ fragments, generating a neutral tri-supported Keggin-type polyoxidometalate (POM). This tri-supported POM is located in a special position of [\overline{3}] symmetry and therefore O atoms from the central AlO4 tetra­hedron are disordered over two sets of sites. Disorder is also observed for three other bridging O atoms of the POM. In the crystal, mol­ecules are connected via N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional framework.

Related literature

For the isotypic VIV and SiIV structures, see: Lu, Cui, Chen et al. (2009[Lu, Y. K., Cui, X. B., Chen, Y., Xu, J. N., Zhang, Q. B., Liu, Y. B., Xu, J. Q. & &Wang, T. G. (2009). J. Solid State Chem. 182, 2111-2117.]). For general background to polyoxidometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34-48.]); Hill (1998[Hill, C. L. (1998). Chem. Rev. 98, 1-2.]); López et al. (2001[López, X., Maestre, J. M., Bo, C. & Poblet, J. M. (2001). J. Am. Chem. Soc. 123, 9571-9576.]). For modified Keggin-type structures with transition metal complexes, see: Xu et al. (2000[Xu, Y., Xu, J. Q., Zhang, K. L., Zhang, Y. & You, X. Z. (2000). Chem. Commun. pp. 153-154.]); Yuan, Li et al. (2003[Yuan, M., Li, Y. G., Wang, E. B., Tian, C. G., Wang, L., Hu, C. W., Hu, N. H. & Jia, H. Q. (2003). Inorg. Chem. 42, 3670-3676.]). For the structure and chemistry of one-electron reduced heteropolytungstate, see: Lan et al. (2008[Lan, Y. Q., Li, S. L., Li, Y. G., Su, Z. M., Shao, K. Z. & Wang, X. L. (2008). CrystEngComm, 10, 1129-1131.]); Meng et al. (2008[Meng, F. X., Chen, Y. G., Pang, H. J., Shi, D. M. & Sun, Y. (2008). J. Coord. Chem. 61, 1513-1524.]). For other dodeca­tungstoaluminates, see: Wang et al. (2006[Wang, J. P., Shen, Y. & Niu, J. Y. (2006). J. Coord. Chem. 59, 1007-1014.]); Yuan, Qin et al. (2009[Yuan, L., Qin, C., Wang, X. L., Li, Y. G. & Wang, E. B. (2009). Dalton Trans. pp. 4169-4175.]). For polyoxidometalates prepared with strongly reducing agents, see: Lu, Cui, Liu et al. (2009[Lu, Y. K., Cui, X. B., Liu, Y. B., Yang, Q. F., Shi, S. Y., Xu, J. Q. & Wang, T. G. (2009). J. Solid State Chem. 182, 690-697.]); Lu, Xu & Yu (2010[Lu, Y., Xu, J. & Yu, H. (2010). Acta Cryst. E66, m263-m264.]); Lu, Xu, Cui et al. (2010[Lu, Y. K., Xu, J. N., Cui, X. B., Jin, J., Shi, S. Y. & Xu, J. Q. (2010). Inorg. Chem. Commun. 13, 46-49.]).

[Scheme 1]

Experimental

Crystal data
  • [AlCu3W12O40(C2H8N2)6(H2O)3]

  • Mr = 3478.47

  • Trigonal, [R \overline 3c ]

  • a = 17.9719 (14) Å

  • c = 29.335 (5) Å

  • V = 8206 (2) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 26.38 mm−1

  • T = 296 K

  • 0.11 × 0.11 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.159, Tmax = 0.178

  • 22760 measured reflections

  • 2220 independent reflections

  • 1864 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.071

  • S = 1.10

  • 2220 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 1.85 e Å−3

  • Δρmin = −3.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2i 0.85 2.25 2.856 (9) 128
N1—H1B⋯O5i 0.90 2.26 3.138 (17) 163
N1—H1B⋯O5′i 0.90 2.30 3.185 (17) 170
N2—H2A⋯O7ii 0.90 2.35 3.101 (17) 141
N2—H2B⋯O1iii 0.90 2.11 2.956 (12) 157
Symmetry codes: (i) [x+{\script{1\over 3}}, x-y+{\script{5\over 3}}, z+{\script{1\over 6}}]; (ii) [-x+{\script{2\over 3}}, -y+{\script{7\over 3}}, -z+{\script{1\over 3}}]; (iii) [x-y+1, -y+2, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There has been extensive interest in polyoxometalates (POMs), owing to their fascinating properties and great potential applications in many fields including catalysis, material science, medicine, and magnetochemistry, and their unusual structural diversities (Pope & Müller, 1991; Hill, 1998; López et al., 2001). Especially, the modified POMs, which are the decoration of polyoxoanions with various transition metal ions, organic ligands, and/or their complex moieties, can be regarded as an ideal atomic level structural model for the determination of the mechanisms of oxide-supported catalysts (Xu et al., 2000; Yuan, Li et al., 2003). Therefore, we focussed our research on the preparation of modified POMs with strong reducing reagents (Lu, Cui, Liu et al., 2009; Lu, Xu, Cui et al., 2010, Lu, Xu, Yu et al., 2010).

As shown in Fig. 1, the title compound shows a neutral tri-supported classical psedo-Keggin type structure where three [Cu(en)2(H2O)]2+ fragments are decorating the one-electron reduced heteropolyanion [AlWVI11WVO40]6-, which is isotypic with its VIV and SiIV analogue (Lu, Cui, Chen et al., 2009). The tri-supported POM is located in a special position of 3 symmetry and therefore oxygen atoms from the central AlO4 tetrahedron are disordered over two sites. The pseudo-Keggin unit [AlW12O40]6- may be viewed as a shell of {W12O36} encapsulating a disordered {AlO4} moiety, present at its center and responsible for the local tetrahedral geometry (Wang et al., 2006; Yuan, Qin et al., 2009). The central Al atom is surrounded by a cube of eight oxygen (six O8 and two O9) atoms with each of them having half-occupancy due to the inversion symmetry at Al1, and the oxygens of the {AlO4} group are covalently bonded to three different tungsten centers of the shell. All W atoms possess similar distorted octahedral geometry WO6 defined by one terminal oxygen atom, four doubly bridging oxo-groups and one central oxygen atom. Three doubly-bridging oxo-groups are disordered over two sets of sites each (O5, O5', O6, O6', O7 and O7') with the occupancy factor assigned as 0.5. A l—O8 and Al—O9 bond lengths are 1.714 (11) and 1.81 (2), respectively, with mean bond distance 1.74 Å, in good agreement with the literature (López et al., 2001). The three classes of W—O average distances (being 1.688, 1.939 and 2.297 Å, respectively) are comparable to the corresponding distances in the similar structures (Wang et al., 2006; Yuan, Qin et al., 2009). The heteropolyanion [AlWVI11WVO40]6- is a one-electron-reduced derivative of [AlW12O40]6-, similar to other reported representatives (Lan et al., 2008; Meng et al., 2008). We consider that oxalic acid acts as reducing agent reducing WVI to WV in the reactions.

The most unusual structural feature of the title compound is that each of three surface bridging oxygen atoms (O4) of the polyoxoanion is coordinated to one [Cu(en)2(H2O)]2+ fragment. The Cu1 center possesses an elongated octahedral geometry defined by the bridging oxygen atom (Cu—O4, 2.718 (9) Å) from the polyoxoanion, a coordination water molecule [Cu—O1W, 2.411 (11) Å] trans to O4 atom and four N atoms from two chelating en ligands with equal Cu—N bond lengths 2.002 (9) Å. The bond lengths and angles at Cu1 are consistent with the Jahn–Teller active d9 electronic configuration of divalent copper. The tri-supported POMs are extended into three-dimensional supramolecular network via a combination of intermolecular N—H···O and O—H···O hydrogen bonding (Fig. 2).

Related literature top

For the isotypic VIV and SiIV structures, see: Lu, Cui, Chen et al. (2009). For general background to polyoxidometalates, see: Pope & Müller (1991); Hill (1998); López et al. (2001). For supported Keggin-type structures, see: Xu, et al. (2000); Yuan, Li et al. (2003). For the structure and chemistry of one-electron reduced heteropolytungstate, see: Lan et al. (2008); Meng et al. (2008). For other dodecatungstoaluminates, see: Wang et al. (2006); Yuan, Qin et al. (2009). For polyoxidometalates prepared with strongly reducing agents, see: Lu, Cui, Liu et al. (2009); Lu, Xu & Yu (2010); Lu, Xu, Cui et al. (2010).

Experimental top

A mixture of Na2WO4.2H2O (0.658 g, 2 mmol), CuSO4.5H2O (0.25 g, 1 mmol), H2C2O4.2H2O (0.189 g, 1.5 mmol), NaAlO2 (0.10 g, 1.25 mmol) and H2O (15 mL) was mixed and stirred for 30 min, and the pH was adjusted to 7 with en. The resulting suspension was transferred to a Teflon-lined autoclave (25 ml) and kept at 180°C for 3 days. After slow cooling to room temperature for 2 days, blue prism crystals were obtained by filtering, washing with distilled water, and drying in desiccators at ambient temperature. The yields were ca 42% based on W. Elemental analysis C12H54Cu3N12O43AlW12(3478.47): Calcd. (%): C, 4.14; H, 1.56; N, 4.83. Found: C, 4.21; H, 1.57; N, 4.94.

Refinement top

H atoms bonded to C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97, N—H = 0.90 Å and Uiso(H) = 1.2Ueq(C, N). H atoms attached to the water molecule were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O). In the final difference Fourier map, the highest peak and the deepest hole are 0.37 Å and 0.93 Å from atom W2, respectively.

Structure description top

There has been extensive interest in polyoxometalates (POMs), owing to their fascinating properties and great potential applications in many fields including catalysis, material science, medicine, and magnetochemistry, and their unusual structural diversities (Pope & Müller, 1991; Hill, 1998; López et al., 2001). Especially, the modified POMs, which are the decoration of polyoxoanions with various transition metal ions, organic ligands, and/or their complex moieties, can be regarded as an ideal atomic level structural model for the determination of the mechanisms of oxide-supported catalysts (Xu et al., 2000; Yuan, Li et al., 2003). Therefore, we focussed our research on the preparation of modified POMs with strong reducing reagents (Lu, Cui, Liu et al., 2009; Lu, Xu, Cui et al., 2010, Lu, Xu, Yu et al., 2010).

As shown in Fig. 1, the title compound shows a neutral tri-supported classical psedo-Keggin type structure where three [Cu(en)2(H2O)]2+ fragments are decorating the one-electron reduced heteropolyanion [AlWVI11WVO40]6-, which is isotypic with its VIV and SiIV analogue (Lu, Cui, Chen et al., 2009). The tri-supported POM is located in a special position of 3 symmetry and therefore oxygen atoms from the central AlO4 tetrahedron are disordered over two sites. The pseudo-Keggin unit [AlW12O40]6- may be viewed as a shell of {W12O36} encapsulating a disordered {AlO4} moiety, present at its center and responsible for the local tetrahedral geometry (Wang et al., 2006; Yuan, Qin et al., 2009). The central Al atom is surrounded by a cube of eight oxygen (six O8 and two O9) atoms with each of them having half-occupancy due to the inversion symmetry at Al1, and the oxygens of the {AlO4} group are covalently bonded to three different tungsten centers of the shell. All W atoms possess similar distorted octahedral geometry WO6 defined by one terminal oxygen atom, four doubly bridging oxo-groups and one central oxygen atom. Three doubly-bridging oxo-groups are disordered over two sets of sites each (O5, O5', O6, O6', O7 and O7') with the occupancy factor assigned as 0.5. A l—O8 and Al—O9 bond lengths are 1.714 (11) and 1.81 (2), respectively, with mean bond distance 1.74 Å, in good agreement with the literature (López et al., 2001). The three classes of W—O average distances (being 1.688, 1.939 and 2.297 Å, respectively) are comparable to the corresponding distances in the similar structures (Wang et al., 2006; Yuan, Qin et al., 2009). The heteropolyanion [AlWVI11WVO40]6- is a one-electron-reduced derivative of [AlW12O40]6-, similar to other reported representatives (Lan et al., 2008; Meng et al., 2008). We consider that oxalic acid acts as reducing agent reducing WVI to WV in the reactions.

The most unusual structural feature of the title compound is that each of three surface bridging oxygen atoms (O4) of the polyoxoanion is coordinated to one [Cu(en)2(H2O)]2+ fragment. The Cu1 center possesses an elongated octahedral geometry defined by the bridging oxygen atom (Cu—O4, 2.718 (9) Å) from the polyoxoanion, a coordination water molecule [Cu—O1W, 2.411 (11) Å] trans to O4 atom and four N atoms from two chelating en ligands with equal Cu—N bond lengths 2.002 (9) Å. The bond lengths and angles at Cu1 are consistent with the Jahn–Teller active d9 electronic configuration of divalent copper. The tri-supported POMs are extended into three-dimensional supramolecular network via a combination of intermolecular N—H···O and O—H···O hydrogen bonding (Fig. 2).

For the isotypic VIV and SiIV structures, see: Lu, Cui, Chen et al. (2009). For general background to polyoxidometalates, see: Pope & Müller (1991); Hill (1998); López et al. (2001). For supported Keggin-type structures, see: Xu, et al. (2000); Yuan, Li et al. (2003). For the structure and chemistry of one-electron reduced heteropolytungstate, see: Lan et al. (2008); Meng et al. (2008). For other dodecatungstoaluminates, see: Wang et al. (2006); Yuan, Qin et al. (2009). For polyoxidometalates prepared with strongly reducing agents, see: Lu, Cui, Liu et al. (2009); Lu, Xu & Yu (2010); Lu, Xu, Cui et al. (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level and labels shown for the asymmetric unit; the remaining part of the molecule was generated by the symmetry operations: -y, x-y, z; -x+y,-x, z; x-y, -y, 0.5-z; -x, -x+y, 0.5-z; y, x, 0.5-z. Only one position of the {AlO4} unit and one position of the disordered O5, O6 and O7 atoms is shown. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the [001] direction with N—H···O and O—H···O hydrogen bonds displayed as dashed lines.
µ3-Dodecatungsto(V,VI)aluminato- κ3O:O':O''-tris[aquabis(ethylenediamine- κ2N,N')copper(II)] top
Crystal data top
[AlCu3W12O40(C2H8N2)6(H2O)3]Dx = 4.224 Mg m3
Mr = 3478.47Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 4488 reflections
Hall symbol: -R 3 2"cθ = 2.3–27.9°
a = 17.9719 (14) ŵ = 26.38 mm1
c = 29.335 (5) ÅT = 296 K
V = 8206 (2) Å3Prism, blue
Z = 60.11 × 0.11 × 0.10 mm
F(000) = 9252
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2220 independent reflections
Radiation source: fine-focus sealed tube1864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 10 pixels mm-1θmax = 28.0°, θmin = 2.3°
ω scansh = 2323
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2323
Tmin = 0.159, Tmax = 0.178l = 3838
22760 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0089P)2 + 625.9202P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2220 reflectionsΔρmax = 1.85 e Å3
157 parametersΔρmin = 3.56 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000015 (2)
Crystal data top
[AlCu3W12O40(C2H8N2)6(H2O)3]Z = 6
Mr = 3478.47Mo Kα radiation
Trigonal, R3cµ = 26.38 mm1
a = 17.9719 (14) ÅT = 296 K
c = 29.335 (5) Å0.11 × 0.11 × 0.10 mm
V = 8206 (2) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2220 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1864 reflections with I > 2σ(I)
Tmin = 0.159, Tmax = 0.178Rint = 0.071
22760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0089P)2 + 625.9202P]
where P = (Fo2 + 2Fc2)/3
2220 reflectionsΔρmax = 1.85 e Å3
157 parametersΔρmin = 3.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Al10.00001.00000.25000.0086 (12)
W10.12019 (2)0.89540 (2)0.251326 (13)0.01398 (11)
W20.11116 (3)0.99748 (3)0.151770 (19)0.03112 (15)
Cu10.38149 (11)1.00000.25000.0250 (4)
O10.1553 (4)0.8230 (4)0.2512 (3)0.035 (2)
O20.1623 (6)0.9928 (5)0.1054 (3)0.035 (2)
O30.00000.8191 (5)0.25000.032 (3)
O40.2303 (5)1.00000.25000.021 (2)
O50.1345 (9)0.9100 (9)0.1856 (6)0.017 (3)0.50
O5'0.0992 (10)0.9148 (9)0.1888 (5)0.014 (3)0.50
O60.1377 (9)0.9148 (8)0.3158 (5)0.016 (3)0.50
O6'0.0980 (9)0.9157 (9)0.3118 (5)0.013 (3)0.50
O70.0887 (8)1.0866 (8)0.1188 (5)0.016 (3)*0.50
O7'0.0036 (9)0.9157 (8)0.1502 (5)0.018 (3)0.50
O80.0000 (8)1.0914 (7)0.2333 (4)0.010 (2)0.50
O90.00001.00000.1883 (7)0.011 (4)0.50
O1W0.5157 (6)1.00000.25000.039 (3)
H1W0.53180.97560.26930.059*
C10.3609 (8)1.0205 (8)0.3444 (4)0.036 (3)
H1C0.36261.00330.37550.043*
H1D0.31691.03650.34200.043*
C20.4485 (8)1.0956 (8)0.3305 (4)0.037 (3)
H2C0.46151.14600.34840.044*
H2D0.49301.08110.33590.044*
N10.3427 (6)0.9487 (6)0.3121 (3)0.028 (2)
H1A0.28610.91020.31180.033*
H1B0.37120.92180.32080.033*
N20.4457 (6)1.1133 (6)0.2820 (3)0.031 (2)
H2A0.49941.14390.27070.037*
H2B0.41891.14380.27800.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0072 (17)0.0072 (17)0.011 (3)0.0036 (8)0.0000.000
W10.01112 (18)0.00943 (17)0.0236 (2)0.00683 (14)0.00119 (14)0.00112 (14)
W20.0239 (2)0.0154 (2)0.0504 (3)0.00709 (17)0.0232 (2)0.00150 (19)
Cu10.0300 (7)0.0256 (9)0.0178 (9)0.0128 (5)0.0001 (4)0.0001 (7)
O10.012 (3)0.013 (3)0.080 (6)0.007 (3)0.003 (4)0.001 (4)
O20.056 (5)0.023 (4)0.022 (4)0.017 (4)0.013 (4)0.003 (3)
O30.008 (4)0.009 (3)0.078 (9)0.004 (2)0.002 (5)0.001 (3)
O40.005 (3)0.010 (4)0.049 (7)0.005 (2)0.001 (2)0.003 (4)
O50.010 (7)0.007 (6)0.034 (9)0.004 (6)0.006 (7)0.001 (6)
O5'0.015 (8)0.015 (7)0.009 (7)0.005 (6)0.006 (6)0.004 (5)
O60.011 (7)0.007 (6)0.029 (8)0.005 (6)0.003 (6)0.001 (5)
O6'0.013 (7)0.016 (7)0.014 (7)0.009 (6)0.000 (6)0.003 (5)
O7'0.023 (7)0.009 (6)0.025 (8)0.009 (6)0.004 (6)0.002 (6)
O80.011 (5)0.015 (6)0.009 (5)0.009 (5)0.001 (6)0.004 (5)
O90.011 (6)0.011 (6)0.012 (10)0.005 (3)0.0000.000
O1W0.026 (4)0.038 (7)0.058 (8)0.019 (3)0.009 (3)0.017 (6)
C10.044 (7)0.062 (8)0.022 (6)0.042 (7)0.001 (5)0.001 (6)
C20.039 (7)0.049 (8)0.028 (6)0.026 (6)0.014 (5)0.012 (6)
N10.025 (5)0.040 (5)0.024 (5)0.020 (4)0.002 (4)0.002 (4)
N20.030 (5)0.032 (5)0.035 (6)0.020 (4)0.008 (4)0.004 (4)
Geometric parameters (Å, º) top
Al1—O8i1.714 (11)W2—O7iii2.079 (13)
Al1—O91.81 (2)W2—O92.288 (10)
W1—O11.707 (7)W2—O8iii2.421 (11)
W1—O31.894 (6)Cu1—N22.002 (9)
W1—O6'1.894 (6)Cu1—N12.002 (9)
W1—O61.921 (16)Cu1—O1W2.411 (11)
W1—O41.931 (4)Cu1—O42.718 (9)
W1—O5'1.939 (14)O1W—H1W0.8499
W1—O51.946 (17)C1—N11.498 (15)
W1—O8ii2.232 (11)C1—C21.530 (17)
W1—O8iii2.248 (12)C1—H1C0.9700
W2—O21.668 (8)C1—H1D0.9700
W2—O5'1.765 (14)C2—N21.465 (15)
W2—O7'iv1.787 (13)C2—H2C0.9700
W2—O6'v1.793 (14)C2—H2D0.9700
W2—O7'1.840 (13)N1—H1A0.9000
W2—O6v2.063 (14)N1—H1B0.9000
W2—O52.072 (15)N2—H2A0.9000
W2—O72.076 (13)N2—H2B0.9000
O8ii—Al1—O8i112.2 (3)O6'v—W2—O8iii56.2 (5)
O8ii—Al1—O8iv122.8 (8)O7'—W2—O8iii85.6 (5)
O8ii—Al1—O9ii73.4 (4)O6v—W2—O8iii68.1 (5)
O9ii—Al1—O9180.000 (2)O5—W2—O8iii68.2 (5)
O1—W1—O399.8 (4)O7—W2—O8iii111.0 (5)
O1—W1—O6'110.1 (5)O7iii—W2—O8iii112.0 (5)
O3—W1—O6'83.4 (5)O9—W2—O8iii53.0 (5)
O1—W1—O693.0 (5)N2—Cu1—N2v172.2 (5)
O3—W1—O6100.1 (4)N2—Cu1—N186.2 (4)
O6'—W1—O622.1 (4)N2v—Cu1—N194.7 (4)
O1—W1—O498.8 (3)N2—Cu1—N1v94.7 (4)
O3—W1—O4161.2 (3)N2v—Cu1—N1v86.2 (4)
O6'—W1—O492.5 (4)N1—Cu1—N1v166.4 (5)
O6—W1—O481.2 (4)N2—Cu1—O1W86.1 (3)
O1—W1—O5'108.3 (6)N2v—Cu1—O1W86.1 (3)
O3—W1—O5'81.8 (5)N1—Cu1—O1W96.8 (3)
O6'—W1—O5'140.6 (6)N1v—Cu1—O1W96.8 (3)
O6—W1—O5'158.1 (6)N2—Cu1—O493.9 (3)
O4—W1—O5'90.2 (4)N2v—Cu1—O493.9 (3)
O1—W1—O591.4 (5)N1—Cu1—O483.2 (3)
O3—W1—O595.9 (4)N1v—Cu1—O483.2 (3)
O6'—W1—O5158.3 (6)O1W—Cu1—O4180.000 (2)
O6—W1—O5162.3 (6)W1—O3—W1i162.3 (6)
O4—W1—O581.2 (4)W1—O4—W1v114.9 (4)
O5'—W1—O520.4 (4)W1—O4—Cu1122.5 (2)
O1—W1—O8ii166.6 (4)W1v—O4—Cu1122.5 (2)
O3—W1—O8ii87.3 (4)O5'—O5—W179 (2)
O6'—W1—O8ii59.2 (5)O5'—O5—W254.6 (19)
O6—W1—O8ii74.6 (5)W1—O5—W2120.9 (7)
O4—W1—O8ii75.0 (4)O5—O5'—W2107 (2)
O5'—W1—O8ii83.8 (5)O5—O5'—W180 (2)
O5—W1—O8ii99.1 (5)W2—O5'—W1141.3 (8)
O1—W1—O8iii164.6 (4)O6'—O6—W176.9 (19)
O3—W1—O8iii86.8 (4)O6'—O6—W2v58.5 (16)
O6'—W1—O8iii84.3 (5)W1—O6—W2v121.0 (7)
O6—W1—O8iii99.5 (5)O6—O6'—W2v101.1 (19)
O4—W1—O8iii74.6 (4)O6—O6'—W181.0 (19)
O5'—W1—O8iii58.7 (5)W2v—O6'—W1140.3 (8)
O5—W1—O8iii74.0 (5)O7'iv—O7—W259.1 (11)
O8ii—W1—O8iii25.3 (6)O7'iv—O7—W2iv62.2 (11)
O2—W2—O5'107.3 (6)W2—O7—W2iv114.8 (7)
O2—W2—O7'iv114.1 (5)O7iii—O7'—W2iii94.5 (13)
O5'—W2—O7'iv138.6 (7)O7iii—O7'—W291.4 (13)
O2—W2—O6'v111.0 (5)W2iii—O7'—W2149.6 (7)
O5'—W2—O6'v95.7 (6)O8i—O8—Al173.4 (4)
O7'iv—W2—O6'v70.1 (6)O8i—O8—W1ii78.3 (10)
O2—W2—O7'111.5 (5)Al1—O8—W1ii124.6 (6)
O5'—W2—O7'74.1 (6)O8i—O8—W1iv76.4 (10)
O7'iv—W2—O7'90.2 (7)Al1—O8—W1iv123.7 (6)
O6'v—W2—O7'137.4 (6)W1ii—O8—W1iv93.3 (4)
O2—W2—O6v93.7 (5)O8i—O8—W2iv171.0 (3)
O5'—W2—O6v91.3 (6)Al1—O8—W2iv115.6 (5)
O7'iv—W2—O6v86.5 (6)W1ii—O8—W2iv96.3 (4)
O6'v—W2—O6v20.4 (5)W1iv—O8—W2iv96.9 (4)
O7'—W2—O6v153.6 (6)Al1—O9—W2iii118.0 (5)
O2—W2—O591.5 (5)Al1—O9—W2118.0 (5)
O5'—W2—O518.6 (5)W2iii—O9—W299.8 (6)
O7'iv—W2—O5152.8 (6)Al1—O9—W2iv118.0 (5)
O6'v—W2—O592.8 (6)W2iii—O9—W2iv99.8 (6)
O7'—W2—O588.7 (6)W2—O9—W2iv99.8 (6)
O6v—W2—O582.5 (6)Cu1—O1W—H1W126.8
O2—W2—O789.1 (5)N1—C1—C2106.1 (9)
O5'—W2—O7161.3 (7)N1—C1—H1C110.5
O6'v—W2—O786.3 (6)C2—C1—H1C110.5
O7'—W2—O791.8 (5)N1—C1—H1D110.5
O6v—W2—O796.7 (5)C2—C1—H1D110.5
O5—W2—O7179.0 (6)H1C—C1—H1D108.7
O2—W2—O7iii86.7 (5)N2—C2—C1108.6 (9)
O5'—W2—O7iii89.9 (6)N2—C2—H2C110.0
O7'iv—W2—O7iii92.2 (5)C1—C2—H2C110.0
O6'v—W2—O7iii158.7 (6)N2—C2—H2D110.0
O6v—W2—O7iii178.7 (5)C1—C2—H2D110.0
O5—W2—O7iii98.7 (6)H2C—C2—H2D108.3
O7—W2—O7iii82.1 (7)C1—N1—Cu1107.7 (7)
O2—W2—O9153.2 (6)C1—N1—H1A110.2
O5'—W2—O989.3 (6)Cu1—N1—H1A110.2
O7'iv—W2—O952.5 (5)C1—N1—H1B110.2
O6'v—W2—O987.3 (6)Cu1—N1—H1B110.2
O7'—W2—O952.1 (5)H1A—N1—H1B108.5
O6v—W2—O9107.2 (6)C2—N2—Cu1107.4 (7)
O5—W2—O9107.5 (5)C2—N2—H2A110.2
O7—W2—O972.2 (5)Cu1—N2—H2A110.2
O7iii—W2—O972.1 (5)C2—N2—H2B110.2
O2—W2—O8iii153.7 (4)Cu1—N2—H2B110.2
O5'—W2—O8iii56.7 (6)H2A—N2—H2B108.5
O7'iv—W2—O8iii84.6 (6)
Symmetry codes: (i) x, x+y, z+1/2; (ii) y1, x+1, z+1/2; (iii) x+y1, x+1, z; (iv) y+1, xy+2, z; (v) xy+1, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2vi0.852.252.856 (9)128
N1—H1B···O5vi0.902.263.138 (17)163
N1—H1B···O5vi0.902.303.185 (17)170
N2—H2A···O7vii0.902.353.101 (17)141
N2—H2B···O1v0.902.112.956 (12)157
Symmetry codes: (v) xy+1, y+2, z+1/2; (vi) x+1/3, xy+5/3, z+1/6; (vii) x+2/3, y+7/3, z+1/3.

Experimental details

Crystal data
Chemical formula[AlCu3W12O40(C2H8N2)6(H2O)3]
Mr3478.47
Crystal system, space groupTrigonal, R3c
Temperature (K)296
a, c (Å)17.9719 (14), 29.335 (5)
V3)8206 (2)
Z6
Radiation typeMo Kα
µ (mm1)26.38
Crystal size (mm)0.11 × 0.11 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.159, 0.178
No. of measured, independent and
observed [I > 2σ(I)] reflections
22760, 2220, 1864
Rint0.071
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.071, 1.10
No. of reflections2220
No. of parameters157
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0089P)2 + 625.9202P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.85, 3.56

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.852.252.856 (9)128
N1—H1B···O5i0.902.263.138 (17)163
N1—H1B···O5'i0.902.303.185 (17)170
N2—H2A···O7ii0.902.353.101 (17)141
N2—H2B···O1iii0.902.112.956 (12)157
Symmetry codes: (i) x+1/3, xy+5/3, z+1/6; (ii) x+2/3, y+7/3, z+1/3; (iii) xy+1, y+2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (ZR2011BQ004) and the Fundamental Research Funds for the Central Universities (09CX04045A).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHill, C. L. (1998). Chem. Rev. 98, 1–2.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationLan, Y. Q., Li, S. L., Li, Y. G., Su, Z. M., Shao, K. Z. & Wang, X. L. (2008). CrystEngComm, 10, 1129–1131.  Web of Science CSD CrossRef CAS Google Scholar
First citationLópez, X., Maestre, J. M., Bo, C. & Poblet, J. M. (2001). J. Am. Chem. Soc. 123, 9571–9576.  Web of Science PubMed Google Scholar
First citationLu, Y. K., Cui, X. B., Chen, Y., Xu, J. N., Zhang, Q. B., Liu, Y. B., Xu, J. Q. & &Wang, T. G. (2009). J. Solid State Chem. 182, 2111–2117.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Y. K., Cui, X. B., Liu, Y. B., Yang, Q. F., Shi, S. Y., Xu, J. Q. & Wang, T. G. (2009). J. Solid State Chem. 182, 690–697.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Y. K., Xu, J. N., Cui, X. B., Jin, J., Shi, S. Y. & Xu, J. Q. (2010). Inorg. Chem. Commun. 13, 46–49.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Y., Xu, J. & Yu, H. (2010). Acta Cryst. E66, m263–m264.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, F. X., Chen, Y. G., Pang, H. J., Shi, D. M. & Sun, Y. (2008). J. Coord. Chem. 61, 1513–1524.  Web of Science CSD CrossRef CAS Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34–48.  CrossRef Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. P., Shen, Y. & Niu, J. Y. (2006). J. Coord. Chem. 59, 1007–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, Y., Xu, J. Q., Zhang, K. L., Zhang, Y. & You, X. Z. (2000). Chem. Commun. pp. 153–154.  Web of Science CSD CrossRef Google Scholar
First citationYuan, M., Li, Y. G., Wang, E. B., Tian, C. G., Wang, L., Hu, C. W., Hu, N. H. & Jia, H. Q. (2003). Inorg. Chem. 42, 3670–3676.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYuan, L., Qin, C., Wang, X. L., Li, Y. G. & Wang, E. B. (2009). Dalton Trans. pp. 4169–4175.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds